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ABSTRACT

In this paper we extend the conjugacy theorem for free products of groups with
amalgamation and HNN groups to groups acting on trees in which inversions are
possible. This will include the conjugacy theorem for free products of groups, and
treed-HNN groups. Also we prove a result concerning conjugacy classes of groups
acting on trees.
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ON THE CONJUGACY THEOREM AND THE CONJUGACY CLASSES
FOR GROUPS ACTING ON TREES WITH INVERSIONS

1. INTRODUCTION

The conjugacy theorem for free products of groups
with amalgamation, known as “Solitar’s Theorem”
was formulated by Magnus, Karrass, and Solitar ([1],
Theorem 4.6, p. 212), and the conjugacy theorem
for HNN groups, known as “Collin’s Lemma” was
formulated by Collins ([2], general Lemma 3,
p. 123). See also Lyndon and Schupp ([3], Theorem
25, p. 185).

Free products of groups with amalgamation and
HNN groups are special cases of groups acting on
trees. In this paper we formulate the conjugacy
theorem for groups acting on trees in general, to
include the conjugacy theorems for tree products of
groups and treed-HNN groups.

2. PRELIMINARY DEFINITIONS AND
NOTATION

We begin by giving preliminary definitions. By a
graph X we understand a pair of disjoint sets V(X)
and E(X), with V(X) non-empty, together with a
mapping  E(X) >V(X) xV(X), y—>(o(y),1(y)),
and a mapping E(X)— E(X), y—7 satisfying y =y
and o(y) = t(y), for all yE E(X). The case y =y is
possible for some y€ E(X).

A path in a graph X is defined to be either a single
vertex vE V(X) (a trivial path), or a finite sequence
of edges y;, ¥;,...,¥,, n=1 such that 1(y;) = o(y,,,)
fori=1,2,...,.n—1.

A path y,,y,,...,y, is reduced if y, ,#¥; for
i=1,2,...,n—1. A graph X is connected, if for
every pair of vertices u and v of V(X)) there is a path
Y1, Y2,--» ¥, in X such that o(y,) = u and #(y,) = v.

A graph X is called a tree if for every pair of
vertices of V(X)) there is a unique reduced path in X
joining them.

A subgraph Y of a graph X consists of sets
V(Y)CV(X) and E(Y)CE(X) such that if
yEE(Y), then yEE(Y), o(y) and t(y) are in V(Y).
We write YC X. We take any vertex to be a subtree
without edges.

A reduced path y,,y,,...,y, is called a circuit if
o(y,) = t(y,), and o(y;) #o(y;) when i#j. It is clear
that a graph X is a tree if X is connected and
contains no circuits.
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If X, and X, are two graphs, then the map
f: X,— X, is called a morphism, if f takes vertices to
vertices and edges such that:

@) = f(»)
flo(y)) = o(f(y)
and f@y) = «(f(y)

fis called an isomorphism if it is one-to-one and onto,
and is called an automorphism if it is an isomorphism
and X; = X,. The automorphisms of X form a group
under composition of maps, denoted by Aut(X).

for all ye E(X));

We say that a group G acts on a graph X, if there
is a group homomorphism ¢: G—>Aut(X). If x€X
is a vertex or an edge, we write g(x) for d(g)(x). If
yEE(X), then g(7) = g(y), g(o(y)) = o(g(y)), and
g(t(y)) = t(g(y)). The case g(y)=y for some
yEE(X) and gEG may occur, ie. G acts with
inversions on X. If y € X (vertex or edge), we define
G(y) ={g(y): g€ G} and this set is called an orbit.

If x, yEX, we define G(x,y) = {g€G:g(y) = x},
and G(x,x) = G,, the stabilizer of x. Thus,
G(x,y)# if and only if x and y are in the same
G-orbit. It is clear that if v€ V(X), y€ E(X) and
u€{o(y), t(y)}, then G(v,y) =9, G;=G, and G,
is a subgroup of G,.

As a result of the action of a group G on a graph X
we have the graph: X/G = {G(x): x€ X}, called the
quotient graph defined as follows:

V(XIG) = {G(v): vE V(X)},
E(XIG) = {G(y): y EE(X)},
and for y€ E(X) we have

G(y) = G(3), t(G(y) = G(1(y)),
and  o(G(y)) = G(o(y)).
It is clear that there is obvious morphism
p: X—X/G given by p(x) = G(x), which is called
the projection.

