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ABSTRACT

It is shown that if X is a Banach space then X is separable if there is a Banach
space Y and a compact one-to-one operator from X and Y.
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INTRODUCTION

A reflexive Banach space is not necessarily
separable. An example of a nonseparable reflexive
Banach space is a general Hilbert space. In this note
we give a condition under which a reflexive Banach
space becomes separable. We show by example that
reflexivity is necessary.

Throughout this note X and Y are Banach spaces.
X* is the dual space of X. L(X,Y) is the set of all
bounded linear operators from X into Y. The set of
all compact one-to-one operators in L(X,Y) is
denoted by K (X,Y). A family A < X* is called total
if and only if y € X, and f(y) = 0, for all fin A,
together imply that y = 0.

THEOREM

Let X and Y be Banach spaces such that X is
reflexive. Suppose that K (X,Y) is not empty. Then
X is separable.

Proof. Since T is compact, it is continuous. By
(Reference [1], Theorem 15, p.422), T is weakly
continuous. Let B be the closed unit ball of X and let
T|B denote the restriction of T to B. Since X is
reflexive, B is weakly compact (Reference [1],
Theorem 7, p. 425). Since T is continuous and
one-to-one, T|B is continuous and one-to-one which
implies — by (Reference [1], Lemma 8, p. 18) — that
T|B is a weak homeomorphism. Hence (T|B)™! —
the inverse of (7]B) — is weakly continuous. Since T
is compact, T(B) is separable. Thus T(B) contains a
countable subset M. Since the weak closure of a set
contains its norm closure, M is weakly dense in T(B).
Hence the set J = (T|B)~! (M) is weakly dense in B
and countable (Reference [3], 3.10, p. 33). Let H be
the set of all convex combinations with rational
coefficients of elements of J, then H is countable and
— by (Reference [1], Corollary 14, p. 422) — norm
dense in X. This implies that X is separable.

Example. Let X = I be the Banach space of all
bounded sequences x = {x }%_,. Then X is not
reflexive and not separable. Let /| be the Banach
space of all sequences Y = {y }%., for which the
norm

o0
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is finite. Then [ I = X and [, = X*. Now consider the

set A = {e, € [, : e, has value one in the ith place and
zero elsewhere}. Then A is a countable subset of X™*.
We show that it is total. Let t = {¢}%_, be a nonzero
element of X; then at least one of the entries of ¢ is
not zero, say . Hence the element ¢, in A satisfies
e(r) # 0 since

o
e(t) =,~=Z{ 3ijt,
Thus A is total and countable in X*, and so by
(Reference [2], p. 810), K,(X,Y) is not empty for any
Banach space Y.
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