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ABSTRACT 

In this paper the kinematic synthesis of a four bar linkage has been used together 
with an optimization method to minimize the steering error of an Ackermann 
steering linkage. A method which is based on the kinematic synthesis of a four bar 
linkage and which is used for the purpose of producing data sheets has been 
described. Finally, a nonlinear optimization method has been used to minimize the 
sum of the squares of the steering errors for various steering angles. Numerical 
examples are presented to illustrate the usefulness of the method proposed for the 
design of steering linkages. 
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MINIMIZING THE STEERING ERROR OF AN ACKERMANN LINKAGE 

1. INTRODUCTION 

One of the activities of an automotive engineer is 
the design of steering linkages that conform to the 
Ackermann principle. Donkin [1] provided some in­
formation about the design of a simple steering lin­
kage in the form of a few data sheets. Donkin's work 
was of limited use because the ranges of the parame­
ters he used were too restrictive. Guntur [2] pre­
sented a complete set of data sheets; these data 
sheets were useful in designing the steering linkages 
to conform to the Ackermann principle. Guntur [2] 
treated the problem of designing a steering linkage 
as a problem in the kinematic synthesis of a four bar 
linkage and used Freudenstein's equations [3]. 

Many solutions for the design of the steering lin­
kages may be obtained using the data sheets in refer­
ence [2]. However, OI).e has to determine which of 
these solutions is the most suitable for a particular 
application. The objective of the present paper is to 
present a least-square error minimization approach 
that enables a designer to choose a solution that 
minimizes the sum of the squares of the steering er­
rors over a given range of the steering angles and for 
a given set of other design constraints. Thus the de­
sign of a steering linkage is posed not only as a prob­
lem of the kinematic synthesis of a four bar linkage 
but also as a problem of optimization. 

2. THE BASIC DESIGN CONSIDERATIONS 
FOR A STEERING LINKAGE 

There are two configurations of a steering linkage. 
In the configuration shown in Figure 1, the tie-rod is 
behind the front axle of the vehicle. Figure 2 shows 
the second configuration in which the tie-rod is in 
front of the front axle of the vehicle. 

The maximum angle through which the axis of a 
front wheel is moved from its straight-ahead position 
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Figure 1. The Ackermann Steering Linkage with the Tie­

Rod Behind Front Axle, AD (AD = L, BC M, AB = 


CD M). 


Figure 2. The Ackermann Steering Linkage with the Tie­

Rod in Front of The Front Axle, AD (AD = L, BC = M, 


AB = CD M). 


in either of the two directions is called its steering 
angle at the full-lock. A designer may select the steer­
ing angle at the full-lock for the outer wheel to attain 
the desired minimum turning radius. 

In Figure 3 are shown the positions of the two front 
wheels for the Ackermann steering. The condition 
that has to be satisfied by the steering angles of the 
inner and the outer wheels for the Ackermann steer­
ing may be expressed as follows [4]: 

L 
(1)

W 

where, 

<PC' is the correct steering angle of the outer wheel, 
eC' is the correct steering angle of the inner wheel, 
L, is the track at the front, and 
W, is the wheel base of the vehicle. 

If a small turning radius is necessary, the steering 
angle of the outer wheel should conform to the Ac­
kermann principle at full lock; otherwise, the vehicle 
may be unable to attain the desired turning radius. 
In other words the turning radius, r should be given 
by the following equation: 

(2) 

where r is the turning radius (or AG in Figure 3). 

One may rewrite Equation (2) as follows 

(2a) 

Using Equations (1) and (2a) one may derive the 
following Equation for the correct steering angle of 
the inner wheel. 
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L 


Figure 3. The Schematic Diagram of the Wheels of a Vehicle for the Ackermann Steering (AD = L, AE = W, AG = r). 

-1 {(v(r2 
- W2)) L}cot - -- (3)
W W 

If the minimum turning radius is not an important 
design consideration, the steering linkage may be de­
signed to make the Ackermann steering angle equal 
to two-thirds of the angle at full lock of the inner 
wheel. Then the steering will be most accurate for 
the small steering angles that are most frequently 
used. In this case one uses the following equation to 
find the correct steering angle of the inner wheel. 

(4) 

where, 

9rnax , is the maximum steering angle at full lock of the 
inner wheel. 

Using Equations (1) and (4), one may derive the 
following equation for the correcting steering angle 
of the outer wheel: 

-1{ L}2<Pc cot cot a9rnax + W (5) 

3. THE KINEMATIC SYNTHESIS OF A 
STEERING LINKAGE 

There are two configurations of the steering lin­
kage that have to be considered: 

1. Tie-rod behind the front axle; and 
2. Tie-rod in front of the front axle. 

3.1. Tie-Rod Behind the Front Axle 

This configuration of the linkage for the straight­
ahead position is given by the full lines in Figure 1. 
For this case the following Equation may be derived. 

