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A. Turgut and M. R. Gefit 

ABSTRACT 

This paper considers the elastostatic plane problem of a semi-infinite strip which 
contains a transverse central crack. Short end of the strip is fixed while the sides 
are free and the far end is subjected to uniform tension. Solution for the cracked 
semi-infinite strip is obtained by considering an infinite strip containing a 
transverse rigid inclusion at the middle and two symmetrically located transverse 
cracks. In the limiting case when the rigid inclusion approaches the sides of the 
infinite strip, one-half of it becomes equivalent to the semi-infinite strip. 
Formulation is reduced to a system of three singular integral equations. Numerical 
results for stresses, stress intensity factors, probable cleavage angle and strain 
energy release rate are given in graphical form. 
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A. Turgut and M. R. Ge~it , 

A SEMI-INFINITE ELASTIC STRIP CONTAINING A TRANSVERSE CRACK 


1. .INTRODUCTION 

The semi-infinite strip problem has attracted 
considerable attention due to its possible applications 
to many structural problems. Horvay used first 
Goodier's minimum strain energy methods [1] (refer­
ence [2]) and then biharmonic Papkovich - Fadle 
eigenfunctions [3, 4], which are trigonometric side­
wise and exponential lengthwise, for the semi-infinite 
strip with prescribed end tractions [5]. Gaydon and 
Shepherd [6] and Johnson and Little [7] also used the 
Papkovich-'Fadle eigenfunctions. Theocaris [8] used 
conformal mapping in conjunction with the minimum 
strain energy theorem for the problem of compress­
ion of a semi-infinite strip by a concentrated end 
load. Benthem [9] used the Laplace transform in the 
longitudinal direction and the Fourier series for the 
stress function at the end. He reduced the problem to 
an infinite system of algebraic equations for the 
prescribed end tractions. He treated also the fixed 
end problem but his procedure could not reveal the 
stress singularities. Appropriate singular ~erms had 
to be derived separately and added. Vorovich and 
Kopasenko [10] considered the semi-infinite strip 
problem in which the end is fixed and the strip is 
compressed laterally. They reduced the problem to a 
singular integral equation but they had to determine 
the singularity separately and introduce it into their 
equation. 

The problem of the tensile semi-finite strip with 
fixed end was considered also by Gupta [11]. Gupta's 
solution seems to be the first elegant treatment of the 
problem. He reduced the problem to a singular 
integral equation and could extract the stress sing­
ularity directly. Bogy u~ed the same method in [12] 
for

./' 
a general treatment of the problem of a 

semi-infinite strip with traction and displacement end 
conditions subjected to tension and/or bending at 
infinity. The authors used Gupta's method in [13] for 
the problem of a finite strip with free sides and one 
end fixed. 

The present paper is concerned with the problem 
of a semi-infinite strip with free sides. The short end 
of the strip is perfectly bonded to a rigid support 
while the far end is subjected to uniform tension. 
There is a transverse central crack in the strip. The 
solution of the problem is obtained from the solution 
for an infinite strip which contains a rigid inclusion at 
the middle and two symmetrical transverse cracks. 

When the rigid inclusion approaches the sides of the. 
strip, one-half of the infinite strip becomes equiva­
lent to the cracked semi-infinite strip. The infinite 
strip solution is obtained by the superposition of 
several infinite strip and infinite plane solutions. 

2. FORMULATION OF THE PROBLEM 

Consider the isotropic, linearly elastic, semi­
infinite strip of width 2h, shown in Figure 1. The 

~---2h---... 

~2b~T 
) 

Y 

1 
L 

~x 

Figure 1. Cracked Semi-Infinite Strip. 

short end of the strip is fixed along a rigid support 
while the far end is under the action of a uniformly 
distributed tensile load of intensity Po and the sides 
are free of traction. The strip contains a transverse · 
crack of length 2b with stress-free surfaces at a 
distance of L from the fixed end. Therefore, the field 
equations of plane elasticity theory must be solved 
under the following boundary conditions: 

<1x( ±h,y)= 0 , Txy(±h,y) =0 , (O<y<oo) , (la-d) 

u(x, 0) =0 , v(x, 0) =0 , (Ixl<h) , (2a, b) 

<1y(x, L) =0 , Txy(X, L)=O , (Ixl <b) , (3a, b) 

Txy~O , (y~oo) , (4) 

<1y~Po , (y~oo) , (5) 
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where u and v are the x- and y-components of the 
displacement vector. 

