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NOMENCLATURE 

arg argument of a complex number 
b damping constant 
f forcing function (input) 
k spring constant 
m mass 
s Laplace parameter 
t time 
x displacement of mass, m 
R magnification ratio 
a normalized amplitude ratio 
~ relative damping 
(J" real part of s 
\fJ phase angle 
W frequency (imaginary part of s) 
Wd system damped frequency = V (Wn 

2 
- (J"2) 

Wf input frequency 
Wn system natural (undamped) 

frequency = V(klm) 

INTRODUCTION 

Every second-order system contains two energy" 
storing devices such as mass and spring in mechanical 
systems, or inductor and capacitor, in electrical 
systems. When no friction or electrical resistance is 
present, such systems, when disturbed, will exhibit a 
sustained oscillatory motion. However, in all physical 
systems some amount of friction is present which 
results in dissipation of energy and subsequent 
damping of the oscillatory motion, or even in 
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89 Bell Canyon Road 
Bell Canyon, CA 91307 
U. S, A . 

preventing the oscillations from taking place 
altogether. We speak, in such cases, of underdamped 
or overdamped systems. Whether they belong to one 
or the other category, depends on the amount of the 
so-called relative damping defined by the ratio 

(1) 

When ~ < 1, we say the system is underdamped; 
when ~ > 1, the system is overdamped; when ~ = 1, 
the system is said to be critically damped. The subject 
of this investigation are the underdamped linear 
systems subjected to forced sinusoidal oscillations. 
Such systems exhibit 90° phase lag at the resonant 
frequency and magnification of the response ampli
tude which, with the exception of the case ~ = 0, 
reaches its maximum at frequencies somewhat lower 
than the resonant frequency . One can determine the 
maximum value of this magnification, and the fre
quency at which it occurs, using weIl:-known calculus 
methods. The resulting formulae can be found in a 
number of textbooks on Systems Dynamics [1-3]. 
Here, the vector algebra , leading to a'quick graphical 
determination of these values, is used. 

SYSTEM TRANSFER FUNCTION 

The case of a second-order system subjected to 
some input (forcing function), f(t), is represented 
mathematically by a second-order differential equa
tion of the form: 
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d2x dx 
m dt 2 + b dt + kx f(t). (2) 

Using the Laplace transform method we write the 
system transfer function as: 

X(S) 1 11m 

F(s) ms2+bs+k (s + cr + jWd)(S +cr- jwd) . (3) 


The values of s, for which the transfer function 
becomes infinite, are known as its poles. They can be 
represented in the complex planes, s = cr + jw, by 
two points, Sl,2 -cr±jwd, as shown in Figure 1. 

.JW 

a 

-.1~ 

Figure 1. Poles of the Transfer Function and its Vectors 
u and v. 

When the input is of the sinusoidal form, namely, 

(4) 

the parameter s in Equation 3 assumes the value of 
jWf. Thus the transfer function can be written as 

11m I 
(S+cr+jWd)(S+cr-jwd) S = jwf ' (5) 
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The system response to such input is 

x(t) = Xm cos(wft + \jJ) (6) 

where Xm is the amplitude of the response and \jJ its 
phase angle measured with respect to the input. 
These quantities are readily obtained from Equation 
(5), namely, 

I (s+<1+jW~(:+<1- jwd) Is jWf = (7)fX 

and 

(8) 

The quantity, 0., in Equation (7) is known as the 
normalized amplitude ratio. 

The system response to variable frequency of the 
input, W f , is called simply the frequency response. 

VECTOR REPRESENT A TION OF THE 
TRANSFER FUNCTION 

The denominator of the transfer function, given 
by Equation (5), can be written as a product of two 
complex vectors, u and v, shown in Figure 1. Thus, 
Equations (7) and (8) can be written in the following 
form: 

0.= (9)
lu vi 

and \jJ -arg(u v) = -(4)u + 4>J . (10) 

It is obvious that 0. attains its maximum value when 
the absolute value of the product lu vi, attains 
its minimum, while varying the frequency Wfo 

Expressing u and v in terms of its real and imaginary 
components, namely, 

u = Uo + j U and v v0 + j v w , (11 ) w 

we can show that 

lu vi = V{(uqVq + uwvw)2 + (uavw uwva?} 
V{I u . V 12 + Iu x V 12} . (12) 