It can be easily shown that if X is connected, then
X/G is connected.

Definition 2.1. Let G be a group acting on a
connected graph X. A subtree T of X is called a tree
of representatives for the action of G on X if T
contains exactly one vertex from each G-vertex orbit.
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A subtree Y of X containing a tree of representatives,
T(say), is called a fundamental domain for the action
of G on X if each edge in Y has at least one end point
in T and Y contains exactly one edge, y(say), from
each G-edge orbit such that G(¥, y) = & and exactly
one pair x and ¥ from each G-edge orbit such that
G(x, x)#+ Q.

For the existence of T and Y see Khanfar and
Mahmud [4].

Properties of T and Y:

(1) Ifu, ve V(T) such that G(u, v) #J, then u=v.

(2) If veV(X), then G(v)NT consists of exactly
one vertex.

3) G(7,y)=, for all ye E(T).

(4) W(T) is in one-to-one correspondence with
V(X/G) under the map v—>G(v).

(5) If y,,y,€E(Y) such that G(y,,y,)#J, then
y1€4y2, 72}

(6) If G acts without inversions on X, then Y is in
one-to-one correspondence with X/G under the
map y—>G(y).

(7) If ueV(X), then there exists an element g€ G
and a unique vertex v of T such that u = g(v).

(8) If x€E(X), then there exists g€G and
yEE(Y) such that x =g(y). If G acts on X
without inversions, then y is unique.

(9) The set G(Y)={g(y):g€G, yEY}=X.
Also
G(E(Y)) = {g(y):8€G, yEE(Y)} = E(X).

(10) The set
G(V(T)) = {g(v): g€G, veV(T)} = V(X).

Definition 2.2. Let G, X, 7, and Y be as above. For
each v€ V(X) let v* be the unique vertex of T such
that G(v,v*)#. It is clear that v*=v, if
veV(T), and in general (v*)*=v*. Also if
G(u, v)#d, then u* = v* for u, ve€ V(X).

Note that G(v)NT = {v*}, for all v€ V(X).

3. THE STRUCTURE OF GROUPS ACTING
ON TREES

In this section and the rest of the paper G will be a
group acting on the tree X in general, i.e., action
with inversions is possible, T be a tree of represent-
atives, and Y be a fundamental domain such that Y
contains 7.

Given this we can now introduce the following
notation needed throughout this paper.
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(1) For each ve V(T), let (G, |rel G,) stand for any
presentation of G, via the map 8,:F,—G,,
where F, is a free group of base G,.

(2) For each edge y of E(Y) we have the following:

(a) Define [y] to be an element of G(t(y),

t(y)*), that is, [y](t(y)*) = t(y), to be
chosen as follows:

If o(y)E V(T) then: (i) [y] = 1if yEE(T);
(i) [y](y) =y if GGF,y)+D.

If o(y) ¢ V(T) then: [y] = [y]" if
G(¥,y) = J, otherwise [y] = [7].

It is clear that [y][y]=1 if G(J,y)=0,
otherwise [y][y] = [y]*

(b) Let —y = [y]""(y) if o(y)E V(T), otherwise
let —y =y. Now define +y = [y](-y). It is
clear__that t(—y) =t(y)*, o(+y)=o(y)*
and (+y) = —(9).

(c) Let S, be a word in G,,). of value [y][7]. It
is clear that §;=3§,.

(d) Let £, be a set of generators of G_, and G,
pe a sﬁelt of words in G,,,. mapping onto E,,
ie. 8, (G.)=G;.

(e) Define ¢,: G ,—~G.,, by ¢,(g) =[ylgly]™,
g€ G_, and define §,: G,— G; by taking the
word which represents the element g of E,
to the word which represents the element

gyl ™.

(f) Let {)le y'=G; stand for the set of relations
ywy ' = nl;y(w), wega,.

(3) Let P(Y) stand for the set of generating symbols

(@) G,, for ve V(T)

(i) y, for yEE(Y)

and R(Y) stand for the set of relations

(@) relG,, for ve V(T)

(i) yG,y' =G;, for yEE(Y)

(@ii) y=1, for ye E(T)

(iv) yy=3§,, for yEE(Y)

(v) y*=S§,, for y€ E(Y) such that G(y,y) #.

