FURTHER WORK ON THE USE OF K, FACTORS DETERMINED BY THE CADMIUM SUBTRACTION METHOD AS A TOOL FOR A CRITICAL EVALUATION OF NUCLEAR DATA

T. Elnimr

Physics Department, Faculty of Science, Tanta University, Tanta, Egypt

1. INTRODUCTION

Nuclear constants for use in reactor activation analysis and epicadmium neutron activation analysis, especially (n, γ) cross-sections and absolute gamma intensities, are known to show a rather large scatter in the literature [1]. This work is a continuation of that already published [2], in which shows how experimentally determined and accurate K_{o} -factors, used in a new comparator technique [5, 6], in some cases can be used to make a critical evaluation of the above mentioned constants. The method was applied to select preferred values for thermal cross-section (σ_{o}), resonance integral (I_{o}) and absolute gamma intensity.

Table	1.	Different	Reaction	and	Decay	Types	Together	With	Related	Nuclear	Parameters	and	Formulae	When	Using
							the	K₀-Me	ethod						

Reaction decay type	Reaction and decay schemes	$K_{\rm o}$ (definition)	Q _o analytical	$A_{\rm sp}$ (calculation)
(I)	$1 \xrightarrow[\sigma_0, I_0]{} \stackrel{n, \nu}{\longrightarrow} 2 \xrightarrow[\rho_2]{} \stackrel{\lambda_2}{\longrightarrow}$	$\frac{M^*\theta \sigma_o \nu_2}{M \theta^* \sigma_o^* \nu^*}$	$\frac{I_{o}}{\sigma_{o}}$	$\frac{N_{\rm p,2}/t_{\rm m}}{wS_2D_2C_2}$
(II)	$1 \xrightarrow{\sigma_{o}^{m}, I_{o}^{m}} \xrightarrow{2}_{3} \xrightarrow{F_{2}, \lambda_{2}} \xrightarrow{\sigma_{o}^{g}, I_{o}^{g}} \xrightarrow{2}_{3} \xrightarrow{F_{2}, \lambda_{2}} \xrightarrow{\lambda_{2}}$	$\frac{M^*\theta \sigma_o^g \nu_3}{M \theta^* \sigma_o^* \nu^*}$	$\frac{I_o^g}{\sigma_o^g}$	$\frac{N_{\mathrm{p},3}/t_{\mathrm{m}}}{w} \left[\frac{F_2 \sigma_{\mathrm{o}}^{\mathrm{m}}}{\sigma_{\mathrm{o}}^{\mathrm{g}}} \times \frac{(F+Q_{\mathrm{o}}^{\mathrm{m}})}{(F+Q_{\mathrm{o}}^{\mathrm{g}})} \times \frac{\lambda_3 S_2 D_2 C_2 - \lambda_2 S_3 D_3 C_3}{\lambda_3 - \lambda_2} + S_3 D_3 C_3 \right]^{-1}$
				$= \frac{N_{p,3}/t_m}{w} \left[\frac{K_o^m}{K_o^g} \times \frac{(F+Q_o^m)}{(F+Q_o^g)} \times \frac{\lambda_3 S_2 D_2 C_2 - \lambda_2 S_3 D_3 C_3}{\lambda_3 - \lambda_2} + S_3 D_3 C_3 \right]^{-1}$
(III)	Special case: $\lambda_2 \gg \lambda_3$ and $D_2 = 0$	$\frac{M^*\theta(F_2 \sigma_o^m + \sigma_o^g) \nu_3}{M \theta^* \sigma_o^* \nu^*}$	$\frac{F_2 I_o^m + I_o^g}{F_2 \sigma_o^m + \sigma_o^g}$	$\frac{N_{\rm p,3}/t_{\rm m}}{wS_3D_3C_3}$