A solution for the semi-infinite strip problem may 
be obtained conveniently by considering a symmetric 
infinite strip containing a rigid inclusion of length 2a 
at y = 0 and two cracks of length 2b with stress-free 
surfaces at y = ± L. In the limiting case when the 
rigid inclusion approaches the sides of the strip (i.e. 
when a--+h), one-half of the infinite strip turns out to 
be the semi-infinite strip shown in Figure 1. Bound­
ary conditions for the infinite strip can be written as: 

<1x( ±h,y) =0 , Txy( ±h,y) =0 , (Iyl<oo) , (6a,-d) 

u(x, 0)=0 , v(x, 0) =0 , (Ixl<a) , (7a, b) 

<1y(x, ±L) =0 , Txy(x,±L)=O, (Ixl<b) , (8a-d) 

<1y--+Po, Txy--+O , (Iy 1--+(0) • (9a, b) 

Due to symmetry about both x = 0 and y = 0 planes, 
it is sufficient to consider one-quarter of the problem 
(O$i;x$i;h, O$i;y<oo) only. 

A general solution for the tensile infinite strip 
problem defined by the conditions (6-9) may be 
obtained by the superposition of solutions for the 
following four subproblems: (i) an infinite strip 
subjected to arbitrary symmetric loads, (ii) another 
infinite strip subjected to uniform tensile loads at 
infinity, (iii) an infinite plane containing two parallel 
cracks, and (iv) another .infinite plane containing a 
central rigid inclusion. When the auxiliary solutions 
for these subproblems, which already satisfy the 
conditions (7b) and (9), are added and substituted in 
(6), the necessar~ stress and displacement derivative 
expressions can be written in the form (see [13]): 

au 3 Ja j 3-K 

ax = j~1 _ajMli(x, y, t)Gj(t)dt-~Po, (lOa) 


(lOb) 

(10c) 

where I.l. is the shear modulus, K = 3-4v for plane 
strain, K = (3-v)/(1 +v) for plane stress, v being the 
Poisson's ratio, G1 is the odd shear stress on the rigid 
inclusion, 

(Ixl<a) , (11) 

Gz and G3 are, respectively, the even and odd 
dislocation densities on the cracks, 

a ( +) a ( _ax v x, L - ax v x, L ), (Ixl<b), (13) 

a1 a, a2 a3 = b, Mij(i, j = 1-3) are given in [13] 
and for brevity will not be repeated here. 

In order to obtain the expressions corresponding 
to the semi-infinite strip problem, one must consider 
the limiting case when a--+h. Hence the expressions 
in (10) can be used for the semi-infinite strip if a1 =a 
is replaced by h. 

3. THE INTEGRAL EQUATIONS 

The three new unknown functions G1- G3 can be 
determined by using the remaining boundary 
conditions (7a) and (8). Note that (7a) is a 
displacement type condition whereas (8) are stress 
type conditions. In order to have the same type of 
conditions (e.g. stress type), (7a) may be replaced by 

a 
ax u(x, 0) 0 , (Ixl<h) . (14) 

By this replacement we disregard some divergent 
integrals and obtain integral equations with Cauchy­
type singularity [14]. Now if (10) are substituted in 
(8) and (14), the following singular integral 
equations are obtained 

_1 Jh [_K_ +Nll(x, t)] G1(t)dt 
'1T1.l. -h t-x 

+ ; It, [ NIi(x, t)G,(t)dt 

(K-3)(K+l) 
= (Ixl<h) (15a)81.l. Po, 

I+K 
- ~ Po &n3' (n 2,3), (Ixl<b), (15b) 

where ani is the Kronecker delta and the kernels 
Nij(i, j =1-3) are given in [13]. It can be shown that, 
in addition to the simple Cauchy kernel (t- Xfl, Nu 
has singular terms when t = h and x ±h, due to the 
behavior of the integrand of the integral giving Nu as 
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s~oo*. These singular terms can be separated as 

Nlls(x, t) 

2
3 - K2 d d ] [ 1 ]

= [ -2- -6(h-x) dx +2(h-x)2 dx t-(2h-x) 

2
3 - K2 d d ] [ 1 ]

+ [ -2-+6(h+x) dx +2(h+x)2 dx t-(2h+x) ' 

(16) 

and after somewhat routine manipulations (see, for 
example [11-13, 17]) it can be shown that the 
unknown functions G1- G3 may be written in the 
form 

2 2 a
G 1 (x) = <l>1(x)(h -x r , (IXI<h)'j 

Gi(x) = <l>i(X)(b2- x2r 1/2 , (17a-c) 

(i=2,3), (lxl<b), 

where <1>1 - <f>3 are Holder-continuous functions in the 
respective intervals and a satisfies the characteristics 
equation 

2K cos 'iTa +4(a -1?- K2-1 = 0, Re(a) < 1. (18) 

This equation is in perfect agreement with previously 
reported results for the power of stress singularity at 
the 90° corner of a fixed-free wedge (e.g. [11-13, 
18-20]). According to (17) and (18) G I -G3 have 
integrable singularities at the end points. Therefore, 
the index of the integral equations (15) is + 1 [14]. 
Consequently, their solution will contain three 
arbitrary constants which can be determined from 
the conditions 

(i = 2,3) ,[C,(X)dX=O, 

(19a-c) 

which are required for zero resultant shear force at 
the rigid support and continuous displacements 
outside the crack. 

