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ABSTRACT 

In this paper we extend the conjugacy theorem for free products of groups with 
amalgamation and HNN groups to groups acting on trees in which inversions are 
possible. This will include the conjugacy theorem for free products of groups, and 
treed-HNN groups. Also we prove a result concerning conjugacy classes of groups 
acting on trees. 
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ON THE CONJUGACY THEOREM AND THE CONJUGACY CLASSES 
FOR GROUPS ACTING ON TREES WITH INVERSIONS 

1. INTRODUCTION 

The conjugacy theorem for free products of groups 
with amalgamation, known as "Solitar's Theorem" 
was formulated by Magnus, Karrass, and Solitar ([1], 
Theorem 4.6, p. 212), and the conjugacy theorem 
for HNN groups, known as "Collin's Lemma" was 
formulated by Collins ([2], general Lemma 3, 
p. 123). See also Lyndon and Schupp ([3], Theorem 
25, p. 185). 

Free products of groups with amalgamation and 
HNN groups are special cases of groups acting on 
trees. In this paper we formulate the conjugacy 
theorem for groups acting on trees in general, to 
include the conjugacy theorems for tree products of 
groups and treed-HNN groups. 

2. PRELIMINARY DEFINITIONS 	AND 
NOTATION 

We begin by giving preliminary definitions. By a 
graph X we understand a pair of disjoint sets VeX) 
and E(X) , with VeX) non-empty, together with a 
mapping E(X) ~VeX) x V(X) , Y ~ (o(y), t(y», 
and a mapping E(X)~E(X), Y~Y satisfying y= Y 
and o(y) t(y), for all y E E(X). The case Y y is 
possible for some y E E(X). 

A path in a graph X is defined to be either a single 
vertex vE VeX) (a trivial path), or a finite sequence 
of edges YI,Y2, ... ,Yn, n~l such that t(Yi) O(Yi+I) 
for i 1,2, ... , n-l. 

A path Yt,Y2, ... ,Yn is reduced if Yi+l =FYi' for 
i = 1,2, ... , n -1. A graph X is connected, if for 
every pair of vertices u and vof VeX) there is a path 
YltY2, ... ,Yn in X such that O(YI) = u and t(Yn) = v. 

A graph X is called a tree if for every pair of 
vertices of VeX) there is a unique reduced path in X 
joining them. 

A subgraph Y of a graph X consists of sets 
V(Y) ~ VeX) and E(Y) ~ E(X) such that if 
yEE(Y), then yEE(Y), o(y) and t(y) are in V(Y). 
We write Y~X. We take any vertex to be a subtree 
without edges. 

A reduced path YI,Y2, ... ,Yn is called a circuit if 
o(Yt) t(Yn), and O(Yi)=FO(Y) when i=Fi. It is clear 
that a graph X is a tree if X is connected and 
contains no circuits. 

If 	Xl and X2 are two graphs, then the map 
f: Xl~X 2 is called a morphism, if f takes vertices to 
vertices and edges such that: 

fey) = fey) 

f(o(y» o(f(y» 

and f(t(y» = t(f(y» for all YE E(X1); 

f is called an isomorphism if it is one-to-one and onto, 
and is called an automorphism if it is an isomorphism 
and Xl = X2. The automorphisms of X form a group 
under composition of maps, denoted by Aut(X). 

We say that a group G acts on a graph X, if there 
is a group homomorphism <1>: G~Aut(X). If xEX 
is a vertex or an edge, we write g(x) for <1>(g)(x). If 
yEE(X), then g(y) g(y), g(o(y» = o(g(y», and 
g(t(y» = t(g(y». The case g(y) = y for some 
Y E E(X) and g E G may occur, i.e. G acts with 
inversions on X. IfY E X (vertex or edge), we define 
G(y) = {g(y): gE G} and this set is called an orbit. 