Since the magnitude of the cross product, u x v, is 
twice the area bounded by the triangle formed by 
these two vectors and the segments, S)S2 (see Figure 
1), we can write 

UXv 2crWd = const (13) 

which means that its values is independent of Wf. 
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Therefore, the term lu vi attains its minimum when 
the dot product U'v is zero. Since 

(14) 

the dot product is zero when projection of v on u is 
zero, i.e., when the two vectors are perpendicular, 
or, <1>11- <1>1' = 90

0 
, 

From plane geometry, we know that a triangle 
inscribed in a semicircle, and whose base is equal to 
the diameter of that circle, is a right-angled triangle. 
Thus, the frequency at which the amplitude ratio, a, 
attains its maximum can be determined by construct
ing a semicircle of radius, r = W d , as shown in Figure 
2. Intersection of that semicircle with the jw-axis 
determines, Wf = W m ' for which the system response 
attains its maximum value. 

From Figure 2 it is also clear that when r = Wd < 0', 

the semicircle will not intersect the jw-axis, i. e., the 
dot product, U· v, will not be zero and its minimum is 
attained when W f = O. 

The frequency W f , for which the phase angle of the 
system response is -90°, can be determined by 
construction of another semicircle of radius r = Wn 

and whose center lies at the origin 0, of the s-plane, 
as shown in Figure 3. 

Consider, in that figure, two triangles, A Sl Band 
A S2 B. Both these triangles are identical and 

Figure 2. Graphical Determination of Input Frequency for 

JW 

---.-j W, = j (.un 

a 

-JW 
• d 

A 

Figure 3. Graphical Determination of Input Frequency for 
~ = -90°. 

right-angled. Therefore, the angles <1>1 and <1>2 must 
satisfy the relationship 

<1>1 + <1>2 = 90° . (15) 

But, <1>1 = <l>u and <1>2 = <l>v, hence, 

<l>u + <l>v = 90° . (16) 

This means that 90° phase lag takes place always at 
the resonant frequency, i.e., Wf = W n • 

MAGNIFICATION RATIO 

The signal (input) magnification ratio can be 
defined as the ratio of the amplitudes of the system 
maximum response and that for low frequencies 
(Wf~O). For Wf= 0, the amplitude of the system . 
response can be written as 

(17) 
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where Uo and Vo are the vectors u and v, respectively, 
associated with the input frequency, W f = 0, and K is 
the system constant. 

Since 

(18) 

we 	can write 

(19) 

At W f = Wrn , the dot product of vectors u and v is zero, 
while their cross product value is given by Equation 
(13); hence, we can write 

(20) 

Therefore the ratio of the amplitudes at the two 
frequencies is 

2 
W n (21)2 (dd a . 

Using the well-known relationships between a, W d , 

W n , and ~, we can write 

(22) 

which is in full agreement with results found in the 
literature [1-3]. Equation (22) is valid only for the 
range, 0 ~ ~ ~ v'2/2, i.e., the range for which points 
of intersections of the r = Wd circle and the j-axis exist 
(see Figure 2). 

Of interest is also magnification of the input at the 
resonant frequency (Figure 3). The magnitude of the 
denominator of the transfer function as, given by 
Equation (12), is the resultant of the dot and cross 
products of vectors u and v. It has been stated before 
(Equation 13), that the cross product value is 

independent of the input frequency and has a 
constant value of 2 a W d • While in the previous case 
the dot product was zero, here, it is not. Its value can 
be determined from the consideration of its compo
nents, namely, 

U·V = ucrvcr+uwvw = a2+(wn+Wd)(Wn-Wd) 

(23) 

Substituting the derived values for the dot and cross 
products into Equation (12), we obtain 

lu vi = 2awn • (24) 

Therefore, the magnification ratio at the resonant 
frequency is 

(25) 

CONCLUSIONS 

By means of the method presented here, the input 
frequencies for which the system response attains its 
maximum, or when its phase angle tV = -90°, and the 
corresponding magnification ratios, can be easily and 
quickly determined. Although the results obtained 
are well known, in the opinion of the author this 
investigation illustrates well the usefulness of the 
vector method in analysis of the system frequency 
response and, thus, has tutorial merit. 
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