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ABSTRACT 

This paper is concerned with the plane strain problem of an elastic layer bonded 
to a rigid substrate along its entire lower surface. The layer is under the action of a 
bending moment applied through a rigid rectangular block bonded to its upper 
surface. The analysis for the incompressible layer leads to a system of two singular 
integral equations of the first kind for the interface normal and shear stresses at the 
base of the rigid block. These integral equations are solved numerically, and the 
stress distributions and stress intensity factors are calculated for various geomet­
ries. 
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ANTISYMMETRIC BONDED CONTACT PROBLEM FOR AN ELASTIC LAYER 

1. INTRODUCTION 

The contact problem for an elastic layer has 
attracted considerable attention in the past because 
of its possible application to a variety of structures of 
practical interest (e.g., foundations, pavements in 
roads, and rolling mills). The contact between the 
layer and the substrate was assumed to be either 
perfect adhesion or frictionless which represent two 
extremes regarding the conditions in the contact 
zone between two bodies. Most of the previous 
works considered the frictionless contact problems 
with variations (see, for example, [1,2] for extensive 
references). Some examples considering perfect 
adhesion may be found in [3-10]. 

In the analysis of contact of two (or more) bodies, 
usual assumptions are that the two contacting bodies 
are elastic and isotropic, and that they are in a plane 
or in an axisymmetric state. Further simplifying 
assumptions are that the curvature of one of the 
bodies is so small in the contact region that it may be 
represented by a half space or a layer, and that the 
other body is so much stiffer than the first one that it 
may be treated as a rigid body. It seems that the 
symmetric problem for a layer has been studied 
extensively where the load is primarily tension or 
compression. The antisymmetric problem in which 
the load is a bending moment, on the other hand, has 
not been treated properly yet. 

This paper considers a linearly elastic, isotropic, 
and incompressible layer perfectly bonded to a rigid 
substrate along its entire lower surface (Figure 1). A 
rigid block with a flat surface is bonded perfectly to 
the upper surface of the layer through which a 
bending moment is transmitted to the layer. 

- / 
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Figure 1. Antisymmetric Elastic Layer Problem. 

2. FORMULATION OF THE PROBLEM 

Consider the elastostatic plane strain problem for 
a layer shown in Figure 1. Material of the layer is 
linearly elastic, isotropic, and incompressibie. The 
effect of gravitation is neglected. The layer of 
thickness h is perfectly bonded to a rigid substrate 
along its entire lower surface and to a rigid block of 
width 2a on its upper surface by means of which a 
bending moment M (per unit thickness in z-direc­
tion) is applied to the layer. Due to the antisymmet­
ric nature of the problem, it is sufficient to consider 
the problem in O~x only. Under these circum­
stances, the governing equations of the plane elastic­
ity must be solved subject to the following boundary 
conditions: 

u(x, 0) = 0, v(x, 0) =0, (O~x<oo) , (la, b) 

u(x, h) = 0, vex, h) = ex, (O~x<a), 

Txy(X, h) = 0, O"v(x, h) = 0, (a<x<oo), (2a-d) 

where u and v are the x and y components of the 
displacement vector and the constant e can be 
determined from the equilibrium condition 

[ 0-, (x, h) x dx = M . (3) 

Solution of the governing equations for the anti­
symmetric layer may be obtained by using, for 
example, the classical Fourier transform method 
which yields the expressions: 

2 f OG 
u =;: [(A+syB)eY+(C+syD)e-SY]cos(sx)ds, 0 

2 f OG v = 	 - [(A - B+sy B)e.v 

1T 0 


- (C+ D +sy D)e-SY]sin(sx)ds, (4a,b) 

4 fX, 
0"x = ~ s[ -(A + B+sy B)eY 

1T 0 

- (C- D +sy D)e-sY]sin(sx)ds, 

4 f X ~ s[(A - B+sy B)eY 
1T 0 

+ (C+ D +sy D)e-sY]sin(sx)ds, 

4 f X,~ s[(A +sy B)eY 
1T 0 

- (C+sy D)e-sY]cos(sx)ds, (Sa-c) 
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where /-1 is the shear modulus. The unknowns A - D 
may be determined from the boundary conditions at 
y = 0 and y = h. The mixed conditions (2) may be 
rewritten more appropriately in the form 

d 	 d 
dx u(x, h) = 0, dx vex, h) = c, 

(0 ~ x < a) , (6a, b) 

Txv(X, h) = qz(x), 

(O~x<:xl), (7a,b) 

such that 

(a < x < :xl) , (8a, b) 

by introducing two new unknown functions q, and 
qz, the n9rmal and the shear stresses along the 
interface with the rigid block. Now, substituting 
Equations (4) and (5) into conditions (1) and (7), 
A - D may be expressed in terms of q, and q2 as 

A = -C == (sh+sh e-2sh )Q, 

+[I-sh + (1 +sh)e- 2sh ]Qz, 

B = -[1 + (1- 2sh)e-2sh ]Q, + [1 + (1 + 2sh)e-2sh] Q2' 