Target element	Atomic Weight	σ ₀ (barn) [26]	<i>I</i> 。 (barn) [26]	Target Isotope	Abundance (%) [26]	Isotope (reaction decay type)	Half-life $T_{1/2}$	\overline{E}_{r} (eV) [15]
Mg	24.30	0.063	0.038	²⁶ Mg	11.01	²⁷ Mg (I)	9.46 m	220 000
Al	26.98	0.233	0.17	²⁷ Al	100	²⁸ Al (I)	2.2405 m	8240
S	32.06	0.52	0.24	³⁶ S	0.02	³⁷ S (I)	5.06 m	
Ca	40.08	0.43	0.24	⁴⁸ Ca	0.187	⁴⁹ Ca (I)	8.72 m	
Sc	44.96	27	12	⁴⁵ Sc	100	⁴⁶ Sc (III)	83.8 d	4110
Fe	55.85	2.55	1.4	⁵⁸ Fe	0.28	⁵⁹ Fe (I)	44.50 d	325
Ga	69.72	2.9	22	⁷¹ Ga	39.9	⁷² Ga (III)	14.1 h	152
As	74.92	4.4	61	⁷⁵ As	100	⁷⁶ As (I)	26.3 h	102
Se	78.96	11.7	14	⁷⁴ Se	0.9	⁷⁵ Se (I)	119.8 d	29.5
Br	79.90	6.8	92	⁷⁹ Br	50.69	^{80m} Br	4.42 h	51.4
						^{su} Br (II)	17.6 m	
Sr	87.62	1.2	10	⁸⁶ Sr	9.86	^{87m} Sr (I)	2.806 h	672

Table 2. Preferred Nuclear Data and Decay Parameters Concerning the (n, γ) Reaction

F _{Cd}	E,	$Q_{o}(\alpha=0)$ recom. [32]	$(K_{0,Au})_{exp}$	$(K_{0,Au})_{theor}$	Evaluation value			
[5, 7, 8]	Main gamma (keV)		(rel. err., %)L		σ _o (barn)	I _o (barn)	Absolute gamma Intensity (%)	
1.00	170.5	0.69	3.00×10^{-6} (1.0)	3.09×10^{-6}	0.038	0.025	0.86	
	843.8		2.52×10^{-4} (0.6)	2.51×10^{-4}			70.0	
	1014.2		9.79×10^{-5} (0.6)	9.81×10 ⁻⁵			27.3	
1.00	2779.0	0.73	1.77×10 ⁻² (0.9)	1.78×10^{-2}	0.230	0.17	100	
	3103.8	1.12	1.94×10 ⁻⁶ (0.9)	1.95×10^{-6}	0.15	0.17	99.7	
	3084.2	0.45	1.00×10 ⁻⁴ (1.2)	9.86×10^{-5}	1.1	0.50	92.1	
	889.3	0.44	1.25 (0.8)	1.25	27	12	100	
	1120.5		1.24 (0.4)	1.25			100	
1.00	1099.2	0.96	7.84×10 ⁻⁵ (0.9)	7.86×10^{-5}	1.33	1.1	56.5	
	1291.6		5.99×10 ⁻⁵ (0.9)	6.01×10^{-5}			43.2	
1.00	629.9	6.63	1.48×10 ⁻² (0.8)	1.46×10 ⁻²	4.65	30.8	26.3	
	834.1		$5.27 \times 10^{-2} (0.5)$	5.31×10^{-2}			95.54	
	894.2		5.49×10 ⁻³ (0.9)	5.47×10^{-3}			9.847	
	1050.7		3.85×10^{-3} (1.1)	3.84×10^{-3}			6.921	
	2201.6		1.44×10^{-2} (1.0)	1.45×10^{-2}			26.07	
	2490.9		4.20×10^{-3} (1.5)	4.15×10^{-3}			7.476	
	2501.6 $(E_{eff.})$		1.15×10^{-2} (1.3)	1.14×10^{-2}			20.54	
	2507.7 ($E_{\rm eff.}$)		7.30×10 ⁻³ (1.0)	7.25×10^{-3}			13.06	
1.00	559.2 $(E_{eff.})$	14.0	4.99×10 ⁻² (1.0)	5.03×10^{-2}	4.3	60	41.99	
	657.0		$6.65 \times 10^{-3} (0.8)$	6.82×10^{-3}			5.69	
	1215.2 $(E_{\rm eff.})$		5.25×10^{-3} (1.2)	5.21×10^{-3}			4.35	
0.94	121.1	10.9	1.98×10 ⁻³ (0.5)	1.99×10^{-3}	51.8	565	16.15	
	136.0		$6.88 \times 10^{-3} (0.6)$	6.90×10^{-3}			56.02	
	264.7		7.23×10^{-3} (0.9)	7.22×10^{-3}			58.60	
	279.5		$3.06 \times 10^{-3} (0.9)$	3.07×10^{-3}			24.9	
	400.6		1.43×10 ⁻³ (0.8)	1.45×10^{-3}			11.78	
1.00								
1.00	616.9	11.4	$6.68 \times 10^{-3} (0.9)$	7.01×10^{-3}	0.4	96	6.3	
	666.3		1.18×10 ⁻³ (0.9)	1.17×10^{-3}			1.05	
1.00	388.5	4.11	1.49×10 ⁻³ (0.7)	1.49×10^{-3}	0.369	3.16	82.5	

