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ABSTRACT 

An improved version of Richardson's formula has been introduced in a new 
iterative form to increase the convergence of the Taylor series, which is the funda­
mental basis for calculation of the second derivative of the potential field. Two 
sets of filter coefficients have been developed. These coefficients have good re­
sponses in the frequency domain when compared with the theoretical amplitude 
response of the second derivative operator. A comparative study of the derived 
sets along with other coefficient sets is also presented. 
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ITERATIVE CALCULATION OF THE SECOND DERIVATIVE OF THE GRAVITY FIELD 

USING RICHARDSON'S FORMULA 


INTRODUCTION 

Richardson's formula [1] was used for obtaining an 
improved approximation of the second vertical de­
rivative of the gravity field from two known approx­
imations of the field [2]. However, both articles [1, 
2] used this formula in a non-iterative form which in 
turn makes Taylor series converge very slowly when 
using more gravity values, thus rendering the prob­
lem more difficult when calculating large numbers of 
data sets of second vertical derivative operators. In 
spite of this, no rigorous calculations are required in 
deriving second derivative coefficient sets when 
Richardson's formula is used [2]. This illustrates the 
desirability of the application of Richardson's for­
mula compared to other approaches [3-12], which 
use tedious techniques in computing second deriva­
tive coefficient sets. 

The purpose of this paper is to develop, for the 
calculation of the second derivative, weight coeffi­
cient sets which yield the best results. We have found 
suitable weight sets by making use of Richardson's 
formula, which is presented here in an iterative form 
to increase the convergence of Taylor series very 
rapidly. Two new coefficient sets have been devel­
oped by this technique. We also present a compara­
tive study on the frequency responses of the derived 
sets, and those of the existing coefficient sets. 

THE ITERATIVE FORM OF RICHARDSON'S 
FORMULA 

Let us approximate the second vertical derivative 
of the gravity field gzz by an O(hn) formula gzlh) , 
where O(hn) is the truncation error and is given as: 

(1) 

where h is the grid spacing. 

Suppose that we know in fact that the truncation 
error is of the form 

t(h) = Chn + O(hm
), where C,* 0 and m > n 

(2) 

so that 

(3) 

If we use the approximation formula with a particular 
h and also with a larger h (say, H) and we let q denote 
the ratio 

q Hlh, so that H qh, where q > 1 (4) 

then t(H) = t(qh) C(qh)n + O«qh)m) 
= Cqnhn + O(hm). [1] 

So 

Subtracting (5) from qn. (3) to eliminate the hn term 
gives 

Finally, dividing by qn - 1 gives Richardson's for­
mula 

(7) 

which shows how to form a weighted sum of two 
O(hn) approximations to get a higher-order approxi­
mation. 

Since gzlh) is an O(hn) approximation of gzz then 
g~z(h), is mth order, that is 

(8) 

In this case we can use (7) to get a still higher-order 
approximation [1, 2], 

(9) 

that is 

(10) 

and so on. 

Because q is held fixed in the above series (Equa­
tions (7) and (9)) and 0 > m > n, the Taylor series 
will converge very slowly when using more gravity 
values, thus rendering the problem more difficult in 
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calculations involving large amounts of data sets of 
second vertical operators. If, however, we put 
Richardson's formula in the following iterative form 

(11) 

(where gzz(h) is an O(hn) approximation of the exact 
second vertical derivative gzz' h, and H are two differ­
ent step sizes (H>h), q = Hlh, and R = 0, 1, 2, 3, 
... , is the number of iterations), a more accurate 
weighted sum of two O(hn) approximations can be 
obtained, provided that both nand q are held fixed 
during the iteration process. 

APPLICATIONS 

Let the plane of observation be horizontal 
everywhere and the gravity anomaly g(x,y,z) be con­
tinuous and infinitely differentiable at all the points 
of the free space z = O. Let g(x,y,z) satisfy Laplace's 
equation 

(12) 

From (12), one can write 

(13) 

where gzz is the exact second vertical derivative of the 
observed gravity anomaly data. 

Let P(x,y) be the point at which the second deriva­
tive is to be computed. Let us cover the whole area 
with a mesh of square grids of spacing h, with P(x, y) 
as one of the grid nodes. Then using Laplace's equa­
tion and by making use of Taylor's formula, we get 

(14) 

where 

g(O) = g(x,y) 

g(h) = (g(x + h,y) + g(x - h,y) + g(x,y + h) + 
+ g(x,y - h))/4. 

Equation (14) can be written as 

or for practical use 

(15) 

where g~z(h) is an O(h2) approximation of the exact 
second derivative gzz in Laplace's Equation (13). This 
means that n 2. 