* 	Note that as 5---+0, N behaves as 5-) where 5 is the integration 
variable in the improper integral giving Nll' In this case, one 

must examine the integral G,(t)dt with the[N,,(X, /) 
technique employed in [15, 16] . If the integral giving Nll is 
separated into two parts so that in the first part the asymptotic 
expansion of the integrand around 5 = 0 can be used, it can be 

shown that because of the condition [ G,(t)dt ~ 0 (G, is an 

odd function), NI1 is regular around 5 =0 and the singular 
terms are due to the behavior of the integrand as 5---+ 00 only. 

A. Turgut and M. R. Ge~it 

Now using appropriate Gauss-Jacobi integration 
formulas [21], the integral Equations (15) and (19) 
can be replaced by a system of linear algebraic 
equations. From the viewpoint of fracture, 
particularly important are the stress intensity factors 
at the tips of the crack and the corners of the strip on 
the rigid support. The normal and the shear 
components of the stress intensity factors, kJ and k2' 
may be defined as 

k1b = lim [2(x-b)]112 (1/x, L) ,
x-+b 

k2b = lim [2(x-b)pt2 Tx/X, L) ,
x-+b (20) 

k = lim 2112(h - x)a (1 (x 0+)Ih 	 Y' ,x-+h 

k2h = lim 2112(h - x)a Tx/X, 0+) ,
x-+h 

and obtained as 

2~ <f>zCb) 
k2b = - K + 1 Vb ' 

2112 a- <f>1(h) 
klh = ha ( )K- 1 sin 'iTa 

[(I-K)cos 'iTa - 3K-5+(K+3)a -4a2
], 

2112 a h-ak2h = - <f>1(h) . 	 (21) 

4. RESULTS 

The cracked semi-infinite strip problem is com­
pletely defined by the dimensionless parameters K, 
Po/~, Llh, and blh. Numerical results presented are 
obtained with a value of unity for the load factor 
Po/~. However, since the stresses and the stress 
intensity factors are normalized with Po, the results 
are valid for all values of Po/~. 

Some of the calculated results are shown in 
Figures 2-11. Figures 2-4 shoW the normalized 
stress intensity factors at the tips of the crack defined 
by 

(i = 1,2) . (22) 

From these figures one may conclude that, for 
example, b~th k1b and k2b increase with increasing 
blh ratio, k2b decreas~s with increasing K. With 
increasins. Llh ratio, k2b decreases monotonically, 
whereas k Ib increases for relatively small Llh and/or 
blh ratios and decreases for relatively large values of 
these ratios. As Llh~oo, the problem for the crack 
becomes that of an infinite strip with a central crack. 
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K 

Figure 2. Normalized Stress Intensity Factors at the Crack 

Tips When b =0.5 h. 
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f( 

Figure 3. Normalized Stress Intensity Factors at the Crack 
Tips When L = h. 

Results for this special case seem to be in very good 
agreement with those of references [22-24]. Note 
that the stress intensity factor kib is independent of K 

and k2b vanishes in this case. One may notice also 
that v decreases as K increases. When K 3 (i.e., 
when v = 0), there is no Poisson's effect and the 
constraint due to the rigid support simply disappears. 

0.6 

0.4 
- -

-k
2bk'b 

1.4 k'b 
k2b 

1.2 

1. 0.2 

0.8·..........~=.:;;;;---L---L-.-........L.----I0.0 
a 0.2 0.4 0.6 0.8 1 

b/h 

Figure 4. Normalized Stress Intensity Factors at the Crack 
Tips When K = 1.6. 

Then the problem becomes that of an infinite strip 
with two parallel transverse central cracks which has 
been treated by Civelek and Erdogan [25]. Results of 
the present analysis seem to be indistinguishable 
from those given in reference [25]. 

