ca-CONTINUITY IN BITOPOLOGICAL SPACES

F. H. Khedr*

Department of Mathematics, Faculty of Sciences University of Assiut Assiut, Egypt

الخلاصة :

قدمنا في هذا البحث تجمعا جديدا من الرواسم في الفراغات ثنائية التوبولوجي يسمى بالرواسم المتصلة من النوع cα ، كما درسنا بعض خواص هذه الرواسم . كذلك تم استخدام هذا النوع من الرواسم لإعطاء بعض التحليلات للاتصال في الفراغات ثنائية التوبولويي .

ABSTRACT

In this paper we introduce a new class of mappings in bitopological spaces, called pairwise $c\alpha$ -continuous mappings, and investigate some of its properties.

^{*}Address for correspondence: Girls' College Administration P.O. Box 838, Dammam Kingdom of Saudi Arabia

cα-CONTINUITY IN BITOPOLOGICAL SPACES

1. INTRODUCTION

The study of bitopological spaces was initiated with the paper of Kelly [1] in 1963 and thereafter a large number of papers which has been generalize topological concepts to the bitopological setting. The present paper is devoted to introducing and investigating the concepts of $c\beta$ -continuity, *c*-precontinuity, *c*-semicontinuity, and $c\alpha$ -continuity in bitopological spaces and making use of them to give some decompositions of continuity in such spaces.

Throughout the paper, by a space (X, τ_1, τ_2) or simply by X we shall mean a bitopological space. For a subset A of X, *i*-Int(A) and *i*-Cl(A) will denote the interior and the closure of A with respect to τ_i , respectively. The complement of A in X will be denoted by A^c . Also, i, j = 1, 2 and $i \neq j$.

A subset A of a space (X, τ_1, τ_2) is called τ_i -semiopen with respect to τ_i (we denote that by *ij*-semiopen) [2] if there exists a τ_i -open set U such that $U \subset A \subset j$ -Cl(U). A mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called pairwise continuous (resp. pairwise open) [3] if the induced mappings $f: (X, \tau_i) \rightarrow (Y, \sigma_i), i = 1, 2$ are continuous (resp. open). $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called *ij*-semicontinuous [2] if the inverse image of each *i*-open set in Y is *ij*-semiopen in X, and is called *ij*-weakly continuous [4] if for each $x \in X$ and each *i*-open set V, in Y, containing f(x), there exists an *i*-open set U, in X, containing x such that $f(U) \subset j$ -Cl(V). A space X is called pairwise connected [3] iff X cannot expressed as the union of two nonempty disjoint sets A and Bsuch that $(A \cap i\text{-}Cl(B)) \cup (j\text{-}Cl(A) \cap B) = \emptyset$ iff X cannot expressed as the union of two disjoint nonempty sets one of which is *i*-open and the other is *j*-open. X is called pairwise T_2 [1] (resp. pairwise T'_2 [5]) iff for each pair of distinct points x and y of X, there are an *i*-open set A and a *j*-open set B containing x and y, respectively, such that $A \cap B = \emptyset$ (resp. i-Cl(A) \cap i-Cl(B) = \emptyset).

2. ca-OPEN SETS IN BITOPOLOGICAL SPACES

Definition 2.1. Let X be a space and $A \subset X$. A is said to be ij- $c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, ij- $c\alpha$ -open) if $A \subset [j$ -Cl(i-Int(j-Cl $(A)))]^c \cup [i$ -Int(A)](resp. $A \subset [i$ -Int(j-Cl $(A))]^c \cup [i$ -Int(A)], $A \subset [j$ -Cl(i-Int $(A))]^c \cup [i$ -Int(A)], $A \subset [i$ -Int(j-Cl(i-Int $(A)))]^c \cup [i$ -Int(A)]). The complement of an ij- $c\beta$ -open (resp. ij-c-preopen, *ij-c*-semiopen, *ij-c* α -open) set is called *ij-c* β -closed (resp. *ij-c*-preclosed, *ij-c*-semiclosed, *ij-c* α -closed). The family of all *ij-c* β -open (resp. *ij-c*-preopen, *ij-c*-semiopen, *ij-c* α -open) sets of X will be denoted by *ij-C* $\beta O(X)$ (resp. *ij-CPO(X)*, *ij-CSO(X)*, *ij-C* $\alpha O(X)$). A subset A of a space X is called pairwise Q iff it is *ij-Q* and *ji-Q*, where $Q = c\beta$ -open, *c*-preopen, *c*-semiopen, *c* α -open.