Now, let us always use q = Hlh = 2 to obtain 
optimum results, then Richardson's iterative formula 
will have the following form: 

For calculating the first improved approximation 
of the second vertical derivative function shown in 
(15) which is an O(h2) approximation of gzz' we have 
only to know g~z and g~z(H) from (15). Then (16) 
with H = 2h, gives 

g;z(h) = (15g(0) - 16g(h) + g(2h))/3h 2. (17) 

If we substitute (17) in (16) with H = 2h, also, then 
(16) gives the second iterative approximation 

izlh) = 

(225g(0) - 256g(h) + 32g(2h) - g(4h))/36h2. (18) 


Finally, the third improved approximation of the 
second derivative can be easily calculated by making 
use of equations (18) and (16) and is given by the 
following formula after simplification: 

h2(g~zCh)) = 	+7.81250000g(x,y) 
-9.48148148g(h) 
+1.77777778g(2h) 
-O.llllllllg(4h) 
+O.00231481g(8h). (19) 

The coefficient sets for calculating the second vertical 
derivative are presented in Table 1. Table 1 also 
shows the coefficient sets derived by Abdelrahman et 
al. method [2] using the non-iterative form of 
Richardson's formula, for the sake of comparison. 

FREQUENCY ANALYSIS 

The second derivative operation on gravity (or 
magnetic) data acts as a numerical filter. Therefore, 
frequency analysis makes it possible to judge the ac­
curacy of a coefficient set by matching its amplitude 
response with the theoretical amplitude response. 
Let us denote the two-dimensional filter (amplitude) 
response function of the second derivative operation 
by h,(u, v). Following Swartz [3] and Agarwal and Lal 
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Table 1. Coefficients of the Gravity Value at the Center Point and the Ring Average Value of Gravity by Using Various 
Formulas. Correlation Factors Between the Calculated Amplitude Response of Each Set and the Theoretical Second Deriva­

tive Response are also Given. 

Weight Using both approaches Using present iterative approach Using non-iterative approach [2] 
coefficients 
for radii (r) g?:(h) g~:(h ) i~(h) g~:(h ) iz(h) g~z(h ) 

Eq. (15) Eq. (17) Eq. (18) Eq. (19) (m =4) (0 =6) 

o -4.000000 +5.000000 +6.250000 +7.812500 +5.250000 +5.312500 
h -4.000000 -5.333333 -7.111111 -9.481481 -5.688889 -5.779189 
2h +0.333333 +0.888888 + 1.777778 +0.444444 +0.474074 
4h -0.027777 -0.111111 -0.005555 -0.007407 
8h +0.002314 +0.000022 

Correlation factor 0.954537 0.968360 0.978044 0.983670 0.971134 0.971785 

[12], hrCu, v) can be calculated from 	 The transfer function in (20) differs strikingly from 
the usual ones encountered in linear system theory 

(20) since it increases without limit as u and v increase. In 
our case, let the sampling rate be h data points per 

where u/2'lt and v/2'lt are the frequencies in cycles per unit length; then the cutoff or Nyquist frequency will 
unit of length in the x and y directions, respectively. be given by 

f 
V 

11/4 1112 
u-

Figure 1. Theoretical Second Derivative Amplitude Response. 
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-rrih ~ u ~ nIh and -nIh ~ v ~ nIh (21) 

Equation (20) represents a circle, thereby indicating 
the circular symmetric nature of the amplitude re­
sponse of the second derivative (Figure 1). 

All operators analyzed here can be presented as 
sets of radial weights (an) to be applied to average 
data values g(rn) about a circle of radius rn centered 
on the point at which filtered output is desired. The 
filtered output at a point (x,y) is then given by the 
sum of the products of an and g(rn), a common factor 
of the weights is the reciprocal of the square of the 
distance of grid spacing. So the general formula for 
calculating the second derivatives is given by 

N 

cPg(x,y)/oz2 (lIh 2
) L ang(rn) (22) 

n=O 

where N + 1 is the number of averaging circles 
employed and the circle ro is the point (x,y) at which 
filtered output is desired. 

Calculation of the frequency response function of 
Equation (22) requires first computing the Fourier 

transform of the average gravity value g(r) over circle 
of radius r. The operation may be transformed to 
cartesian coordinates by computing a weighted sum 
of several values in the surroundings of the reference 
point, observed on a regular grid. Then the average 
gravity can be expressed as follows 

g(r) (lIm)L Lg(x + K,y + L) (23) 
k I 

where m is the number of data points on the particu­
lar circle and the summation is performed over all k 
and L such that k2 + L 2 = ,2. The filter response 
h,(u, v) of Equation (23) is given by Swartz [13] and 
Agarwal and Lal [12] as 

h,(u, v) = (11m) L Le-i(uk+ Lv) (24) 
k L 

where i y' ( -1) . 

For calculating the two-dimensional amplitude re­
sponses of Equation (22), we have only to replace the 
average gravity value by the corresponding filter re­
sponse given by Equation (24). All the derived coef­
ficient sets are compared in this way and the corre­

iT/4 

1112 

u-
Figure 2. Amplitude Response of Equativn (15). 
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3111411/4 nl2 
u-

Figure 3. Amplitude Response of Equation (17). 

v 

311/4 

Figure 4. Amplitude Response of Equation (18). 
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T114 on 3fT/4 

u-
Figure 5. Amplitude Response of Equation (19). 

sponding amplitude responses are shown in Figures 
2 to 5. All responses (Figures 1-5) are computed at 
169 points on a square grid with spacing n/12. 