If x, yEX, we define G(x,y) = {gE G:g(y) = x}, 
and G(x, x) = Gn the stabilizer of x. Thus, 
G(x, y) =F 0 if and only if x and yare in the same 
G-orbit. It is clear that if vE VeX), y E E(X) and 
uE{o(y), t(y)}, then G(v,y) = 0, Gy = Gy and Gy 

is a subgroup of Gu' 

As a result of the action of a group G on a graph X 
we have the graph: X/G = {G(x): xEX}, called the 
quotient graph defined as follows: 

VeX/G) {G(v): vEV(X)}, 

E(X/G) {G(y): yEE(X)}, 

and for y E E(X) we have 

G(y) G(y), t(G(y» = G(t(y», 

and o(G(y» = G(o(y». 

It 	is clear that there is obvious morphism 
p: X~X/G given by p(x) = G(x), which is called 
the projection. 

It can be easily shown that if X is connected, then 
X/G is connected. 

Definition 2.1. Let G be a group acting on a 
connected graph X. A subtree T of X is called a tree 
of representatives for the action of G on X if T 
contains exactly one vertex from each G-vertex orbit. 
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A subtree Y of X containing a tree of representatives, 
T(say), is called a fundamental domain for the action 
of G on X if each edge in Y has at least one end point 
in T and Y contains exactly one edge, y(say), from 
each G-edge orbit such that G(y, y) °and exactly 
one pair x and x from each G-edge orbit such that 
G(x, x) *0. 

For the existence of T and Y see Khanfar and 
Mahmud [4]. 

Properties of T and Y: 

(1) 	 If u, vE VeT) such that G(u, v) *0, then u = v. 

(2) 	 If vE V(X) , then G(v) n T consists of exactly 
one vertex. 

(3) 	 G(y,y) =0, for all yEE(T). 

(4) 	 VeT) is in one-to-one correspondence with 
veX/G) under the map v~G(v). 

(5) 	 If Yl'Y2EE(Y) such that G(Yl'Y2)*0, then 
Yl E {Y2' Y2}' 

(6) 	 If G acts without inversions on X, then Y is in 
one-to-one correspondence with X/G under the 
map y~G(y). 

(7) 	 If uE V(X) , then there exists an element gE G 
and a unique vertex v of T such that u g(v). 

(8) 	 If xEE(X), then there exists gEG and 
yE E(Y) such that x = g(y). If G acts on X 
without inversions, then y is unique. 

(9) 	 The set G(Y) {g(y): gE G, yE Y} = X. 
Also 
G(E(Y)) = {g(y):gEG, yEE(Y)} = E(X). 

(10) The set 
G(V(T)) = {g(v): gE G, vE VeT)} = VeX). 

Definition 2.2. Let G, X, T, and Y be as above. For 
each vE VeX) let v* be the unique vertex of T such 
that G(v,v*)*0. It is clear that v* v, if 
vE V( T), and in general (v*)* = v*. Also if 
G(u, v) *0, then u* v* for u, vE VeX). 

Note that G(v) n T = {v*}, for all vE VeX). 

3. THE STRUCTURE 	OF GROUPS ACTING 
ON TREES 

In this section and the rest of the paper G will be a 
group acting on the tree X in general, i.e., action 
with inversions is possible, T be a tree of represent­
atives, and Y be a fundamental domain such that Y 
contains T. 

Given this we can now introduce the following 
notation needed throughout this paper. 

(1) 	For each vE VeT), let (Gvlrel G) stand for any 
presentation of Gv via the map 6v: Fv~Gv' 
where Fv is a free group of base Gv. 

(2) 	For each edge y of E(Y) we have the following: 

(a) 	Define [y] to be an element of G(t(y), 
t(y)*), that is, [y](t(y)*) = t(y), to be 
chosen as follows: 

If o(y)E VeT) then: (i) [y] = 1 if yEE(T); 
(ii) 	[y](y) Y if G(y,y)*0. 

If o(y) ft VeT) then: [y] = [yr 1 if 

G(y,y) 0, otherwise [y] = [y"]. 

It is clear that [y][y] = 1 if G(y,y) = 0, 

otherwise [y] [y] [y]2. 

(b) 	Let - y = [y] -1 (y) if o(y) E V(T), otherwise 
let -y = y. Now define +y = [y]( -y). It is 
clear that t( -y) = t(y)*, o(+y) = o(y)* 
and (+y) - (y). 