Remark 2.1. One may deduce the following diagram:

i-open
$$\Rightarrow$$
 ij-*c*-semiopen \Rightarrow *ij*-*c*-semiopen ψ ψ ψ
ij-*c*-preopen \Rightarrow *ij*-*c* α -open

The converse of these implications need not be true as is shown by the following counterexample.

Counterexample 2.1.

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}, \{d\}, \{b, d\}\}$. Then, the subset $\{a, d\}$ is 12-c β -open but not 1-open. The subset $\{c, d\}$ is 12-c-preopen but not 12-c β -open. The subset $\{b, d\}$ is 12-c-semiopen but not 12-c β -open. The subset $\{b, c, d\}$ is 12-c α -open but not 12-c-preopen. The subset $\{a, c, d\}$ is 12-c α -open but not 12-c-semiopen.

Theorem 2.1. Let X be a space and $A \subset X$, the following statements are equivalent.

- (1) A is $ij-c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, $ij-c\alpha$ -open).
- (2) j-Cl(i-Int(j-Cl(A))) (resp. i-Int(j-Cl(A)), j-Cl(i-Int(A)), i-Int(j-Cl(i-Int(A)))) $\subset i$ -Int(A) $\cup A^{c}$.
- (3) j-Cl(i-Int(j-Cl(A))) $\cap A$ (resp. i-Int(j-Cl(A)) $\cap A$, j-Cl(i-Int(A)) $\cap A$, i-Int(j-Cl(i-Int(A))) $\cap A$) = i-Int(A).

Proof. We shall prove this theorem for $ij-c\beta$ -open sets only, since the other cases are similar.

(1) \Longrightarrow (2): Let A be ij-c β -open and $x \in j$ -Cl(*i*-Int(*j*-Cl(A))). Suppose that $x \notin i$ -Int(A) \cup A^c, then $x \notin i$ -Int(A) and $x \in A$. Since $A \subset i$ -Int(A) \cup (*j*-Cl(*i*-Int(*j*-Cl(A))))^c and $x \notin i$ -Int(A), then $x \notin A$, a contradiction. Then $x \in i$ -Int(A) \cup A^c and so *j*-Cl(*i*-Int(*j*-Cl(A))) $\subset i$ -Int(A) \cup A^c.

(2) \Longrightarrow (3): Let $x \in A \cap j$ -Cl(*i*-Int(*j*-Cl(A))), since *j*-Cl(*i*-Int(*j*-Cl(A))) $\subset i$ -Int(A) $\cup A^c$, then $x \in i$ - Int(A). Thus $A \cap j$ -Cl(*i*-Int(*j*-Cl(A))) $\subset i$ -Int(A) which implies that $A \cap j$ -Cl(*i*-Int(*j*-Cl(A))) = *i*-Int(A).

(3) \Longrightarrow (1): If $x \notin i$ -Int $(A) = A \cap j$ -Cl(i-Int(j-Cl(A))) and $x \in A$, then $x \notin j$ -Cl(i-Int(j-Cl(A))) which implies that $x \in [j$ -Cl(i-Int(j-Cl(A)))]^c and so $x \in i$ -Int $(A) \cup [j$ -Cl(i-Int(j-Cl(A)))]^c. Hence $A \subset i$ -Int $(A) \cup [j$ -Cl(i-Int(j-Cl(A)))]^c and the result follows.