M L - 2msiny, (6) 

where, 


M is the length of the tie-rod, 

m is the length of the steering arm, and 

y is the angle of the steering arm. 


If the inner wheel is given a steering input equal 
to the correct steering angle of the inner wheel, the 
steering arms and the tie-rod are given by the dashed 
lines in Figure 1. The angles a and ~ in Figure 1 are 
given by the following equations. 

a 90 + y + 9c (7) 

~ = 90 - Y + <PC' (8) 

In this case Freudenstein's equation (see Appendix 
1) may be written as follows. 

L 
cos(a -13) - {cosa - cosl3} + A (9) 

m 
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where, 

{L2 + 2m2 - (L - 2m siny?}A= ----- ...~-- -~--~- ................ ­

Equation (9) may be rewritten as follows. 

m {2siny - (sin(y + Sc) + sin(y <Pc))} 
(10)

L (cos(Sc + 2y - <Pc) - cos2y) 

3.2. Tie-Rod in Front of the Front Axle 

When the tie-rod is forward of the front axle, the 
configuration of the linkage is shown by the full lines 
in Figure 2 for the straight-ahead position. For this 
case, the following equation may easily be derived: 

M = L + 2 m sin y. (11) 

If the inner wheel is given a steering input equal 
to the correct steering angle of the inner wheel, the 
steering arms and the tie-rod are given by the dashed 
lines in Figure 2. The angles a and ~ in Figure 2 are 
given by the following equations: 

a = 90 - y - Sc. (12) 

~ = 90 + y - <Pc. (13) 

Using the procedure presented in Appendix 1, one 
may write Freudenstein's equation as follows: 

L 
cos(a - ~) = {cosa - cos~} + A (14) 

m 

or 

m {-2siny + (sin(y + Sc) + sin(y <Pc))} 
(15)

L (cos(Sc + 2y - <Pc) - cos2y) 

Equations (10) and (15) may be used to produce 
the data sheets given in reference [2]. 

4. DETERMINATION OF THE STEERING 
ERROR 

The steering error occurs if the instant centers of 
rotation (in the plane of the road surface) of all the 
four wheels do not coincide with each other. In other 
words when the vehicle is moving along a curved path 
if G in Figure 3 is not the instant center of rotation 
of all the wheels there will be a steering error. 

The steering linkage designed by using Equation 
(10) or (15) conforms to the Ackermann principle 
only for two steering angles. The steering error is 
zero when the steering angle of the inner wheel is 
either zero or equal to the correct steering angle. For 
other steering angles of the inner wheel the steering 
error is given by the following equation. 

(16) 

where, 

Ei is the steering error for a given steering angle of 
the inner wheel, Sj, 
Si' is the steering angle of the inner wheel 
(Si= 1°, ... , Sn = Smax), and 
<Pi' is the steering angle of the outer wheel for a given, 
Si' 

It is customary to draw the steering error curve 
using the method described in reference [4]. The de­
signer draws the steering error curve after designing 
the steering linkage to find out whether or not the 
steering linkage he designed gives a "reasonable" 
steering error for a given steering angle of the inner 
wheel. 

It is necessary to establish a criterion to quantita­
tively analyze steering error produced by a given 
steering linkage. The following criterion based on 
sum of the squares of the steering errors is developed 
for this purpose. The total steering error is defined 
as the sum of the squares of the steering errors for 
various values of the steering angle of the inner 
wheel. For convenience, the steering angle of the 
jnner wheel is varied in steps of 1 degree. 

(17) 

or 

E2 = n {L cot<pr ­
r=1 

LJ2cotSr -­
W 

(17a) 

where, 

E is the square root of the sum of the squares of the 
steering errors. 

The steering angle for the outer wheel for a given 
steering angle of the inner wheel is determined by 
using the following method. 

For any steering angle of the inner wheel the steer­
ing angle of the outer wheel may be obtained by using 
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Figure 4. The Ackermann Steering Linkage when the Input 

Crank, AB is Moved Through an Angle 8 j (B'D = N). 

the method described by Shigley [5]. For example, 
when the tie-rod is behind the front axle we may 
obtain the following equations (see Figure 4). 

Considering the triangle DAB' and applying the 
cosine-law one may obtain the following equation. 

where, 

N is the side B'D of the triangle DAB' in Figure 4. 

Equation (IS) may be rewritten as follows: 

N J{m2 m }L = Li. + 1 - 2 L sin(y + at) . (ISa) 

Considering the triangle ADB' in Figure 4 and 
using the cosine-law, one may obtain the following 
equation. 

where, 

~ is the angle ADB' in Figure 4 

Considering the triangle B'DC' in Figure 4 and 
using the cosine-law one may obtain an expression 
for Aas follows. 

where, 

A is the angle B'DC' in Figure 4. 