Note that if G(7,y)#J, then y ¢ E(T).

Theorem 3.1. G is generated by the set
{G,,[y): vEV(T) and y€E(Y)} and G has the

presentation (P(Y)|R(Y)) via G,—~G, and y—>[y],
for all v€ V(T) and all yEE(Y).

Proof. See [1].
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4. THE NORMAL FORM THEOREM OF
GROUPS ACTING ON TREES

Definition 4.1. By a word of G we mean an expres-
sion w of the form w=g .y.g.. ... .¥,.8,, =0,
where y,€ E(Y), i =1,...,n, such that:

(1) goeGo()‘;)‘*
(2) 8.€G,,,y, for i=1,..,n,
B) ty)* =o(y;,)* fori=1,....,n—1.
We define o(w) = o(y,)* and t(w) = t(y,)*.

We define n to be the length of w, and denote it by
|w|. The inverse w ™' of w is defined to be the word:

81'.y..8.".

It is clear that |w™'|=|w|. Also o(w™') =t(w)
and t(w ) =o(w) and (W) =w.

wil=g 3,81 ...

w is called a reduced word of G if w contains no
subword of the form

1) ly.g.y.1,if gg€G_,, fori=1,.,n,

or
(2) Ly,.g.y:.1, if g €G_,, with G(y,y;)#J, for
i=1,..,n

It is clear that if w is reduced, then w™! is reduced.

If o(w) = t(w), then w is called a closed word of
G of type o(w). If w is closed then w™' is closed.

The value [w] of w is the element

(W] =g.[y]8: .. [y.lg. of G.
It is clear that [w™'] = [w] "

If w = hyoairheer oo Yu-h, i a
word of G such  that  t(w)=o(w,),
then w.w, is defined to be the word

WW, =8 V.81 oo Vu-Baba-Yni1-Pnsre oo Ym-bim-

It is clear that [w][w,] and

ww) T=wilw

[ww ] =

Definition 4.2. The performance of the following
operations is called a y-reduction on a word w of G,
where y is an edge of Y occurs in w:

(1) replacing the form y.g.7 by [y]g[y] ™. ifg€G_, ,
or

(2) replacing the form y.g.y by [ylgly], if
G(y,y)#< and g€G_, .

The Arabian Journal for Science and Engineering, Volume 17, Number 1.

It is clear that the y-reduction on a word w of G
yields a reduced word w, of G such that [w] = [w],
o(w) =o(w,) and t(w) = t(w,).

Lemma 4.3. For any element g of G and vertices u
and v of V(T) there exists a reduced word w of G
such that g = [w], o(w) =u and t(w) = v.

Proof. Let g€G and u, ve V(T).

By Theorem 3.1, g can be expressed as a product:
gI»1g:---1y.lg., where g, €G, for some vertices
U, Uy,...,u, in T and edges y,,...,y, in Y.

By taking the unique reduced paths in T between
u and u,, u, and o(y,)*, between t(y,)* and u,,...,
between ¢(y,)* and u,, and between u, and v, and
the identities of G,,,,., we may choose this product
so that w = g..y,.8,. ... .V.-&. 18 @ word of G such
that g = [w], o(w) = u and ¢(w) = v. Now applying a
finite number of y-reductions on w yields a reduced
word w* of G such that g = [w*], o(w*) = u and
t{(w*) = v. This completes the proof of the Lemma.

Definition 4.4. For y € E(Y) define A, to be a right
transversal for G_, in G, subject only to the
condition that 1 is the representative for the coset
G

Definition 4.5. A word w=g..y,.8. ... .,.8, of G

is called normal if it is reduced and satisfies the
following:

(1) goeco(yl)'
2 g&€A,, fori=1,.,n

(3) If y,,, =7, for some i, 1=i=n-—1, then g,;#1.

@ If y,,,=y for some i l=i=n—-1 and
G(¥;,y;)#J, then g, #1.

Theorem 4.6. (The Normal Form Theorem). Every
element of G is the value of a unique normal word
of G of type v for an arbitrary vertex v of V(7).
Moreover, if w is a non-trivial closed reduced word
of G, then [w] (the value of w) is not the identity
element of G.

Proof. See [5].

Lemma 4.7. If yE E(Y) and y ¢ E(T), then [y] ¢ G,,
for all ve V(T).