Theorem 2.2. Let X be a space and $F \subset X$, the following statements are equivalent:

- (1) F is $ij-c\beta$ -closed (resp. ij-c-preclosed, ij-c-semiclosed, $ij-c\alpha$ -closed).
- (2) i-Cl(F) j-Int(i-Cl(j-Int(F))) (resp. i-Cl(F) i-Cl(j-Int(F)), i-Cl(F) j-Int(i-Cl(F)), i-Cl(F) i-Cl(j-Int(i-Cl(F)))) $\subset F$.
- (3) $F \cup j$ -Int(i-Cl(j-Int(F))) (resp. $F \cup i$ -Cl(j-Int(F)), $F \cup j$ -Int(i-Cl(F)), $F \cup i$ -Cl(j-Int(i-Cl(F))) = F.

Theorem 2.3. In any space X every singleton is ij-c-semiopen.

Proof. Let $x \in X$, if $\{x\}$ is *i*-open, then it is *ij-c*-semiopen. If $\{x\}$ is not *i*-open, then *i*-Int $(\{x\}) = \emptyset$ and so *i*-Int $(\{x\}) \cup (j\text{-Cl}(i\text{-Int}(\{x\})))^c = X \supset \{x\}$. Hence $\{x\}$ is *ij-c*-semiopen.

Corollary 2.1. In any space X every singleton is $ij-c\alpha$ -open.

Theorem 2.4. The finite intersection of $ij-c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, $ij-c\alpha$ -open) sets is $ij-c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, ij-c-semiopen, $ij-c\alpha$ -open).

Proof. Since $\bigcap_{k \in I} i \cdot \operatorname{Int}(A_k) = i \cdot \operatorname{Int}(\bigcap_{k \in I} A_k)$ and $j \cdot \operatorname{Cl}(\bigcap_{k \in I} A_k) \subset \bigcap_{k \in I} (j \cdot \operatorname{Cl}(A_k))$, where $\{A_k : k \in I$ (finite) $\} \subset 2^X$, thus if $\{U_k : k \in I \text{ (finite)}\} \subset ij \cdot C\beta O(X)$, then $\bigcap_{k \in I} U_k \subset \bigcap_{k \in I} (i \cdot \operatorname{Int}(U_k) \cup (j \cdot \operatorname{Cl}(i \cdot \operatorname{Int}(j \cdot \operatorname{Cl}(U_k))))^c)$ $\subset \bigcap_{k \in I} i \cdot \operatorname{Int}(U_k) \cup (\bigcap_{k \in I} j \cdot \operatorname{Cl}(i \cdot \operatorname{Int}(j \cdot \operatorname{Cl}(U_k))))^c \subset i \cdot \operatorname{Int}(\bigcap_{k \in I} U_k) \cup (j \cdot \operatorname{Cl}(i \cdot \operatorname{Int}(j \cdot \operatorname{Cl}(U_k))))^c$. Hence, $\bigcap_{k \in I} U_k$ is $ij \cdot c\beta$ -open.

Other cases can be proved similarly.

Corollary 2.2.

(1) $ij-C\beta O(X)$ (resp. ij-CPO(X), ij-CSO(X), $ij-C\alpha O(X)$) is a base for a topology on X denoted by $\tau_{ic\beta}$ (resp. τ_{icp} , τ_{ics} , $\tau_{ic\alpha}$).

- (2) $\tau_{ic\alpha} = \tau_{ics} = D$, where D is the discrete topology on X.
- (3) $\tau_i \subset \tau_{ic\beta} \subset \tau_{icp}$.

Remark 2.2. The union of two $ij-c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, $ij-c\alpha$ -open) sets need not be $ij-c\alpha$ -open as illustrated by the following counterexample.

Counterexample 2.2. Let X, τ_1 , and τ_2 as in Counterexample 2.1. The subsets $\{b, c\}$ and $\{d\}$ are 12- $c\beta$ -open but $\{b, c\} \cup \{d\} = \{b, c, d\}$ is not 12- $c\beta$ -open. The subsets $\{a, d\}$ and $\{c\}$ are 12-c-semiopen but $\{a, d\} \cup \{c\} = \{a, c, d\}$ is not 12-c-semiopen.

Lemma 2.1. If $f: X \rightarrow Y$ is a pairwise continuous pairwise open mapping, then for each $B \subset Y$, $i \cdot \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(i \cdot \operatorname{Cl}(B))$ and $i \cdot \operatorname{Int}(f^{-1}(B)) = f^{-1}(i \cdot \operatorname{Int}(B))$.

