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ABSTRACT 

The attenuation of internal gravity waves by magnetic fields and by other 
diffusing effects, propagating in a weakly stratified, electrically conducting, 
turbulent flow, is studied using a linear theory based on the gradient diffusion 
model. It is shown that the damping length and period increase are, in general, 
dependent on magnetic field, Rayleigh number, thickness of the layer, and the 
eddy viscosity parameter. Subject quantitatively to the choice made for these 
parameters, the following conclusions are drawn: (i) the short waves are damped 
strongly for all depths of the fluid and for any strength of the magnetic field; 
(ii) long waves decay faster in shallow depths; (iii) increase in depth has no 
significant effect on attenuation of short waves but causes marked changes in long 
waves; (iv) the dependence of relative damping length on the fluid layer is in the 
opposite directions for long and short waves; (v) the period increase and relative 
damping length present a minimum and a maximum respectively at the 
intermediate wavelength, the positions of these extrema depending on the 
magnetic field, depth of the fluid layer, and eddy viscosity. 
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ATTENUATION OF GRAVITY WAVES IN THE PRESENCE OF 
A MAGNETIC FIELD IN A TURBULENT CONDUCTING FLUID 

NOTATION 

a Dimensionless wave number 
g Acceleration due to gravity 
H Depth of the fluid layer 
Ho Imposed magnetic field 
k Wave number 
K Thermal conductivity 
Kfr Eddy viscosity 
K hr Eddy thermal diffusivity 
Kmr Eddy magnetic viscosity 
Kef' Kmer Magnetic diffusion coefficients 
L Wavelength of gravity waves 
n Mode number 
Po Hydrostatic pressure 
qi=(U, v, w) Mean velocity components of the fluid 

go.~H4
R ~ Rayleigh number 

t Time 
T Temperature 
Xe Damping length 
0. Volumetric expansion coefficient 

~ - ~~ Temperature gradient 

Tto= rr+a2 

Ttl Dimensionless eddy heat diffusivity 
Tt2 Dimensionless magnetic diffusivity 
Tt3 Dimensionless eddy viscosity 
J.L Permeability of fluid medium 
v Kinematic viscosity of the fluid 
Vm Magnetic viscosity 
p Density of the fluid 
(J' Dimensionless growth rate 
T Time constant characterizing damping 

rate 
w Growth rate. 

1. INTRODUCTION 

Recently there has been greatly increased interest 
in the theory and modeling of transfer of energy and 
momentum by internal gravity waves in geophysics 
[1,2], particularly from the mantle into the outer core 
of the earth [3]. The fact that the outer core and the 
lower mantle might be thermally stably stratified was 
recognized by Braginskii [4]. Even if the lower 
mantle and outer core were stably stratified, this 
does not of course mean that all radial motions are 

impossible. Internal gravity waves modified by the 
Lorentz force can propagate in a stably stratified 
medium due to perturbation forces either in the 
interior fluid or on ~ts boundary [3]. There is some 
'evidence [3] that the core-mantle boundary is not 
smooth, but is bumpy on a tangential scale of the 
order of hundreds of kilometers and on a radial scale 
of one to two kilometers. If this is the case, then it is 
easy to visualize that internal gravity waves are 
generated by the disturbances at the core-mantle 
interface. Here it is known that the kinematic 
viscosity v~ 10-7m2s-1, characteristic velocity is 
~4x10-4ms-\ characteristic length is ~106m and 
magnetic viscosity Vm ~2x103m2s-1 so that the 
Reynolds number is ~ 109 and the magnetic 
Reynolds number is ~ 0.1. At such a high Reynolds 
number, the flow is turbulent and the induced 
magnetic field may be weak. A considerable amount 
of work has been done on internal gravity waves in 
the presence of a magnetic field (see references [1], 
[2] and references therein) under the assumption of 
laminar flow. However, not much attention has been 
given to the propagation of internal gravity waves in 
a turbulent conducting fluid in the presence of a 
magnetic field. In this paper, we study this under the 
assumption of low magnetic Reynolds number, in the 
hope that the results may be useful in a geophysical 
problem cited above. The results of this study may 
also be useful in industrial problems involving 
turbulent flow modified by the Lorentz force [5]. In 
this paper attention is focused on the understanding 
of the attenuation of internal gravity waves in the 
presence of a magnetic field, in addition to other 
diffusion effects. The inclusion of momentum, heat, 
and magnetic field advection terms in the basic 
equations, with a built-in statistical description, leads 
to the appearance of Reynolds, thermal, and magne­
tic stresses respectively, which results in an indeter­
minate system of governing equations and therefore 
requires a suitable closure model. 