Proof. We notice that if y€ E(T) then [y] =1 and
consequently [y]€G,, for any vE V(T).

Now let y ¢ E(T). We need to show that [y] ¢ G,,
for any v€V(T). Assume on the contrary that
[Y]EG,, for v€V(T). Then [y] is the value of the
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word: w = l.y,.1. ... y,.1l.y.1.x,.1. ... 1.x,.1,
where y,,..., y, is the unique reduced path in 7 from
vto o(y)* and x,...,x,, is the unique reduced path
in T from t(y)* to v. Since the word w.[y]™ is
closed of value the identity element of G, therefore
by Theorem 4.6, w is not reduced. Therefore some
y-reduction is applicable to w.[y]™'. This occurs in
the case ¥ = y, or y = x,. This means that y€ E(T).
This contradicts the assumption that y e E(T).
Hence [yl ¢G,.

This completes the proof of the Lemma.

Lemma 4.8. If w, = g,.y.g,. .Y.-8, and
w, =h,.x.hy. ....x,.h, are two reduced closed
words of G of the same value and type, then n = m,
y;=x;, (or y,=% if G(X,x;)#O) for i=1,...,n,
and there is a unique sequence =, m,,..., m,,, where
m,€G_,, and m,,_€G,,, for i=1,...,n such that
8, = h,m, g =myuhmy,, for i=1,..,n—1, and
8n = M,h,. Also if g,g,€G_, then h,h,€G_, .

Proof. See [5].

5. THE CONJUGACY THEOREM OF
GROUPS ACTING ON TREES

Definition 5.1. Let w=g,.y,.8. ... .V,.8, be a
closed word of G. Fori =1, 2,..., n we call the word
8i-Yie1-8ivte v Yn-8Bn&o-Y1-81- --- -y;-1 or the word
1.y01-8iv1e oo Yn-8n8o-Y1-81- --- -¥i-&; A cyclic per-
mutation of w. If w is reduced and |w|=<1, or the
word 1.y,.8,8,.¥,.1 is reduced then we call w a
cyclically reduced word of G.

We observe that if w is cyclically reduced and
|[w|>1, then w" is cyclically reduced, where 7 is an
integer, and |w"| = |n||w|. Moreover, every cyclic
permutation of w is cyclically reduced.

Also we note that if w=g .y.g is such that
o(y)*=1t(y)* and gg,€G._,, then w’ is cyclically
reduced if G(7,y) =, while w? is not cyclically
reduced if G(¥,y)# .

Definition 5.2. If w, and w, are two words of G of
the same value, i.e. [w,]=[w,] then we write
w,=~w, and say that w, is equivalent to w,.

Lemma 5.3. Let w be a cyclically reduced word of
G, and w, a closed reduced word of G such that
w and w, are the same type and w=w,. Then w, is
cyclically reduced.

Proof. By Lemma 4.8, |w| = |w,]|. If [w,| <1 then by
definition w, is cyclically reduced. So let |w,|>1.
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Let w = g..y,.8. .Y.-8  and
w,=hg.x.hy. ... .x,.h,. We need to show that the
word 1.x,.h,h,.x,.1 is reduced. Since w is cyclically
reduced, therefore g,g,¢G_, ..

By Lemma 4.8, h,h,¢ G_, . So 1.x,.h,h,.x,.1 is
reduced.

Therefore w, is cyclically reduced. This completes
the proof of the Lemma.

Definition 5.4. Two words w, and w, of G are
conjugate denoted w,~w, if w, and w, define
conjugate elements of G, i.e. if [w,] and [w,] are
conjugate in G.

Lemma 5.5. Let w; and w, be two cyclically reduced
words of G with |w,|=1. Then w;~ w, if and only if
any cyclic permutation of w, can be obtained by
taking a suitable cyclic permutation of w,, and then
conjugating by an element of G_,, where y is the last
edge in the cyclic permutation of w,.

Proof. Suppose first that any cyclic permutation w1
of w, can be obtained by taking a suitable cyclic
permutation w3 of w, followed by conjugating by
an element of G_,, where y is the last edge in w3,
ie, wi=h.wi.h™', for hEG._,.

Since w; ~w7¥, and w,~ w1, it follows that w, ~w,.
Next suppose that w,~w,.