However, for the sake of complete comparison, 
the overall similarity between the calculated 
amplitucle response of each set shown in Table 1 and 
the theoretical amplitude response of the second de­

and
rivative operation computed at the 169 points on the 
same square grid with the same spacing as that of the 
calculated response has been determined. The 
simplest way to compare two maps is to compute the 
correlation factor between the mapped variables [14]. 
The equation used for this purpose is: 

The similarity between the calculated and the 
theoretical responses verified by the highest correla­
tion, may generally be considered a criterion for de­
termining the best coefficient set for calculating the where 
second derivative of the gravity field. For each ring 
system, the numerical value of the correlation factor 

M Q 
between the computed amplitude response and the 

Sl = L L ht(u, v) . hr(u, v), 
u=l theoretical response of the second derivative is also 
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presented in Table 1. The advantage of this particular Table 2. Numerical Values of the Correlation Factors Be­
map comparison method is that it allows a more ob­ tween the Amplitude Responses of the Previously Pro­
jective judgement on the accuracy of the coefficient posed Set of Weights and the Theoretical Amplitude Re­
sets. 

We have also computed the correlation factor be­
tween each of the previously proposed set of weights 
and the theoretical response of the second derivative 
operation using the same number of data points with 
the same spacing mentioned above. Results in this 
particular case are listed in Table 2. 

DISCUSSION OF THE RESULTS 

It can be seen that the amplitude responses of the 
coefficient sets developed by the help of Taylor series 
and iterative Richardson's formula (Figures 4 and 5, 
Table 1) are close to the theoretical amplitude re­
sponse of the second derivative operation. With the 
same data points and the same ring system (Table 1), 
when Richardson's formula in its iterative form is 
used, the Taylor series converges very rapidly com­
pared to the same formula in its non-iterative form. 

The figures in Tables 1 and 2 clearly indicate the 
superiority of the coefficient sets derived by use of 
Richardson's formula in its iterative or non-iterative 
form, to those previously proposed by many authors. 
The present coefficients show closer fit to the 
theoretical second derivative response than others, as 
indicated by their higher correlations. 

It may be of interest here to indicate that the fre­
quency analysis carried out by Abdelrahman et al. [2] 
using Mesko' method [15], which assumes that aver­
age gravity value over a circle is computed from an 
infinite number of points, established also that the 
Richardson's non-iterative approximation coefficient 
sets (Table 1) estimate the second derivative more 
accurately than the approximation sets of Rao et al. 
[11] (in total 60 sets of coefficients). This indicates 
that our iterative approximation coefficient sets esti­
mate the second derivative more accurately than the 
approximation sets of Rao et al. 

It is clear from Table 2 that the application of the 
filters proposed by other authors to data of high accu­
racy would reject valuable geological information be­
cause they have very poor negative correlations. 

CONCLUSION 

The results obtained here are of interest in the field 
of geophysics, although further detailed examination 
is required. Our aim is mainly to find a numerical 
approach for determining the second derivative coef­

sponse of the Second Derivative. 

Formula Source Correlation 
factor 

Center point and circles with 
radii 1, and 0 

Reference [4], Equation (10) 
2 Reference [4], Equation (13) 
3 Reference [12], Equation (25) 

Center point and circles with 
radii 1, and 0 

0.921243 
0.923949 
0.923949 

4 Reference [5], Equation (14) -0.316433 

Center point and circles with 
radii 1, 0, and 2 

5 Reference [4], Equation (15) 0.881871 

Center point and circles with 
radii 1, 0, and 0 

6 Reference [5], Equation (13) 
7 Reference [5], Equation (15) 
8 Reference [6], 
9 Reference [7], Equation (16) 

10 Reference [9], equation (25) 

Center point and circles with 
radii 1, 0, 2, and 0 

0.299000 
-0.300000 

0.931354 
0.863104 
0.846400 

11 Reference [9], Equation (25) 0.107200 

Center point and circles with 
radii 1,0,2,0, and VB 

12 Reference (12], Equation (26) 0.939292 

Center point and circles with 
other different radii 

13 Reference [3], Equation (27) -0.148918 
14 Reference [10] 0.854560 
15 Reference [12], Equation (27) 0.956842 
16 Reference [8] 0.948233 
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fident set which uses the least number of rings for 
obtaining average gravity values and at the same time 
yield better results in the frequency domain without 
using extensive computations. The new iterative 
Richardson's formula has been used to increase the 
convergence of the Taylor series which is the main 
basis of the calculation of the second derivative. It 
makes the problem more easier from the points of 
view of calculating many sets of -(gxx + gyy) 
operators and the handling of large amounts of data. 
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