From Figure 4 we have, 

<Pi = ~ + y + A - 90. (21) 

Now the kinematic synthesis of the steering linkage 
may be used in conjunction with the optimization 
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techniques [6,7] and a steering linkage may be de­
signed to minimize the sum of the squares of the 
steering error. 

5. DESCRIPTION OF THE OPTIMIZATION 
METHOD USED 

The complex method of Box [S] is employed to 
minimize the sum of the squares of the steering er­
rors. 

The modified simplex or complex method is used 
to minimize a multivariable nonlinear function, sub­
ject to a given set of nonlinear inequality constraints. 
The general problem of finding the maximum of a 
function may be stated as follows. 

Maximize, 

Subject to, 

where, 

k = 1,2, ... , M and M 2: N. 

The independent variables are Yb Y2, ... , YNand 
the dependent variables are YIN+ll' ... , YN • The func­
tion to be maximized is dependent on the values of 
the independent variables. However, both the depen­
dent and the independent variables are subjected to 
a given set of constraints. The dependent variables 
are linear or nonlinear functions of the independent 
variables. 

The maximum value of the function is found by 
using an initial set of points scattered throughout the 
feasible region or the region in which the constraints 
are not violated. It may be noted here that the func­
tion has different values at different points in an N-di­
mensional space. Each point in this space corre­
sponds to a certain value of the function and has N 
coordinates given by the values of the N independent 
variables. 

An original "complex" of K > M + 1 points is 
generated consisting of a feasible starting point and 
K - 1 additional points are generated from random 
numbers and constraints for each of the independent 
variables using the following equations. 

y.(' ') = G· + r(· .)(H, - G·) (22)l,f / 1./ I / 
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where, 


i = 1,2, ... , N, 

j = 1,2, ... , K - 1, and 

r(i,j) are the random numbers between 0 and 1. 


The constraints on both dependent and indepen­
dent variables must be satisfied by the K points 
selected. When any constraint involving a depentent 
variable is not satisfied the corresponding point is 
moved one half of the distance to the centroid of the 
remaining points. The coordinates of the new point 
are given by the following relation. 

(23) 

where, 

i takes the values from 1, ... , N, and 

j indicates the point where the jth constraint is viol­

ated. 


YU,j)Old are the coordinates of the point at which the 
jth constraint is not satisfied. Y(i,c) are the coordinates 
of the centroid of the remaining K - 1 points where 
constraints are satisfied. 

The function F(YI , Y2, ••• , YN) is calculated at each 
point. The point having the lowest value is replaced 
by a point which is a times as far from the centroid 
of· the remaining points as the distance of the point 
being replaced. This new point is on the line joining 
the centroid of the remaining points and the point 
that is being replaced. 

(24) 

The recommended value of a is 1.3 [6]. If a point 
repeatedly gives the lowest value of the function on 
consecutive trials, it is moved one half of the distance 
to the centroid of the remaining points. 

The new point is checked against the constraints 
and adjusted if any constraint is violated. Con­
vergence is assumed if the values of the function at 
all the points in the final "complex" do not differ 
from each other by a certain specified limit. 

6. MINIMIZATION OF THE STEERING 
ERROR 

The optimization technique outlined in the previ­
ous section is used to determine the maximum value 
of - £2. In other words, the sum of the squares of 
the steering errors is minimized by using the complex 

method of the previous section. The constraints are 
as follows. 

0 1 ~ 
L 
~ HI 

W 
(25) 

O2 ~ Y ~ H2 (26) 

m 
03~ 

L 
~H3 (27) 

where, 


01> O2, 0 3 are the lower limits of the three con­

straints, and 

HI> H2, H3 are the higher limits of the three con­

straints. 


The following two numerical examples are in­
cluded to illustrate the use of the method. In these 
examples it is assumed that the tie-rod is behind the 
front axle. 

The wheel base of the car in these examples is 3 
m. In the first example the minimum turning radius 
is varied from 8 m to 12.5 m in steps of 1.5 m. The 
lower and upper limits of the inequality constraints 
are given by the following equations. 

0 1 = 0.55 
O2 = 10° 
0 3 = 0.1 
HI = 0.75 
H2 = 50° 
H3 = 0.2 

The results for this example are given in Table 1. 

In the second example, the maximum steering 
angle of the inner wheel is varied from 25 to 45 de­
grees. The lower and upper limits in the inequality 
constraints are the same as those in the first example. 

Table 1. Optimal Steering Linkage For Minimum Turning 
Radius. 