Theorem 2.5. If $f: X \rightarrow Y$ is a pairwise continuous pairwise open mapping, then the inverse image of each ij- $c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, ij- $c\alpha$ -open) set in Y is ij- $c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, ij- $c\alpha$ -open) in X.

Proof. Follows immediately from Lemma 2.1.

Theorem 2.6. Let X be a space and $B \subset Y \subset X$ such that $Y \in \tau_1 \cap \tau_2$. If B is an $ij - c\beta$ -open (resp. ij - c-preopen, ij - c-semiopen, $ij - c\alpha$ -open) set in X, then B is $ij - c\beta$ -open (resp. ij - c-preopen, ij - c-semiopen, $ij - c\alpha$ -open) in the subspace Y.

Proof. Since $Y \in \tau_1 \cap \tau_2$ then *i*-Int(*B*) = (i-Int(*B*))_Y and *j*-Cl(*B*) \supset (*j*-Cl(*B*))_Y and then the proof is straightforward.

Theorem 2.7. Let $X \times Y$ be the product space of two spaces X and Y. Let A and B be $ij - c\beta$ -open (resp. ij - c-preopen, ij - c-semiopen, $ij - c\alpha$ -open) sets in X and Y, respectively. Then $A \times B$ is $ij - c\beta$ -open (resp. ij - c-preopen, ij - c-semiopen, $ij - c\alpha$ -open) in $X \times Y$.

Proof. Since $i-Int(A \times B) = i-Int(A) \times i-Int(B)$ and $j-Cl(A \times B) = j-Cl(A) \times j-Cl(B)$, then the proof follows immediately.

Definition 2.2. A subset A of a space X is called ij- β -open (resp. ij-preopen, ij- α -open) iff $A \subset j$ -Cl(*i*-Int(*j*-Cl(A))) (resp. $A \subset i$ -Int(*j*-Cl(A)), $A \subset i$ -Int(*j*-Cl(*i*-Int(A)))).

Remark 2.3. One can verify the following diagram:

Counterexamples can be given to show that the converses of these implications need not be true.

Theorem 2.8. If A is a subset of a space X, then A is *i*-open iff it is both ij- β -open and ij- $c\beta$ -open (resp. ij-preopen and ij-c-preopen, ij-semiopen and ij-c-open and ij- $c\alpha$ -open).

Proof. If A is *i*-open, then it is both $ij-c\beta$ -open and $ij-\beta$ -open.

Conversely, let A be $ij - c\beta$ -open and $ij - \beta$ -open. Then, $A \subset (j - Cl(i - Int(j - Cl(A))))^c \cup i - Int(A)$ and $A \subset j - Cl(i - Int(j - Cl(A)))$. Thus $A \subset i - Int(A)$ and hence A is *i*-open.

The proof of the other cases is similar.

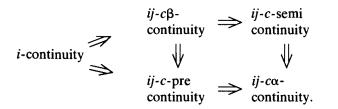
Corollary 2.3.

- A is *i*-open iff it is both *ij*-α-open and *ij*-c-semiopen (resp. *ij*-c-preopen, *ij*-cβ-open).
- (2) A is *i*-open iff it is both *ij*-semiopen (resp. ij-preopen) and ij- $c\beta$ -open.

3. cα-CONTINUITY IN BITOPOLOGICAL SPACES

Definition 3.1. A mapping $f: X \rightarrow Y$ is said to be $ij - c\beta$ -continuous (resp. ij - c-precontinuous, ij-c-semicontinuous, ij- $c\alpha$ -continuous) if the inverse image of each *i*-open set in Y is ij- $c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, ij- $c\alpha$ -open) in X. f is called pairwise Q iff it is ij-Q and ji-Q, where $Q = c\beta$ -continuous, c-precontinuous, c-semicontinuous, or $c\alpha$ -continuous.

Remark 3.1. One can deduce the following diagram:



Each implication of the above diagram may not be reversible as shown by the following counterexample:

Counterexample 3.1.

Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, \tau_2 = \{\emptyset, X, \{b\}, \{d\}, \{b, d\}\}, \sigma_1 = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}, and \sigma_2 = \{\emptyset, Y, \{a, b\}, \{c, d\}\}.$ Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined as in the following cases:

- (a) f be the identity mapping, then f is 12-c-precontinuous but not $12-c\beta$ -continuous and $12-c\alpha$ -continuous but not 12-c-semicontinuous.
- (b) f(a) = a, f(b) = d, f(c) = b, f(d) = c, then f is 12-c β -continuous but not 1-continuous.
- (c) f(a) = b, f(b) = d, f(c) = d, f(d) = c, then f is 12-c-semicontinuous but not 12-c β -continuous and 12-c-precontinuous but not 1-continuous.
- (d) f(a) = c, f(b) = a, f(c) = d, f(d) = b, then f is 12-c α -continuous but not 12-c-precontinuous.

Definition 3.2. A mapping $f: X \rightarrow Y$ is called ij- β continuous (resp. ij-precontinuous, ij- α -continuous) iff the inverse image of each *i*-open set in Y is ij- β -open (resp. ij-preopen, ij- α -open) in X. f is called pairwise Q iff it is ij-Q and ji-Q, where $Q = \beta$ -continuous, precontinuous, or α -continuous.

Remark 3.2. For these types of continuity, a diagram similar to that given in Remark 2.3 can be deduced.

The proofs of the following four theorems are straightforward and thus omitted.

Theorem 3.1. A mapping $f: X \rightarrow Y$ is *i*-continuous iff it is both ij- β -continuous and ij- $c\beta$ -continuous (resp. ij-precontinuous and ij-c-precontinuous, ij-semicontinuous and ij-c-semicontinuous, ij- α -continuous and ij- α -continuous).

Theorem 3.2. For a mapping $f: X \rightarrow Y$, the following statements are equivalent:

- (1) f is $ij-c\beta$ -continuous (resp. ij-c-precontinuous, ij-c-semicontinuous, $ij-c\alpha$ -continuous).
- (2) The inverse image of each *i*-closed set in Y is ij- $c\beta$ -closed (resp. ij-c-preclosed, ij-c-semiclosed, ij- $c\alpha$ -closed) in X.
- (3) $i-\text{Cl}(f^{-1}(i-\text{Cl}(B))) j-\text{Int}(i-\text{Cl}(j-\text{Int}(f^{-1}(i-\text{Cl}(B)))))$ (resp. $i-\text{Cl}(f^{-1}(i-\text{Cl}(B))) - j-\text{Int}(f^{-1}(i-\text{Cl}(B))), i-\text{Cl}(f^{-1}(i-\text{Cl}(B))) - j-\text{Int}(i-\text{Cl}(f^{-1}(i-\text{Cl}(B)))), i-\text{Cl}(f^{-1}(i-\text{Cl}(B))) - i-\text{Cl}(j-\text{Int}(i-\text{Cl}(f^{-1}(i-\text{Cl}(B)))))] \subset f^{-1}(i-\text{Cl}(B)).$

Theorem 3.3. Let $f: X \rightarrow Y$ be an $ij - c\beta$ -continuous (resp. ij-c-precontinuous, ij-c-semicontinuous, ij-ca-

continuous) mapping. For any point $x \in X$ and any *i*-open set V in Y containing f(x), there exists an *ij*-c β -open (resp. *ij*-c-preopen, *ij*-c-semiopen, *ij*-c α -open) set U in X such that $x \in U$ and $f(U) \subset V$.

Theorem 3.4. If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an ij- $c\beta$ -continuous (resp. ij-c-precontinuous, ij-c-semicontinuous, ij- $c\alpha$ -continuous) mapping, then $f: (X, \tau_{ic\beta})$ (resp. $(X, \tau_{icp}), (X, \tau_{ics}), (X, \tau_{ic\alpha})) \rightarrow (Y, \sigma_i)$ is continuous.