(c) 	Let Sy be a word in Go(y). of value [y][y]. It 
is clear that ~y Sy. 

(d) Let ~y be a set of generators of G _y and Oy 
be a set of words in Gr(y)' mapping onto Ey, 
i.e. 	 6;(;)* (G_ y ) Oy. 

(e) 	Define ~y: G_y~G+y by <Py(g) = [y]g[yrt, 
gEG_y and define $y: Oy~Oy by taking the 
word which represents the element g of Ey 
to the word which represents the element 
[y]g[yrl. 

(f) Let y Gyy-l = Gystand for the set of relations 
-1 _ ~ 

ywy - $y(w), wEGr 

(3) Let P(Y) stand for the set of generating symbols 

(i) 	 Ov, for vE VeT) 
(ii) 	y, for yEE(Y) 

and 	R(Y) stand for the set of relations 

(i) 	 relG v , for vE VeT) 
(ii) 	yGyy-l Gy, for yEE(Y) 

(iii) Y 1, for yEE(T) 

(iv) yy = Sy, for y E E(Y) 
(v) 	 y2 = Sy, for yEE(Y) such that G(y,y) *0. 

Note that if G(y, y) *0, then y ft E( T). 

Theorem 3.1. G is generated by the set 
{Gv, [y]: vEV(T) and yEE(Y)} and G has the 
presentation (P(Y)IR(Y) via Ov~Gv and y~[y], 
for all vE VeT) and all y E E(Y). 

Proof See [1]. 
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4. 	THE NORMAL FORM THEOREM OF 
GROUPS ACTING ON TREES 

Definition 4.1. By a word of G we mean an expres­
sion w of the form w = gO'YI.gI' ... .Yn.gn' n2::0, 
where YiEE(Y), i 1, ... ,n, such that: 

(1) go E Go(rd" 

(2) giE Gt(y;)O, for i = 1,... , n, 

(3) t(y;)* = O(Yi+J*, for i 1, ... ,n 1. 

We define o(w) = O(YI)* and leW) I(Yn)*. 

We define n to be the length of w, and denote it by 
IIwl. The inverse w- of w is defined to be the word: 

It is clear that Iw-II = Iwl. Also o(w- I) = leW) 
and I(W-I) = o(w) and (w-Ir l = w. 

w is called a reduced word of G if w contains no 
subword of the form 

or 

(2) 	 l.Yi.gi'Yi.1, if giEG-Yi with GCVj'Yi)::fo0, for 
i = 1, ... , n. 

It is clear that if w is reduced, then w- I is reduced. 

If o(w) = I (w), then w is called a closed word of 
G 	of type o( w). If w is closed then w- I is closed. 

The value [w] of w is the element 
[w] = go[ydgl ... [Yn]gn of G. 

It is clear that [w- I] = [wrl. 

If WI h n .Y n + I' h n + I' ... .Y m .h m is a 
word of G such that leW) o(wI ), 
then w. WI is defined to be the word 

W.WI = go·YI·gl· ... ·Yn·gnhn·Yn+l·hn+l· ... ·Ym·hm· 

clear that [w.wd [w][wl ] and 
Wil. w- I 

Definition 4.2. The performance of the following 
operations is called a y-reduction on a word w of G, 
where Y is an edge of Y occurs in w: 

(1) 	replacing the form y.g.y by [y]g[Yrl, if gE G_y , 

or 

(2) replacing 	 the form y.g.y by [y]g[y], if 
G(y,y)::fo0 and gEG_y • 

It is clear that the y-reduction on a word w of G 
yields a reduced word WI of G such that [w] = [wd, 
o(w) =o(w1) and leW) I(WI). 

Lemma 4.3. For any element g of G and vertices u 
and v of V( T) there exists a reduced word w of G 
such that g = [w], o(w) = u and leW) v. 

Proof. Let gEG and u, vEV(T). 

By Theorem 3.1, g can be expressed as a product: 
go[ydgl'" [Yn]gn, where gjE GUi for some vertices 
uo' UI,. .. , Un in T and edges YI, ... ,Yn in Y. 