Let wi and w3 be any cyclic permutations of w,
and w, respectively. Therefore wi~w3. Then by
Lemma 4.3, w,=w.w3.w™!, where w is a reduced
word of G such that o(w) = o(w?) and t(w)=o(w?}).
We use induction on |w| to prove our result.

If |w| =0, then the result follows from Lemma 4.8.
Suppose that |w|=1.

Let w = g,.y:-8- V-8 n=1, and
wi=h,.x..h. ... .x,,.1, m=1. Since wT is cycli-
cally reduced by Lemma 5.3, some cancellation
must be applicable to w.w3.w™'. This suggests the
consideration of the following cases:

Case 1:

xl:yrw (Ol’ Xy = Yn if G(?m)’n)¢®)7 and
8.h.€G_,. Then wi=w,wjw,', where
Wo = 8o-Y1-81- -+- 'yn~l'¢y,.(gngo)7

and wi=h,.x.. ... .x,.8.".x1., (8,8)

Since xl'(by,.(gnho)zgnho'xly

we have wi=w,.(h;.x,. ... .x,.h,.x;. 1) Lw
Since A;.x,. ... .x,.h,.x;.1 is a cyclic permuta-
tion of w3, the result follows by the induction
hypothesis.
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Case 2:

X = Ypo (OF X, = 3, if G(§,,y,)#), and
8.€G_,,. This case is similar to Case 1.

This completes the proof of the Lemma.

Definition 5.6. An element of G is called cyclically
reduced if it is the value of a cyclically reduced word
of G. In view of Lemma 5.3, this concept is well
defined.

Theorem 5.7. (The Conjugacy Theorem). Every
element of G is conjugate to a cyclically reduced ele-
ment of G. Moreover, suppose that g is a cyclically
reduced element of G and v is the type of a cyclically
reduced word of G of value g. Then

(i) if g is conjugate to an element % in G_,, where
yEE(Y) then g is in G, and there are sequences
of edges y;,¥s,...,y, of Y and of elements
hy, hy,..., h, of G satisfying:

(D) o(y)* =v,

) t(y)* =o(y;s1)*, for i=1,...,n—1,

() t(ya)* =1t(y)*,

4 heaG.,, fori=1,..,n,

(5) g and &, (h,) are conjugate by an element
of G,

(6) h; and ¢, (h;,,) are conjugate by an
element of G, fori=1,.,n-1,

(7) h, and h are conjugate by an element of
Gy,

(ii) if g is conjugate to an element g’ of G,, for
u€V(T), but not conjugate to any element of
G_, for any y € E(Y) such that ¢(y)* = u, then
u=v,g€G,, and, g and g’ are conjugate in G,;

(i) let w=g,.y,.8. ... .¥,-&» n=1 be a cyclically
reduced word of G. Then g is conjugate to
[w] if and only if there is a cyclic permutation
Wi = giYir1s oo Yn-8n8oY1-81- - Y-l of w
and element A of G_, such that g and [w)]
are conjugate by the element A.

Proof. Let g be an element of G. We need to show
that g is conjugate to a cyclically reduced element of
G. Let g’ be an element in the conjugacy class of G
containing g such that g’ is represented by a closed
reduced word w of G of shortest length. We need
to show that w is cyclically reduced.

Let w=g,.¥1.81- -+ -Vu-&n-
If n=0 then w=g, and w is cyclically reduced.

The Arabian Journal for Science and Engineering, Volume 17, Number 1.

Let n=1. If g,g,€G, and y =}y,
(Or ylzyn lf G()_’m yn):#g) then
Wo=81.Y2-82 - Yn-1-82-19,,(8:8,) s a closed
reduced word of G and of value conjugating g.
But w, has length smaller than w. Contradiction.
Thus w is a cyclically reduced word of G.

To prove (i), suppose that g is a cyclically reduced
element of G such that g is conjugate to an element
hin G_, for yEE(Y).

Then by Lemma 4.3, g=[w]h[w]™', where
W =g V.81 .- -Yu-& is a reduced word of G such
that o(w) = v and #(w) = t(y)*.

If n =0, then v=t(y)*, h€G, and the sequence
g h is the required type, since g =g,hg;".

Let n=1.

For each i, 1=i=n define w, to be the word

W, = (8i-Yis1-8ir1- - ;
Vn-8n) B Yis1-8ivie oo Yn-Bn)

Let h, = [w)].