Theorem 3.5. Let $f: X \rightarrow Y$ be an ij- $c\beta$ -continuous (resp. ij-c-precontinous, ij-c-semicontinuous, ij- $c\alpha$ -continuous) mapping. Then, $f \nmid U$ is ij- $c\beta$ -continuous (resp. ij-c-precontinuous, ij-c-semicontinuous, ij- $c\alpha$ -continuous), where U is an ij- $c\beta$ -open (resp. ij-c-preopen, ij-c-semiopen, ij- $c\alpha$ -open) set in X.

Proof. Follows immediately from Theorem 2.4.

Theorem 3.6. Let $f: X \rightarrow Y$ be an $ij - c\beta$ -continuous (resp. ij-c-semicontinuous) surjective mapping such that $(j-Cl(i-Int(j-Cl(f^{-1}(V)))))^c$ (resp. $(j-Cl(i-Int(f^{-1}(V))))^c) \subset f^{-1}(j-Cl(V))$, for each *i*-open set V in Y. If X is pairwise connected, then Y is pairwise connected.

Proof. Suppose that Y is not pairwise connected, then there exist an *i*-open set V_1 and a *j*-open set V_2 such that $V_1 \cup V_2 = Y$ and $V_1 \cap V_2 = \emptyset$. Since f is *ij*-c β -continuous then $f^{-1}(V_1) \subset i$ -Int $(f^{-1}(V_1)) \cup (j$ -Cl(i-Int(j-Cl $(f^{-1}(V_1))))$ ^c. Since (j-Cl(i-Int(j-Cl $(f^{-1}(V_1))))$ ^c $\subset f^{-1}(j$ -Cl $(V_1)) = f^{-1}(V_1)$, then $f^{-1}(V_1) \subset i$ -Int $(f^{-1}(V_1))$ and so $f^{-1}(V_1)$ is *i*-open in X. Similarly $f^{-1}(V_2)$ is *j*-open into X. Also, $f^{-1}(V_1) \cap f^{-1}(V_2) =$ $f^{-1}(V_1 \cap V_2) = \emptyset$ and $f^{-1}(V_1) \cup f^{-1}(V_2) = f^{-1}(V_1 \cup f^{-1}(V_2))$ V_2) = $f^{-1}(Y) = X$. Therefore, X is not pairwise connected, a contradiction. Then, Y is pairwise connected.

The rest of the proof is similar.

Theorem 3.7. Let $f: X \to Y$ be an $ij - c\beta$ -continuous (resp. ij - c-semicontinuous) injective mapping and $(j - Cl(i - Int(j - Cl(f^{-1}(V)))))^c$ (resp. $(j - Cl(i - Int(f^{-1}(V))))^c) \subset f^{-1}(j - Cl(V))$ for each *i*-open set V of Y. If Y is pairwise T'_2 , then X is T_2 .

Theorem 3.8. Let $f: X \rightarrow Y$ be an $ij - c\beta$ -continuous (resp. ij-c-semicontinuous) mapping such that $(j-Cl(i-Int(j-Cl(f^{-1}(V)))))^c$ (resp. $(j-Cl(i-Int(f^{-1}(V))))^c) \subset f^{-1}(j-Cl(V))$ for each *i*-open set V of Y. Then f is ij-weakly continuous.

REFERENCES

- [1] J. C. Kelly, "Bitopological Spaces", Proc. London Math. Soc., 13(3) (1963), p. 71.
- [2] S. Bose, "Semi-Open Sets, Semi-Continuity and Semi-Open Mappings in Bitopological Spaces", Bull. Cal. Math. Soc., 73 (1981), p. 237.
- W. J. Pervin, "Connectedness in Bitopological Spaces", Nes. Akad. Wetensch. Proc. Ser. A, 70 (1967), p. 369.
- [4] S. Bose and D. Sinha, "Pairwise Almost Continuous Map and Weakly Continuous Map in Bitopological Spaces", Bull. Cal. Math. Soc., 74 (1982), p. 195.
- M. K. Singal and A. R. Singal, "Some More Separation Axioms in Bitopological Spaces", Ann. Soc. Sci. Bruxelles, 84 (1970), p. 207.

Paper Received 16 June 1990; Revised 3 June 1991.

ANNOUNCEMENTS .