By taking the unique reduced paths in T between 
U and uo' Uo and O(Yl)*' between I(Yl)* and UI , ... , 
between I(Yn)* and Un' and between Un and v, and 
the identities of Gt(Yi)*' we may choose this product 
so that w = gO'YI.gl' ... 'Yn'gn is a word of G such 
that g = [w], o(w) = U and lew) = v. Now applying a 
finite number of y-reductions on w yields a reduced 
word w* of G such that g [w*], o(w*) = U and 
I(W*) = v. This completes the proof of the Lemma. 

Definition 4.4. For YE E(Y) define Ay to be a right 
transversal for G _y in Gt(y). subject only to the 
condition that 1 is the representative for the coset 
G_y • 

Definition 4.5. A word w = gO'YI.gI' ... .Yn.gn of G 
is called normal if it is reduced and satisfies the 
following: 

(1) 	goEGo(ydo 

(2) 	giEAYi' for i 1, ... , n 

(3) 	If Yi+ I Yi for some i, 1::; i::; n - 1, then gi::fo 1. 

(4) 	If Yi+1 Yi for some i, 1::; i::; n -1 and 
G(Y;,Yi)::fo0, then gi::fo1. 

Theorem 4.6. (The Normal Form Theorem). Every 
element of G is the value of a unique normal word 
of G of type v for an arbitrary vertex v of V(T). 
Moreover, if w is a non-trivial closed reduced word 
of G, then [w] (the value of w) is not the identity 
element of G. 

Proof. See [5]. 

Lemma 4.7. IfYE E(Y) and Y f/. E(T), then [y] f/. G y , 

for all vE V(T). 

Proof. We notice that if YE E( T) then [y] 1 and 
consequently [y] E G y , for any vE V(T). 

Now let Y f/. E(T). We need to show that [y] f/. G y , 

for 	 any vE V(T). Assume on the contrary that 
[y] E G y , for vE V(T). Then [y] is the value of the 
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word: W = LYI.L ... .Yn .Ly .LxI.L ... LXm.1, 
where YI, .. " Yn is the unique reduced path in T from 
v to o(y) * and x I'''', X m is the unique reduced path 
in T from t(y)* to v. Since the word w. [yri is 
closed of value the identity element of G, therefore 
by Theorem 4.6, W is not reduced. Therefore some 
y-reduction is applicable to w. [yri. This occurs in 
the case Y = Yn or Y Xl' This means that Y E E(T). 
This contradicts the assumption that Y fI- E(T). 
Hence [y] fI- Gv ' 

This completes the proof of the Lemma. 

Lemma 4.8. If WI = gO'YI.gI' ... .Yn.gn and 
W2= ho.x1.hl • ... • xm.hm are two reduced closed 
words of G of the same value and type, then n = m, 
Yj Xj, (or Yj Xj if G(xj,xi):#=0) for i = 1, ... , n, 
and there is a unique sequence 'iTI, 'iT2, ... , 'iT2n , where 
'iT2j EG_Yi and 'iTU-IEG+Yi for i= 1, ... ,n such that 
go ho'iTI' gj = 'iT2ih j'iT2i+1 for i 1, ... , n -1, and 
gn = 'iT2n hn· Also if gngoEG-Yn then hnhoEG_yn . 

Proof. See [5]. 

5. THE CONJUGACY THEOREM OF 
GROUPS ACTING ON TREES 

Definition 5.1. Let W go.YI.gI .....Yn.gn be a 
closed word of G. For i 1,2, ... , n we call the word 
gi'Yi+l.gi+I' ... ·Yn·gngo·YI·gl· ... ·Yj·1 or the word 
1.Yitl·gi+l· ... ·Yn·gngo·YI·gl· ... ·Yi·gj a cyclic per­
mutation of w. If W is reduced and Iwi :51, or the 
word 1.Yn.gngo'YI.1 is reduced then we call W a 
cyclically reduced word of G. 

We observe that if W is cyclically reduced and 
Iwl> 1, then wn is cyclically reduced, where n is an 
integer, and Iwnl Inllwl. Moreover, every cyclic 
permutation of w is cyclically reduced. 