In the absence of magnetic fields, LeBlond [6] has 
investigated the damping of internal gravity waves in 
continuously stratified media using a differential 
closure model, based on a gradient diffusion model 
combined with the Prandtl mixing length hypothesis. 
In the study of internal gravity waves in MHD 
turbulence, much more insight is needed to over­
come the indeterminacies arising from Reynolds, 
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thermal, and magnetic stresses. We note that the 
assumption of small magnetic Reynolds number 
makes the problem somewhat simpler and in that 
case the indeterminacies can be resolved by obtain­
ing additional information concerning the relation­
ship between the mean and the fluctuating quanti­
ties. One of the most commonly exploited theories to 
obtain this relationship is that resulting from the 
gradient diffusion model, based on the Prandtl 
mixing length hypothesis (see Kollmann [7]). This 
model leads to the appearance of eddy viscosity, the 
eddy magnetic and thermal diffusivities which are 
assumed to be constant in the present paper. The 
validity of this mixing length hypothesis will depend 
on the individual problem considered i.e. on the 
physical phenomenon involved. Since the aim of the 
present paper is to study the attenuation of internal 
gravity waves involving a large body of conducting 
fluid, we assume, as in the case of an ordinary fluid 
[6], that the assumption of constant eddy viscosity 
and diffusion co-efficients may give reasonable 
results. Another assumption is about the validity of 
the linear model. In ordinary viscous flow, LeBlond 
[4] has pointed out that linearizing the equations of 
motion using eddy viscosity and diffusion co-effi­
cients is justifiable because the stable stratification 
reduces the intensity of turbulence considerably. In 
the present problem, however, in addition to stable 
stratification, the Lorentz force also reduces the 
intensity of turbulence. 

The results obtained in this paper, using the first 
order closure model with small magnetic Reynolds 
number, may give a physical insight when consider­
ing a more general MHD turbulence model using the 
second order closure model. The plan of the work in 
this paper is as follows. The wave equation, using the 
average processes and gradient diffusion model, is 
derived in Section 2. The wave solution and the 
corresponding attenuation is discussed in Section 3. 
The general conclusions are derived in Section 4. It is 
shown that the effect of magnetic fields, in addition 
to other diffusive effects, is to attenuate the internal 
gravity waves propagating in a turbulent flow. 

2. MATHEMATICAL FORMULATION 

We consider a weakly electrically conducting, 
Boussinesq fluid of thickness H and of infinite lateral 
extent. Let (X, Y,Z) be the right-handed co-ordinate 
system with Z-axis vertically upwards such that Z 0 
is at the lower surface of the layer and gravity acts 
vertically downwards. The basic equations for this 
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model under the Boussinesq approximation are (see 
Chandrasekhar [8]): 

II aH. a2q/,+ !:.H-I + (1)
Po J a~ v aXjaXj , 

aq; _ 0 (2)ax; - , 

0, (5) 

(6) 

where qi are the velocity components, P =P + 1J2J..lH7 
is the total pressure, P is the density, T is the 
temperature, Po is the density at the reference 
temperature T To, g is the free-fall acceleration, Hi 
are the components of the magnetic field, v is the 
kinematic viscosity, J..l is the magnetic permeability, 
and Vrn is the magnetic diffusivity. The fluid is, on a 
time average, at rest and is permeated by a uniform 
magnetic field Ho in the vertical Z-direction. The 
fluid is weakly stratified in density which is main­
tained by an unspecified but adequate source of heat. 
The basic state is described by quiescent state with 
hydromagnetic balance, that is 

qo = 0, Po -p~Z + const. 