D = (1 + 2sh + e-2'\'h)Q, + (1-2sh + e-2sh ) Q2' 

(9a-d) 

where 

Q, = 2~:hLl rqJt)sin(st)dt, 

Q, = 2~:hLl rq,(t)cos(st)dt, 

d = I+(2+4s2h2)e-2sh+e-4sh, (lOa-c) 

so that Equations (8) are also satisfied. Hence the 
stresses and the displacements all are expressed in 
terms of q, and qz. These expressions may be given 
in the form 

a 2 JX 2 
ax v(x,y) =;- ,; s Kli(s,y)Qi(s)cos(sx)ds,0 

a 2 JX 2 
- u(x, y) = - - L s K2i (S, y)Qi(s)sin(sx)ds, 
ax 1T 0 i=' 

(lla, b) 

4 JX 7 

oAx,y) = - : 0 ~SK3i(s,Y)Qi(s)Sin(sx)ds, 

4 I X 7

ay(x, y) = : 0 ~ s K4i (S, y)Qi(s)sin(sx)ds, 

4/-1 IX 2 
Txr(X,y) = -;- () i~ s K5i(s,y)Qi(S)cos(sx)ds, 

(I2a-c) 

where 

Kil = (a, +a2aS)a9 

+(Oi4- 0i') (a3 +a4aS)/a9, U= 1,4), 

Ki2 = - (a5+a6 aS)a9 

+(Oi,-Oi4) (a7+a5aS)/a9, U=I,4), 

Ki' = [(I+oi2)a5+a7as]a9 

+(Oi5- 0i2) (a6 +aSaS)/a9, (i = 2,5) , 

Ki2 = (a4+a3aS)a9 

+(OiS- Oi2) (a 2+a,aS)/a9, U~ 2,5), 

K3, = -[a4+(2a4-a3)aS]a9-(2a,-a2+a,aS)/a9, 

K32 = 	 [2a4+a5+(2a3+aS)aS]a9 

- [2a 2- a7+ (2a, - a5)aS]/a9 (13) 

in which 0ij is the Kronecker delta and 

a, = 1+sh - sy , a2 = al-2sh +2s2hy, 

a:, = a2+2sh+2sy, a4 = l-sh+sy, 

as = sh-sy, a6 = a5 -2s2hy, 

a7 = as+2s2hy, as =e- 2Sh , 

(14) 

3. THE INTEGRAL EQUATIONS 

The two unknown functions q I and q2 will be 
determined by using the conditions (6). If the 
expressions (11) are evaluated at y = h, one may 
notice that the kernels contain unbounded terms as 
S~:xl. After separating these terms and evaluating 
their integrals separately, one may obtain the 
expressions 

d 1 fa ~ [Onm ~ un(x, h) = -2- L ~ + Lnm(x, t) qm(t)dt,
dx /-1 1T -a m=1 t x 

(n = 1,2), (15a, b) 

where u, = V, U2 = u and 

L"" = -2 re:,h [1+2(ll,"-ll,")sh 

+2s2h2+e-2Sh]sin(t-x)s ds, (n = 1,2), 

e -2sh 
L'2 = - L2, = 4 

x 

~ s2h2cos(t- x)s ds. (16)
Jo 
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Substitution of (15) into (6) results in the following 
system of two singular integral equations 

mt ~ [ [l°':~ + L"m(x, t) ]qm(l)dt 211C 0,", 

(-a<x<a), (n 1,2), (17a,b) 

which must be solved subject to the equilibrium 
conditions 

(n 1,2). (18a, b) 

In order to simplify the numerical analysis, introduce 
the following dimensionless variables 

r x/a, W t/a. (19a, b) 

Then, Equations (17) and (19) may be rewritten as 

z 1 II 
r + k"m(r, W)] Pm(w)dw 2I1 CO ,",n~1 11' -I 

(-1<r<1), 

(n = 1,2), 

[ p,,(w)dw 0, (n=1,2), (20) 

where 

(n, m = 1,2), 

(n = 1,2). (21) 

Due to the singular term (w- rr 1
, the solution will 

be sought in terms of sectionally holomorphic func­
tions [11]. The unknown functions PI and pz have 
square root singularity at r = ± 1 [5-10, 12, 13]. 
Hence, one may write 

(n = 1, 2) , (22) 

where gl and g~ are Holder-continuous functions in 
[-1, 1] and 

c* 2JL c/Po, 

Po = 3M/2a2
• (23) 

Now, one can make use of the Gauss integration 
formula [14] and replace Equations (20) by the 
following system of linear algebraic equations 

+ k"",(rj • Wi)] g",(wi)= 0,,,, 

(j=1, ... , N-1; n=1,2), 
/'II

L Cigl/(Wi ) 0, (n=1,2), (24) 
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where 

1 
(i .. , N-l),

N-1 ' 

i-I ]
Wi = cos [ N _ 1 11' , (i 1, ... ,N), 

j-1 ] 
ri = cos [ 2N _ 2 11' , (j 1, ... ,N-l). 