If an energy balan~e type criterion is used for 
estimation of the crack propagation load, one has to 
calculate the strain energy release rate given by 
[26, 27]: 

au '1T(K+ 1) 2 2 
ab 4fl. (k1b +k2b) • (23) 

Figure 5 shows the dimensionless strain energy 
release rate defined in the form 

4fl. au 
(24)

'1T(K + 1) bp~ iib . 
The rate w increases with increasing blh except for 
relatively small values of Llh. When Llh is small, the 
crack is close to the rigid support near which the 
normal stress (fy is very small around the central part. 
Therefore, when both Llh and blh are- small, the 
crack lies in a low-stress region so that the stress 
intensity factors and consequently the strain energy 
release rate are relatively smalL 

In the close vicinity of the crack tips, the cleavage 
stress can be expressed in terms of the stress intensity 
factors as [26]: 
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w 

o 0.2 0.4 0.6 0.8 
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Figure 5. Normalized Strain Energy Release Rate W When 
K= 1.6. 

cos (0/2) 
(10 = 

V(2r) 

X [klbCOS2(0/2)- (3/2)k2bsihO] +O(Vr) , (25) 

where (r,O) are the polar coordinates at the crack 
tips. For brittle solids the probable crack propaga­
tion angle, 00 may be proposed to be the angle of the 
radial plane corresponding to the maximum cleavage 
stress and may be determined from 

k2b(1-3 cosOC> - k 1b sinOc = 0 , 

(26) 

Figure 6 shows the probable crack propagation angle 
Oc. It seems that the crack has a tendency to escape 
from the rigid support which is more pronounced for 
larger cracks and/or cracks closer to the support. 
Similar behaviors had been reported by Erdogan and 
Gupta [28] and Ge<$it [29]. When L/h~oo, the crack 
propagates in its own plane. 

Figures 7 and 8 show the normalized axial and 
shear stresses along the rigid support. These stresses 
tend to +00 and -00, respectively, towards the 
corners if K<3. Stress distributions become smoother 
as K increases. When K = 3 (i.e., when v = 0), the 

15° 

8c 

5° 

I 
~~r 

T 
l I-- h 

.l' 

o 0.4 0.6 0.8 
b/h 

Figure 6. Probable Crack Propagation Angle ac When 

K= 1.6. 
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x/h 

Figure 7. Axial and Shear Stresses Along the Rigid Support 

When b=O.5h, L=h. 


disturbance due to the rigid support disappears and 
the stresses become finite at the corners. When the 
crack is close to the rigid support, the stress 
distributions are very complicated and the axial stress 
(1y assumes very small values around the center. As 
L/h increases, stress distributions become 
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smoother. When LIh~x the effect of the crack 
disappears and the results for an uncracked semi­

small values of Llh, klh increases whereas k2h 

o 0.5 1.0 1.5 2 
decreases with increasing K, both klh and k2h increase 
with increasing blh. Note that in Figure 11, klh and 

L/h k2h are given by the same curve (scales are different) 
Figure 9. Normalized Stress Intensity Factor k'h at the since K = 1.6 is fixed. From (20) and (27) it can be 

Corners of the Strip When b 0.5 h. noticed that the ratio 

infinite strip [11] are recovered. 

Figures 9-11 show the normalized stress intensity 
factors at the corners of the strip on the rigid support 
defined by 

(i = 1,2) . (27) 

3 
/ ....\0.25

,..-1--, \ 
Llh=O.~// / '\ 

/ I 10// 1__--­\
/ ........r - ..... \ 

/// /'
2 ::. ......... 

........................... 00 

---­

6 0.2 0.4 0.6 

0.5 

0.0 

-0.5 

0.8 

b/h 

Figure 8. Axial and Shear Stresses Along the Rigid Support 

When K = 1.6. 


1.8 

1.4 

-
k1h 

1.0 

0.6 


0.7 

---- L/h-oo 

0.1 "'------'----'""'"'-----'--------' 
o 0.5 1.0 

L/h 

1.5 2 

Figure 10. Normalized Stress Intensity 
Corners of the Strip When b 

Factor k2h 
0.5 h. 
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Figure 11. Normalized Stress Intensity Factors klh and k2h at 
the Corners of the Strip When K = 1.6. 

As can be realized from these figures, both klh and 
k2h decrease with increasing Llh except for relatively 
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1 

k 1h / k2h = (


K + l)sin 'iTO: 

X [(1- K)COS 'iTO: - 3K - 5+ (K +3)0:-40:2
] 

(28) 

has a constant value for a fixed K. Typical values for 
the power of stress singularity 0: and the stress inten­
sity factor ratio are given in Table 1. 

Table 1. Power of Stress Singularity (X and Stress 
Intensity Factor Ratio at the Corners of the Strip. 

v 

K 	 k 1h / k2hPlane Plane 

Strain Stress 


1.0 0.50 0.4053883559 -1.983315612 
1.6 0.35 0.3203048030 -2.869620924 
1.67 0.33 0.5 0.3100164640 - 3.003946518 
1.8 0.30 0.43 0.2888270670 - 3.308237825 
2.0 0.25 0.33 0.2552503014 - 3.887930020 
2.2 0.20 0.25 0.2189265635 -4.709176079 
3.0 0 0 0 
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