Superimposed on this is a horizontally homogeneous 
field of turbulence characterized by velocity and 
temperature fluctuations. Because of homogeneity, 
time averages are independent of horizontal co­
ordinates. 

We assume that the flat-crested (i.e. plane) 
internal waves propagate in turbulent field in the 
positive X-direction with angular frequency wand 
wave number k. The amplitudes of these waves are 
assumed to be small enough so that we may neglect 
squares of mean fluctuating velocities as we]] as 
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density disturbances due to the waves as compared to 
the main density field. At present, there are 
well-known examples of two-dimensional, or nearly 
two-dimensional, flows that arise in nature (Roberts 
and Stix [9]), where there will be a decisive physical 
effect that singles out the fluid direction as being 
special. In the present problem, the turbulent field 
will be separated from the waves by averaging in the 
y-direction. Since the turbulent variables are random 
in phase and homogeneous in horizontal space, the 
y-average will leave only the wave field. Denoting 
the averaged wave field by overscored variables and 
the total turbulent perturbations (including the extra 
perturbations caused by turbulent transport of fluid 
particles endowed with wave velocities) by primed 
variables, the total field is given by: 

q = ij +q' 

P = Po+ P+ p' , 

T To+T+T', 
P Po+P+P', 
H Ho+1i +h' . (7) 

By definition all the primed quantities have zero 
y-average. 

Substituting (7) into (1) to (6) and taking the 
y-average of these equations, and using the Bous­
sinesq approximation and linearizing w.r.t. over­
scored variables, we obtain equations (8-13). 

aqj ap p <;:: _ JJ.Ho alii _
--+--+- gu

j3 ax-at axj Po Po 3 

a ( aq. -) a (JJ. -) (8)aX v a~ - qjq; - aX -; hih; , 
j j 

(9) 

aT dTo a ( aT -)-+w -= -- K -q~T' (10)
at dX3 aXj a~ J ' 

ali. aq,
--' -H --' (11)

at 0 aX3 
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ali. 
--'=0 (12)
aXi 

(13) 

p' = - apoT'. (14) 

The Reynolds stress qiq;, the magnetic stress hih;, 
the heat advection term qj T~ the transport of 
magnetic field qjh;, and the stretching of field lines 
by velocity field hiq; appearing in the above 
equations need further modeling. We introduce the 
concept of eddy viscosity and diffusion coefficients in 
the following form: 

a (-'-') _a_(KI aqi )ax, -qjqj = ax fax ' 
J r r 

a - a (K' ali.)I(- h~h~) = 
max, J I aXr aXr ' 

J 

a - a ( I aT)
a~ (- qjT') = aXr Kh aXr ' 

a ­
ax. (-qihD 

J 

where K~ is the viscosity co-efficient, K~ is the eddy 
magnetic viscosity coefficient and K~, K~, and K~e 
are the thermal and magnetic diffusion coefficients. 
The eddy coefficients for momentum, heat, and 
magnetic field, will, in general, be different from 
each other and are assumed to be spatially uniform. 
This assumption of uniform eddy coefficients does 
not lead to serious error in dealing with large body of 
fluid as in the viscous case of LeBlond [4]. This 
assumption has to be modified when we deal with 
small body of fluids as in many engineering applica­
tions where we have to use two point closure 
methods rather than the single point closure method 
used in the present paper. 