Also we note that if w = go. y. g is such that 
o(y) * = t (y) * and ggo E G _Y' then w2 is cyclically 
reduced if G(y,y) = 0, while w2 is not cyclically 
reduced if G(y, y) :#= 0. 

Definition 5.2. If WI and W 2 are two words of G of 
the same value, i.e. [wd = [w2] then we write 
WI =W 2 and say that WI is equivalent to w2 • 

Lemma 5.3. Let w be a cyclically reduced word of 
G, and Wo a closed reduced word of G such that 
wand Wo are the same type and w= WOo Then Wo is 
cyclically reduced. 

Proof. By Lemma 4.8, Iwl = IWol. If IWo l:51 then by 
definition Wo is cyclically reduced. So let IWol> 1. 

Let w go 'YI' gi' ·Yn· gn and 
Wo = ho·xI.hI· ... . xn.hn. We need to show that the 
word Lxn.hnho.xI.1 is reduced. Since w is cyclically 
reduced, therefore gngo fI- G-yn ' 

By Lemma 4.8, hnho fI- G -Yn' So LXn.hnho.xI.1 is 
reduced. 

Therefore Wo is cyclically reduced. This completes 
the proof of the Lemma. 

Definition 5.4. Two words WI and of G areW 2 

conjugate denoted WI ~ W 2 if WI and W 2 define 
conjugate elements of G, i.e. if [wtl and [w2] are 
conjugate in G. 

Lemma 5.5. Let WI and W 2 be two cyclically reduced 
words of G with IW21 ~ 1. Then WI ~ W 2 if and only if 
any cyclic permutation of WI can be obtained by 
taking a suitable cyclic permutation of w2, and then 
conjugating by an element of G _Y' where Y is the last 
edge in the cyclic permutation of w2 • 

Proof. Suppose first that any cyclic permutation wi 
of WI can be obtained by taking a suitable cyclic 
permutation wi of W 2 followed by conjugating by 
an element of G_y, where Y is the last edge in wi, 
i.e., wi=h. wi. h-I, for hE G_Y' 

Since WI - wi, and W2 - wi, it follows that WI - w2• 

Next suppose that wI- W2' 

Let wi and wi be any cyclic permutations of WI 
and W2 respectively. Therefore wi~ wi. Then by 
Lemma 4.3, WI =w. wi. w- I, where w is a reduced 
word of G such that o(w) o(wi) and t(w) =o(wi). 
We use induction on IwI to prove our result. 

If Iwl 0, then the result follows from Lemma 4.8. 

Suppose that Iwl ~ 1. 

Let w = gO'YI.gI' .Yn.gn' n ~ 1, and 
wi = ho.xI.hl • ... ,xm.1, m~ 1. Since wi is cycli­
cally reduced by Lemma 5.3, some cancellation 

lmust be applicable to w. wi. w- . This suggests the 
consideration of the following cases: 

Case 1: 

x1=Yn' (or XI=Yn if G(Yn,Yn):#=0), and 
gnho E G-yn' Then wi= WOo w~. Will, where 

Wo = go·YI·gI· ... ·Yn-I·4>Yn(gngo), 

and w~ = hI.X I .... . xm·g;I. x I .4>Yn (gngo). 

Since x l .4>Yn (gnho) =gnho,XI' 

we have w!=wo.(h l .X2.....xm.ho.X I .l)-I. W~l. 


Since h I .X2 • ... • x m .ho .x l .1 is a cyclic permuta­

tion of wi, the result follows by the induction 

hypothesis. 
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Case 2: 

Xm Yn' (or Xm Yn if G(Yn,Yn) =1= 0), and 
gn E G -Yn' This case is similar to Case 1. 

This completes the proof of the Lemma. 

Definition 5.6. An element of G is called cyclically 
reduced if it is the value of a cyclically reduced word 
of G. In view of Lemma 5.3, this concept is well 
defined. 