Suppose there is a largest integer q such that
h,eG_, but h,,,€G_, . Then h,eG_,, if j>q,
for the existence of j>¢ with ;¢ G_, would contra-
dict the maximality of q. If g exists, then the word
(8-Y1-81- - ) -hy(8o-y1-81. ... )" is reduced of type
v and value g, but not cyclically reduced. This
contradicts Lemma 5.3. Hence g does not exist.

Therefore h,€G_, for 1=<j=<n. In any event, the
edges y,,...,y, and the elements g, h, h,,....h,, h
are of the required type and,

h; = gi[Yi+l]hi+l[Yi+1}_lg;1 = gi(b,v,'q(hHl)gi_lv for
1=i=n-1, and

8 = &nlmly] e = gd,(h)g'. Moreover,
h,=g,hg,', and g,EG,,, .

To prove (ii), suppose that g is conjugate to
an element f of G, but not conjugate to any ele-
ment of G_,, for any y€ E(Y) such that ¢(y)* = u.
Then by Lemma 4.3, g=[w]f[w]™!, where
W=g.¥.81 --- -Yu-& is a reduced word of G such
that o(w)=v and #(w)=u. Suppose that n=1.
Then g is the value of the word w, = w.f.w™.

If (1.y,.8.).f-(1.y,.8,)"" is reduced, then w, is
reduced but not cyclically reduced. This contradicts
Lemma 5.3. Hence (1.y,.g,).f-(1.y,.8,)"" is not
reduced. Therefore g,fg,'€G_, , and g is conjugate

to g.fg.".
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This contradicts the hypothesis.

Hence n=0, u=v and both f and g =g fg,*
are in G,, and are conjugate in G,.

The proof of (iii) follows from Lemma 5.4.
This completes the proof of Theorem 5.7.

In view of Theorem 5.7 we have the following
corollaries.

Corollary 5.8. Consider the sequences: y,...,y, of
edges of Y, and h,,..., h, of elements of G described
in case (i) of Theorem 5.7. Then these sequences
can be chosen so that no pair y;, h; is repeated.

Moreover, if Y and G, are finite for all y € E(X)
then there are only finitely many sequences of
distinct edges and elements mentioned above.

Proof. If y,=y,, and h; = h, for j<s then y,,..., y;,
Vsitrees Yo and g By, hy hoy,..., h, h
are  shorter sequences of the required
types, since  t(y;)* =t(y,)* = o(y,.,)*, and
iy~ = [.lA,[y,] ™", hesy are conjugate by an

element of G, ..

Hence any sequences of the required types with
minimal numbers of terms has distinct pairs.

Now since Y is finite, so is 7.

Therefore for any ve& V(T), the set
{y€EE(Y):t(y)* = v} is finite. Since for any
YEE(Y) G_, is finite, there are only finitely many
distinct pairs and hence only finitely many sequences
without repeats.

6. THE TORSION THEOREM OF GROUPS
ACTING ON TREES

Theorem 6.1. If G acts without inversions on X,
then every element of G of finite order is in G, for
some vE V(X).

Proof. Let g be an element of G of finite order.
By Theorem 5.7, g is conjugate to [w], where
W=g.,8 - -Ya-8 18 a cyclically reduced word
of G.

Thus g = h[w]h™', where hE€G.
If n=20, then it is clear that g€G,, where
v=h(o(y;)*).
But if n=1, then:
W =80 V1-81 « Vu-BnBo-Y1-81 c- Vn-8ne -+
-8o-Y1- -+ Yn-8n
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which is a closed reduced word of G, since w is
cyclically reduced. By Theorem 4.6 [w] #1, i.e., [w]
has infinite order.

Hence in this case g cannot have finite order.

Remark: In Theorem 6.1 above we excluded the
case when the action of G on X is with inversions, for
otherwise we get an edge y of Y in which G(¥, y) #{.
In this case we have [y]’€ G,,,- and it is possible that
[yI? =1, ie. [y] is of order two, but [y] & G,

Corollary 6.2. If G acts without inversions on X and
yEE(Y), y ¢ E(T), then [y] has infinite order.

Proof. If y€E E(T) then [y] = 1. If y ¢ E(T) then by
Lemma 4.7, [y] ¢ G,, for all v¢ V(T). Therefore by
Theorem 6.1, [y] has infinite order.