(25) 

The constant c* is determined from condition (3) as 

2/311' 
c* (26) 

i=l 

4. NUlVIERICAL RESULTS 

Some of the calculated results are shown in 
Figures 2-9. Figures 2 and 3 show the variations of 
the normalized stresses q/po and Q2/Po along the rigid 
block-layer interface for various a/h ratios. Note that 
for fixed values of Po and h, the applied bending 
moment M increases with increasing a/h ratio. As 
can be observed from these figures, stress distribu­
tions depend heavily on a/h ratio. As a/h increases, 
q I increases over the central portion of the interface 
whereas it decreases near the edges. On the other 
hand, Q2 generally increases with increasing a/h 

1.0 

0.5 

x/a 
Figure 2. Normal Stress Between the Layer and the Rigid 

Block. 
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o 	 2
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Figure 5. Normal Stress Distributions when a h. 
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Figure 3. Shear Stress Between the Layer and the Rigid 
Block. 
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Figure 4. Stress Intensity Factors at the Corners of the Rigid 

Block. Figure 6. Shear Stress Distributions when a = h. 

January 19Y(} 	 The Arabian Journal for Science and Engineering, Volume 15, Number I. 77 



M. R. Gec;it 

0.8 

T 
xy 

Ip
0(jy Ip

o 

o 2 o 2 
x/h x/h 

Figure 7. Normal Stress Distributions at y = 0.7 h. Figure 8. Shear Stress Distributions at y = 0.7 h. 
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Figure 9. Maximum Shear Stress Contours when a = h. 

y/h 

0.5 

ratio. One may be aware of the fact that the points 
near the edge on the upper surface of the layer (for 
x> 0) will have a tendency to move horizontally 
toward the center x = O. However, this tendency is 
restricted along the interface by the shear stresses 
resulting from the bonded contact with the rigid 
block. As the thickness of the rigid block increases, 
size of the restricted region becomes larger and 
consequently the required shear stresses for restric­
tion of horizontal displacement will be larger. A 

similar behavior had been observed for axial loading 
in [7]. Both normal and shear stresses tend to infinity 
as the end point x = a is reached. Stress state near 
the corners of the rigid block can be described in 
terms of the stress intensity factors defined by 

kl = lim [2(a-x)]112 U'y(x, h) , 
x-+a 

k2 = lim [2(a-x)t2 Txy(x,h). (27) 
x-+a 
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Figure 4 shows the vanatlons of the normalized 
stress intensity factors 

k. = I al/2 
, 	 (28)kip 	 (i=1,2),I 0 

with alh. As alh approaches zero, the constraint on 
the upper surface of the layer due to perfect bonding 
with the rigid block regarding the horizontal dis­
placement simply disappears and the shear compo­
nent of the stress intensity factor,1(2' vanishes. As 
alh ratio increases, 7<1' decreases and 1(2' increases. 

As can be observed from Figures 2 and 3, both 
normal and shear stresses tend to infinity as the end 
point x a is reached. Therefore, predicting the 
performance of the bond is not straightforward using 
a strength of materials approach. In other words, 
stress can no longer be used as a design parameter 
when the corners of the rigid block are sharp. In this 
case, one has to employ the principles of fracture 
mechanics in predicting the critical pull-off state. 
More specifically, one has to consider, for example, 
the Griffith's energy balance theory (see, for example, 
[15]) and use the strain energy release rate as a 
parameter in predicting the failure. Note that the 
strain energy release rate can be expressed in terms 
of the stress intensity factors given in Figure 4. 

Figures 5 and 6 show the normal and shear stress 
distributions, respectively, at various levels in the 
layer when a = h. Distributions are smoother at 
lower levels and they possess significant variations as 
the level under consideration gets closer to the upper 
surface. The most extensive disturbance seems to 
take place around x a. 

Figures 7 and 8 show the stress distributions at a 
level of y 0.7 h for several alh ratios. As alh 
decreases, the peaks in these distributions which are 
around x = a move toward the center. The normal 
stress uv/Po seems to decrease with decreasing alh 
ratio. This is due to the fact that uy is normalized 
using Po and for fixed values of Po and h, the applied 
bending moment M decreases with decreasing alh 
ratio. If one keeps M constant while decreasing alh, 
Po will increase more rapidly. Therefore, for smaller 
alh ratios U will have higher peaks. v 

Finally, Figure 9 shows the contours of equal 
maximum shear stress 'Truax!Po when a h. One may 
note the accumulation of high shear stress contours 
around the corner x = a, y h. Magnitude of the 
maximum shear stress becomes quite insignificant 
when x>a. 

Results for the antisymmetric problem (bending) 

M. R. Ge~it 

given in this paper can be superimposed with those 
for the symmetric problem (axial loading) given in 
[7] to obtain the results for the general asymmetric 
problem (combined loading). 
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