Theorem 5.7. (The Conjugacy Theorem). Every 
element of G is conjugate to a cyclically reduced ele­
ment of G. Moreover, suppose that g is a cyclically 
reduced element of G and v is the type of a cyclically 
reduced word of G of value g. Then 

(i) 	 if g is conjugate to an element h in G_y , where 
YE E( Y) then g is in G~. and there are sequences 
of edges YVY2, ... ,Yn of Y and of elements 
h!, h'J, ... , h" of G satisfying: 

(1) 	O(YI)* = v, 

(2) 	t(Yi)* =O(Yi+l)*' for i= 1, ... ,n-1, 

(3) 	t(Yn)* t(y)*, 

(4) 	hiE G-yi , for i = 1, ... , n, 

(5) g and 	<l>Yl(h1) are conjugate by an element 
of Gv , 

(6) 	hi and <l>Yi+l(h j+I) are conjugate by an 
element of GO(Yi+d' for i = 1, ... , n -1, 

(7) 	hn and h are conjugate by an element of 
Gt(Yn)'; 

(ii) 	 if g is conjugate to an element g' of Gu , for 
u E VeT), but not conjugate to any element of 
G_y for any yEE(Y) such that t(y)* = u, then 
u = v, gE Gy , and, g and g' are conjugate in Gv ; 

(iii) 	let w gO'Yl.gl' ... .Yn.gm n~l be a cyclically 
reduced word of G. Then g is conjugate to 
[w] if and only if there is a cyclic permutation 
Wi gi'Yi+l' ... ·Yn·gngo'Yl.gl· ... ·Yi·1 of w 
and element h of G-Yi such that g and [Wi] 
are conjugate by the element h. 

Proof. Let g be an element of G. We need to show 
that g is conjugate to a cyclically reduced element of 
G. Let g' be an element in the conjugacy class of G 
containing g such that g' is represented by a closed 
reduced word w of G of shortest length. We need 
to show that w is cyclically reduced. 

Let 	w = go·Yl·gl· ... .Yn.gn' 

If n 0 then w = go and w is cyclically reduced. 

Let n ~ 1. If gngo E G-Yn and Yt Yn 
(or Yt = Yn if G(Yn, Yn) =1= 0) then 
Wo = gl'Y2.g2' ... ·Yn-l.gn-t<l>Yn(gngo) is a closed 
reduced word of G and of value conjugating g. 
But Wo has length smaller than w. Contradiction. 
Thus w is a cyclically reduced word of G. 

To prove (i), suppose that g is a cyclically reduced 
element of G such that g is conjugate to an element 
h in G_y for yEE(Y). 

Then by Lemma 4.3, g [w]h[wrt, where 
w = gO'YI.gI' ... .Yn.gn is a reduced word of G such 
that o(w) = v and t(w) = t(y)*. 

If n 0, then v t(y)*, hE Gv and the sequence 
g, h is the required type, since g = gohg~t. 

Let 	n~ 1. 

For 	each i, 1:5 i :5 n define Wi to be the word 

Wi (gj·Yi+l·gi+l·· .. 
·Yn·gn) .h·(gj·Yi+ t·gi+ t· ... ·Yn·gnr t. 

Suppose there is a largest integer q such that 
hqf1.G_yq but hq+1EG_Yq+l' Then hjEG_yi , if j>q, 
for the existence of j > q with h j f1. G-Yi would contra­
dict the maximality of q. If q exists, then the word 
(go.YI.gI.· .. ).hq·(gO·Yl·gt· ... r l is reduced of type 
v and value g, but not cyclically reduced. This 
contradicts Lemma 5.3. Hence q does not exist. 

Therefore hjE G_Yj for 1 n. In any event, the 
edges Yl,. .. ,Yn and the elements g, ht,h2 , ... ,hn, h 
are of the required type and, 

hi = gi[Yi+ I] hi+1 [Yi+ tr lgi- 1 = gi<l>Yi+ l(hi+1)g;t, for 
1 :=; i :=; n - 1, and 

g = go[ydh1[yd- 1 g~l = go<l>Yl(hl)g~l. Moreover, 
hn gnhg;;l, and gnEGt(Yn)*' 

To prove (ii), suppose that g is conjugate to 
an element f of Gu but not conjugate to any ele­
ment of G_y , for any yEE(Y) such that t(y)* = u. 
Then by Lemma 4.3, g = [w]f[wr 1, where 
w go.YI.gl .... .Yn.gn is a reduced word of G such 
that o(w) = v and t(w) = u. Suppose that n~ 1. 
Then g is the value of the word Wo w.f. w- 1

• 

If (l.Yn.gn) .f· (l.Yn .gn)-l is reduced, then Wo is 
reduced but not cyclically reduced. This contradicts 
Lemma 5.3. Hence (l.Yn.gn).f.(l.Yn.gnr l is not 
reduced. Therefore gnfg;; 1 E G -Yn' and g is conjugate 
to gnfg;;l. 
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This contradicts the hypothesis. 