Corollary 6.3. If G acts without inversions on X
and H is a finite subgroup of G then H is contained
in G, for some v€ V(X).

Proof. The proof follows easily by virtue of Theorem
6.1.

7. ON CONJUGACY CLASSES OF GROUPS
ACTING ON TREES

Let P denote the following property of a group H:
If g in H has infinite order, then g, g% g°, ... are in
different conjugacy classes, or equivalently, if
g™ ~g" then |m| = |n|, where m and n are integers.

Many classes of groups have property P. For
example infinite cyclic groups have property P. Also
if a group H has property P, then so is every
subgroup of H. Finite groups are the trivial example
of groups of property P. For more details see [6].

Theorem 7.1. Let G act on X without inversions
such that G, has property P for all v€ V(X), and G,
is cyclic for all x€ E(X). Then G has property P.

Proof. For any elements f and g of G, we write f~g
to mean that f is conjugate to g. Suppose that g in G
has infinite order and that g™ ~g™. We need to
show that |m,| = |m,|.

By Theorem 5.7, g~f, where f is a cyclically
reduced element of G. Therefore f™ and f™ are
cyclically reduced elements of G and f™ ~f™. Let w
be a cyclically reduced word of G of type v and value
f. Then w™ and w™ are cyclically reduced words of
G of values f™ and f™ respectively.
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So [w™|=|my||w| and |w™|=|m,||w|. If |w|=1,
then by Theorem 5.7 (iii), |m,| = |m,|. If |w| =0,
then f, f™ and f™ are in G,.

We have two cases:
Case 1:
f™eG._, for all yEE(Y) such that t(y)* =v.

Then by Theorem 5.7 (if), f™~f™ in G,. Since
G, has property P, we must have |m,| = |m,|.

Case 2:

f™E€G_,, where yEE(Y) such that t(y)* =v.

Therefore, by Theorem 5.7 (i) there are two
sequences of edges y,,...,y, of Y and elements
hy,...,h, of G satisfying the conditions of

Theorem 5.7 (i).

So

fmx~¢y1(hl)~h1 ~¢y2(h2) ~h2~ "'¢y,,(hn) ~hn ,_fmz
where f™~ &, (h,) by an element of G,, ¢,.(h;)~h;
by the element [y/], for 1=i=<n, h;~d, (h;.,) by
an element of G,,,, y», for 1<i<n—1, and h,~f™
by an element of G,.

By assumption, G, is cyclic for all x€ E(X).
Therefore the G_,, are cyclic for i=1,..,n.
Let h be a generator of the cyclic group G_,, and
suppose that h,~h* and ¢, (h;)~h®, for 1<i<n,
where o, and B; are integers. Therefore,
fm1~th~hﬂ1~hl32~hﬂ1~ ~h|3u~hﬂn~fmz_

Since ¢,:G_,—G,,, given by g—[y]g[y,]™ is
an isomorphism, therefore |B,| = |o;|, for 1=<i=<n.
Since G,y has property P, for 1=<i=<n, it follows
that |o,| = |B;,4], for 1=i=n—-1.

Therefore we have f™ ~h* ~f™ or f™ ~h% ~f ™™
in G,. Since G, has property P, |m,|=|m,|.

This completes the proof of Theorem 7.1.
Corollary 7.2. Free groups have property P.

Proof. If G is a free group then there is a tree on
which G acts such that the G-vertex stabilizers are
trivial. By Theorem 7.1, G has property P.

Corollary 7.3. If G frerl* (Gi;Aj=A,) is a tree

product such that G, has property P and A, is cyclic,
then G has property P.
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Proof. There is a tree on which G acts such that the
G-vertex stabilizers are the conjugates of G; and
have property P, and the G-edge stabilizers are the
conjugates of A, and are cyclic. Therefore by
Theorem 7.1, G has property P.

Corollary 7.4. If G=(H,t]|rel H, t,A;t7' = B,) is
an HNN group such that H has property P and A,
is cyclic, then G has property P.

Proof. There is a tree on which G acts such that G is
transitive on the set of vertices, and the G-vertex
stabilizers are the conjugates of H and have property
P, and the G-edge stabilizers are the conjugates of
A, and are infinite cyclic. Therefore by Theorem 7.1,
G has property P.
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