2. EXPERIMENTAL DETAILS AND RESULTS

The experimental method has been described previously [2-4]; in the present work all K_0 factors were experimentally determined and calculated versus the 411.794 keV γ -line of ¹⁹⁸Au [5]. The nuclear data of interest, which are required for the calculations, are listed in Table 1 of Reference [2]. Counting was performed using a 104 cm³ and 40 cm³ single open-ended coaxial Ge(Li) detector with a source-to-detector separation of 15 cm. Appropriate formulae for specific count rate calculations (and K_{0} and Q_{o} definitions) for several complex decay schemes (mother-daughter decay, etc.) are given in Table 1. The listed K_o -factors are those recommended when obtained according to the experimental method that has been described previously [2] and when the standard deviation on the mean was less than 2%. It should be realized that the average usually results from five measurements on two irradiation channels. Results of K_{0} determinations are shown in Table 2 for 12 isotopes, covering 29 γ -lines. In this evaluation several compilations were systematically surveyed [9-31]and other recent publications were consulted. The finally adopted values are based on the present evaluation result, and *t*-test can be performed for the comparison of the theoretical $(X)_{\text{theor}}$ and mean experimental value $(\bar{X})_{exp}$. If S_{exp} is the standard deviation on the mean for an average value $(X)_{exp}$, then

$$t = \frac{(\bar{X})_{\exp} - X_{\text{theor}}}{S_{\exp}}$$

ACKNOWLEDGEMENTS

We are indebted to Professor Dr. A. M. Hassan, Dr. F. M. Ela-Assaly, and Dr. N. B. Rofail for their helpful discussions. We are also grateful to the staff of the Egyptian Reactor for their assistance with the irradiations.

REFERENCES

- [1] V. Krivân, Symposium on Applications of Nuclear Data in Science and Technology, Paris, March, 1973.
- [2] T. Elnimr, "A Critical Evaluation of Nuclear Data Using K_o-Factors Determined by the Cadmium Subtraction Method", Arabian Journal for Science and Engineering, 10(2) (1985), p. 139.
- [3] T. Elnimr and F. A. El-Hussiny, "Further Work on the Use of $K_{e,o}$ Factors as a Tool for a Critical Evaluation of Reactor Thermal and Epithermal (n, γ) Cross-Sections and of Absolute Gamma Intensities",

Journal of Physics D: Applied Physics, 18 (1985), p. 1967.

- [4] T. Elnimr and I. I. Bondouk, "The Use of K_{e,o} Factors as a Tool for a Critical Evaluation of Reactor Thermal and Epithermal (n, γ) Cross-Sections and of Absolute Gamma-Intensities", Journal of Physics D: Applied Physics, 16 (1983), p. 1407.
- [5] T. Elnimr, L. Moens, F. De Corte, A. Simonits, and J. Hoste, "Epicadmium Neutron Activation Analysis (ENAA) Based on the K_o-Comparator Method", *Jour*nal of Radioanalytical Chemistry, 67 (1981), p. 421.
- [6] T. Elnimr, "Epicadmium Neutronenactiverings Analyses Met Behulp van De K_o-Standaardisatie Methode", Doctoral Thesis, University of Ghent, Belgium, 1981.
- T. Elnimr and F. M. El-Assaly, "Determination of the Attenuation of Epicadmium Neutrons Using the Method of Varying Cd-Thickness", *Journal of Radioanalytical and Nuclear Chemistry*, **109(1)** (1987), p. 3.
- [8] T. Elnimr and F.M. El-Assaly, "The Cadmium Transmission Factor for Epithermal Neutrons Using the Method of Varying Cd-Thickness", Proceedings of the Mathematical and Physical Society of Egypt, 58 (1984), p. 93
- [9] J. Legrand, J. P. Perolat, F. Lagoutine, and Y. Le Gallio, *Table des Radionuclides*. Paris: CEA/BNM/LMRL, 1975.
- [10] M. J. Martin, "Nuclear Decay Data for Selected Radionuclides", *Report ORNL-5114*, 1976.
- [11] D. C. Kocher, Oak Ridge National Laboratory: Report ORNL/NUREGTM-102, 1977.
- [12] G. Erdtmann and W. Woyka, "Die γ-lines der Radionuklide", Report: Jülich-1003 A.C., Zentralinstitut für Analytische Chemie, 1974.
- [13] O. T. Høgdahl, "Neutron Absorption in Pile Neutron Activation Analysis", *Report of the Michigan Memorial Phoenix Project: MMPP-226-1*, University of Michigan, December 1962.
- [14] R. W. Stoughton and J. Halperin, "Effective Cutoff Energies for Boron, Cadmium, Gadolinium, and Samarium Filters", *Journal of Nuclear Science and Engineering*, 15 (1963), p. 314.
- [15] L. Moens, F. De Corte, A. Simonits, A. De Wispelaere, and J. Hoste, "The Effective Resonance Energy \overline{E}_r , as a Parameter for the Correction of Resonance Integrals in $1/E^{1-\alpha}$ Epithermal Neutron Spectra Tabulation of \overline{E}_r -Values for 96 Isotopes", Journal of Radioanalytical Chemistry, 52 (1979), p. 379.
- [16] N. E. Holden and F. W. Walker, Chart of the Nuclides, Eleventh Edition. Schenectady, NY: General Electric Co., 1972.
- [17] S. F. Mughabghab and D. I. Garber, Neutron Cross Sections, vol. 1, Resonance Parameters, Third Edition. Upton, LI: Brookhaven National Laboratory, Report: BNL-325, NTIS, June 1973.
- [18] J. I. Kim and H. J. Born, "Monostandard Activation Analysis and Its Applications to Analysis of Kale