Hence n = 0, U = v and both f and g gofg~I 
are in G , and are conjugate in G •y	 y 

The proof of (iii) follows from Lemma 5.4. 

This completes the proof of Theorem 5.7. 

In view of Theorem 5.7 we have the following 
corollaries. 

Corollary 5.8. Consider the sequences: YI,"" Yn of 
edges of Y, and hI"'" hnof elements of G described 
in case (i) of Theorem 5.7. Then these sequences 
can be chosen so that no pair Yi, hi is repeated. 

Moreover, if Y and Gy are finite for all Y E E(X) 
then there are only finitely many sequences of 
distinct edges and elements mentioned above. 

Proof. If Yj = YS' and hj = hs for then YI, .. ·,Yj, 
Ys+I,"" Yn' and g, hI"'" hi' hs+I"'" hn, h 
are shorter sequences of the required 
types, since t(y)* t(ys)* o(Ys+ 1)*' and 
[Yj]hj[yjr I = [Ys] hs[Ysrl, hs+ 1 are conjugate by an 
element of Go(ys)*' 

Hence any sequences of the required types with 
minimal numbers of terms has distinct pairs. 

Now since Y is finite, so is T. 

Therefore for any v E VeT), the set 
{y E E(Y): t(y)* = v} is finite. Since for any 
Y E E(Y) G _y is finite, there are only finitely many 
distinct pairs and hence only finitely many sequences 
without repeats. 

6. 	THE TORSION THEOREM OF GROUPS 
ACTING ON TREES 

Theorem 6.1. If G acts without inversions on X, 
then every element of G of finite order is in G fory , 

some vE VeX). 

Proof. Let g be an element of G of finite order. 
By Theorem 5.7, g is conjugate to [w], where 
w = gO'Yl.gl' ... .Yn.gn is a cyclically reduced word 
of G. 

Thus g = h[w]h-l, where hE G. 

If 	n = 0, then it is clear that gE G , wherey 

v = h(O(Yl)*)' 

But if n;;::l, then: 

w' = go·Yl·gl· ... ·Yn·gngo·Yl·gI· ... ·Yn·gn· ... 

·go·YI· ... ·Yn·gn 

which is a closed reduced word of G, since w is 
cyclically reduced. By Theorem 4.6 [wl'*l, i.e., [w] 
has infinite order. 

Hence in this case g cannot have finite order. 

Remark: In Theorem 6.1 above we excluded the 
case when the action of G on X is with inversions, for 
otherwise we get an edge Y of Yin which G(y,y)*0. 
In this case we have [y]2 E Gt(y)* and it is possible that 
[yp = 1, i.e. [y] is of order two, but [y] fI. Gt(y)*' 

Corollary 6.2. If G acts without inversions on X and 
yEE(Y), Y fI. E(T), then [y] has infinite order. 

Proof. If yEE(T) then [y] = 1. If Y fI. E(T) then by 
Lemma 4.7, [y] fI. G y , for all vfl. VeT). Therefore by 
Theorem 6.1, [y] has infinite order. 

Corollary 6.3. If G acts without inversions on X 
and H is a finite subgroup of G then H is contained 
in G for some vE VeX).y 

Proof. The proof follows easily by virtue of Theorem 
6.1. 

7. ON CONJUGACY CLASSES 	OF GROUPS 
ACTING ON TREES 

Let P denote the following property of a group H: 
If g in H has infinite order, then g, g2, g3, ... are in 
different conjugacy classes, or equivalently, if 
gm_gn then Iml = Inl, where m and n are integers. 