Minimum 
Turning 
Radius 

m 
L 

L 
W 

Y 
in degrees 

8.0m 0.116 0.584 23.1 
9.5m 0.131 0.588 24.4 

11.0m 0.108 0.631 27.0 
12.5m 0.110 0.634 27.8 
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Table 2. Optimal Steering Linkage For 9max' 

9max m L y
in L W in degrees 
degrees 

25 0.109 0.628 27.8 

30 0.108 0.633 27.2 

35 0.103 0.605 25.6 
40 0.140 0.592 23.8 
45 0.100 0.550 22.4 

The results for the second example are given in Table 
2. 

For obtaining the results in Tables 1 and 2, a com­
puter program given in reference [6] has been mod­
ified as follows. The subroutine for determining the 
objective function has been rewritten to yield the sum 
of the squares of the steering errors as the objective 
function. All the steps to determine the left hand side 
of Equation (17a) have been included in this sub­
routine. The subroutine to determine the constraints 
has been modified to take into account the inequality 
constraints given by the inequalities (25), (26), and 
(27). 

The results in Table 1 indicate that as the minimum 
turning radius is decreased the values of y and LIW 
for the optimal configuration of the steering linkage 
decrease. 

The results in Table 2 indicate that as the 
maximum steering angle of the inner wheel increases 
both y and LIW for the optimal configuration of the 
steering linkage decrease. 

Th<? results in Tables 1 and 2 indicate that the 
method in this paper is suitable to the problem of 
minimization of the steering error. 

Although the results are presented only for two 
numerical examples in this paper the methodology 
described in this paper can easily be used to design 
the steering linkages of buses or trucks where the 
track width, L is fixed by road allowance but the 
wheelbase, W, may vary. In this case the inequality 
constraint (25) may be changed and suitable values 
for higher and lower limits may be used. 

The first example given in this paper is particularly 
useful in designing steering linkages for subcompact 
vehicles. In this case one will try to design a steering 
linkage to obtain the minimum turning radius. The 
results in Table 1 also show the advantage of a sub­
compact vehicle using a short wheelbase. 
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The procedure presented in this paper can also be 
employed in case the tie-rod is forward of the front 
axle. The subroutine corresponding to the objective 
function has to be modified. The procedure that is 
required to write this subroutine is presented in the 
paper. 

In cases where LIW is not a variable only two con­
straints will be used. The two constraints are given 
by the inequalities (26) and (27). This is a special case 
of the problem presented in this paper. 

7. CONCLUSIONS 

The method proposed in this paper which com­
bines the kinematic synthesis and the minimization 
procedure for the steering error proves to be very 
useful in determining the optimal configuration of the 
steering linkage either for the minimum turning 
radius or for the maximum steering angle of the inner 
wheel. 

The results indicate that in order to minimize the 
steering error both LIWand y should be decreased if 
the minimum turning radius "is to be decreased. 

The results also indicate that in order to minimize 
the steering error both LIW and y should be de­
creased if the maximum steering angle of the inner 
wheel is to be increased. 
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APPENDIX I. The design of a four bar linkage for 
the coordinated motions of the crank. 

The Derivation of Freudenstein's Equation 

A relationship between the crank angles and the 
lengths of the various links in the four bar linkage 
can be obtained if the links are regarded as four vec­
tors. Since the links form a closed quadrilateral, the 
sum of the components of the vectors along any line 
in the plane of the vectors should be equal to zero. 

Thus equating the sum of the components of the 
vectors along the x-axis in Figure 5, we obtain the 
following relation. 

b cos ~ - c cos J3 + d + a cos a = 0 (A.l) 

Equating the sum of the components of the vectors 
along the y-axis in Figure 5, we obtain another rela­
tion as follows. 

b sin ~ - c sin J3 + a sin a = 0 (A.2) 

By squaring each term in Equation (A.l), one ob­
tains the following equation. 

(A.3) 

y 

By squaring each term in Equation (A.2), one ob­
tains the following equation: 

(A.4) 

By adding Equations (A.3) and (A.4), we obtain 
the following equation: 

b2 = c2 + ~ + a2 - 2dc cos J3 - 2ac cos a cos J3 ­
2ca sin a sin J3 + 2da cos a (A.5) 

By simplifying and rearranging the terms in Equa­
tion (A.5), we obtain the following relation. 

Rl cos a - R2 cos J3 + R3 = cos(a - J3) (A.6) 

where, 

d 
R2 = 

a 

(d2+ a2- b2+
R3 =------­

(2ca) 

Given any three coordinated motions of the 
cranks, Rb R2, and R3 can be determined. 

x 
Ao d 

Figure 5. A Four-Bar Linkage in Which Links are Regarded as Vectors. 
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