Powder and NBS Standard Glass Samples", Journal of Radioanalytical Chemistry, 13 (1973), p. 427.

- [19] E. Ricci, Analytica Chemica Acta, 79 (1975), p. 109.
- [20] T. Bereznai and G. Keömley, "Effect of Error in Halfline Data on the Accuracy of Activation Analysis", Radiochemical Radioanalytical Letters, 17 (1974), p. 305.
- [21] F. W. Walker, G. J. Kirouac, and F. M. Rourke, *Chart of the Nuclides, 12th Edn.* Schenectady, NY: General Electric Co., 1977.
- [22] N. E. Holden, "IUPAC Commission on Atomic Weights and Isotopic Abundances", *Pure and Applied Chemistry*, 52 (1980), p. 2349.
- [23] "Handbook of Nuclear Activation Cross-Sections", International Atomic Energy Agency, Technical Reports Series, No. 156, 1974.
- [24] R. L. Heath, Gamma-Ray Spectrum Catalogue, vol. 2, Third Edition. Idaho: Aerojet Nuclear Company, ANCR-1000-2, 1974.
- [25] T. B. Ryves, "A New Thermal Neutron Flux Convention", *Metrologia*, 5 (1969), p. 119.
- [26] W. Garder, T. D. MacMahon, and A. Egan, "INDENT—a Radioisotope Identification Subroutine for Use with the Gamma-Ray Spectrum Analysis Program SAMPO", *Talanta*, 25 (1978), p. 21.

- [27] P. F. Schmidt, J. E. Riley, Jr., and D. J. MacMillan, "Parametric Neutron Activation Analysis of Samples, Generating Complex Gamma-Ray Spectra", *Analytical Chemistry*, 51(2) (1979), p. 189.
- [28] W. W. Bowman and K. W. MacMurdo, Atomic Data Nuclear Data Tables (ADNDT), 13(2-3) (February 1974).
- [29] V. P. De Bievre, "Atomic Weight of the Elements", Journal of Pure and Applied Chemistry, 47 (1976), p. 75.
- [30] Nuclear Data Sheets (USA), 7 (1972), pp. 33, 363, 419; B7 (1972), p. 1; B8(1) (1972), p. 29; 9 (1973), p. 319; 10 (1973), pp. 1, 47, 241, 429, 991; 11 (1974), p. 121; 12 (1974), p. 477; 14 (1975), pp. 247, 347, 471, 559; 15 (1975), p. 315; 16 (1975), p. 383; 18 (1976), pp. 125, 331.
- [31] I. M. H. Pagden, G. J. Pearson, and J. M. Bewers, *Journal of Radioanalytical Chemistry*, 8 (1971), pp. 129, 373; *Ibid* 9 (1971), p. 101.
- [32] A. Simonits, F. De Corte, T. Elnimr, L. Moens, and J. Hoste, "Comparative Study of Measured and Critically Evaluated Resonance Integral to Thermal Cross-Section Ratio. Part II", Journal of Radioanalytical and Nuclear Chemistry, 81(2) (1984), p. 397.

Paper Received 25 November 1986; Revised 13 May 1987.