Many classes of groups have property P. For 
example infinite cyclic groups have property P. Also 
if a group H has property P, then so is every 
subgroup of H. Finite groups are the trivial example 
of groups of property P. For more details see [6]. 

Theorem 7.1. Let G act on X without inversions 
such that G y has property P for all vE VeX), and Gx 

is cyclic for all x E E(X). Then G has property P. 

Proof. For any elements f and g of G, we write f- g 
to mean that f is conjugate to g. Suppose that gin G 
has infinite order and that gm l 

_ gm2. We need to 

show that Imil = Im21· 
By Theorem 5.7, g ~f, where f is a cyclically 

mreduced element of G. Therefore f ! and f m2 are 
f m2cyclically reduced elements of G and f m! -- . Let w 

be a cyclically reduced word of G of type v and value 
f. Then wml and wmz are cyclically reduced words of 
G of values f m 

! and f m2 respectively. 
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So Iwm!1 = Im11lwl and Iwm21 Im211wl. If Iwl~1, 
then by Theorem 5.7 (iii), Imll = Im21. If Iwl = 0, 
then f, f m! and f m2 are in Gy • 

We 	have two cases: 

Case 1: 

f m 
! ~ G_y for all yEE(Y) such that t(y)* = v. 

Then by Theorem 5.7 (ii), f m 
1-- f m2 in G Since• 

Gy 	 has property P, we must have Imll = 
y 

Im21. 

Case 2: 

fm2EG_y, where yEE(Y) such that t(y)*=v. 

Therefore, by Theorem 5.7 (i) there are two 
sequences of edges YI, ... ,Yn of Y and elements 
hI"'" hn of G satisfying the conditions of 
Theorem 5.7 (i). 

So 
f m1 	 --- hn --- f m2-.. $YI (hI) -.. hI""'" $Y2( h2) -.. h2 -.. ...$y,,( hn) 
where f m1 - $Yl(h l ) by an element of Gy , $y;(hi)""" hi 
by the element [y;], for 1!Si!Sn, hj-$Yi+l(hi+l) by 

-fm2an element of GO(Yi+I).' for 1!Si!Sn":"1, and hn 

by an element of Gy • 

By assumption, Gx is cyclic for all xEE(X). 
Therefore the G-Yi are cyclic for i 1, ... , n. 
Let h be a generator of the cyclic group G _Y' and 
suppose that hi-hai and $y;(h;)-h'\ for 1!S'i!Sn, 
where a i and ai are integers. Therefore, 
f m1 	 f m2....... hlil --- hal ....... hli2 - ha2 --- ... - hli"--- hall - . 


Since $y;: G_y;~G+y; given by g~[Yi]g[y;]-1 is 
an isomorphism, therefore lail = lail, for 1!Si!Sn. 
Since G o(y,)- has property P, for 1!S i !S n, it follows 
that 10.;1 = lai+ll, for 1!Si!Sn-1. 

Therefore we have f ml ....... ha"....... f m2 or f m1 ....... hall ....... f- m2 

in Gy • Since Gy has property P, Imll = Im21. 
This completes the proof of Theorem 7.1. 

Corollary 7.2. Free groups have property P. 

Proof. If G is a free group then there is a tree on 
which G acts such that the G-vertex stabilizers are 
trivial. By Theorem 7.1, G has property P. 

Corollary 7.3. If G 'T1' * (Gi;A"k = A k,.) is a tree 
iEI 

product such that G; has property P and A jk is cyclic, 
then G has property P. 

Proof There is a tree on which G acts such that the 
G-vertex stabilizers are the conjugates of Gi and 
have property P, and the G-edge stabilizers are the 
conjugates of A jk and are cyclic. Therefore by 
Theorem 7.1, G has property P. 

Corollary 7.4. If G = (H,tilrel H, tjA;t;1 = B;) is 
an HNN group such that H has property P and Ai 
is cyclic, then G has property P. 

Proof There is a tree on which G acts such that G is 
transitive on the set of vertices, and the G-vertex 
stabilizers are the conjugates of H and have property 
P, and the G-edge stabilizers are the conjugates of 
Ai and are infinite cyclic. Therefore by Theorem 7.1, 
G has property P. 
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