Substituting (15) into Equations (8), (10) and (11), 
adding an extra r to the eddy coefficients to take 
their anisotropy into account and eliminating all 
variables except (h( =w) we get the following wave 
equation: 
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d2W 

W= dz2 =0 at Z=O, H. (20) 


2 2 
a a )]( a a ) 2­x H--K - -K -Vw( oaX mer ax; at hr ax;

3 

aTo ( a (2
) 2­+ga- --K -Vw=O (16)az at ax2 ,er h 

r 

where Kfr = V + K;n Khr = K + K~r' Kmr = K~r' Ker 
= Vm + K~f' Kmer= K~er' We assume the waves of the 
form 

w= W(Z)exp(wt - ikx). w -Km3 ]DW 0, at Z=O, H, (21)
Ke3 

Then Equation (16) can be written as 
and 

(K"K" - : Km,Km,,)D"W 

(17) 


To study the propagation behavior of internal 
Alfven gravity waves we have to obtain the solution 
of Equation (17). For this we need proper boundary 
conditions at Z = ° and H. On both bounding 
surfaces the vertical velocity and the magnetic field 
perturbations vanish: 

i.e. w(W,t) = ii(W,t) 0 ~t z = 0, H. (18) 

Since the boundaries are assumed to be stress free, 
we have 

d2w 

dZ2 =0 at Z=O, H. (19) 


The boundary conditions (18) and (19) using (6) to 
(17) can be expressed in terms of the vertical velocity 
alone. Thus 

+ Km1)] D3W + .!:. Hok4(Kmel + Km1 )D W 
Po 

Ke3 ,..2 dTo 
+ g Kh3 K-a dZ W 0, at Z = 0, H. (22) 

The conditions (21) and (22) are obtained from the 
momentum and magnetic induction equations using 
the boundary conditions on magnetic field. Since the 
boundary conditions (21) and (22) are complicated it 
is mathematically difficult to discuss the propagation 
of waves analytically. However, when the induced 
magnetic field is small compared with the other 
terms, which is true for weakly conducting fluids, the 
governing wave equation and the corresponding 
boundary conditions reduce to simpler form and is 
analytically tractable. In the remaining part of this 
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paper we consider this situation. Under this approx­
imation the induced magnetic field Ii + h' can be 
neglected compared with the applied mag~etic field 

- ah- ­
Ho· Then h;hi term in Equation (8) and -at ' qih; 

and hiq; terms in Equation (11) are negligibly small 
compared to the other terms (see Nihoul [7]). Now 
the governing wave equation takes the form 

2 aTo ('..2 a
2 

)-kga - Ke1 K--Ke3 -2 W=o, (23)az az 

and the boundary conditions are 

a2Nw 
-az2N = °for N = ° ' 1 2 3 at , , z = ° , H (24) 

with Kej= V rn , j 1,2,3. 

3. W AVE SOLUTION 

Equations (23) and (24), made dimensionless using 

z' ZIH, a = kH, K,= 1/3 .L
3 

Kfj' cr 
wlf 

J= 1 K', 
take the form 

[(P21a
2- P23D2)(cr+ P31a

2- P33D2) - A2D2](cr+ Pua2 

- P13 D2)(D2 - a2)W 

-a2R(P21 a2 P23 D2)W=0, (25) 

where 


Pjj =Ki 1(K'/Oi3 + Kej8i7• + Khj 8jJ + K,8 iO), 


A'= (f1=~)I(~)'. 

R=[ag(~)H' 
is the modified Rayleigh number, 

K7 
d 

and D 
dz' 

The corresponding boundary conditions are 

D2N W = °for N = 0, 1,2,3 at z' = 0, 1 (26) 

Since Equation (25) has constant coefficients, the 
solution of it satisfying the boundary conditions (26) 
is of the form 

W = const. sin (n1l' z') with n = 1, 2, ..... (27) 

Substituting (27) in (25), we get the dispersion 
relation of the form 

2A2n 1l'2 )
+ 111 = 0, (28) 

112 

where 

11f= pon21l'2 + Pn a2, f= 0,1,2,3. 

Equation (28) has complex roots 

A2 2 2 )2]'t2n 1l' (29) 
112 

In the absence of a magnetic field i.e. A~, 
Equation (29) reduces to that obtained [6] for 
ordinary viscous flow. The real part of (29) is always 
negative and hence the waves are always damped. It 
is clear that the effect of a magnetic field is to damp 
the waves. The system has oscillatory solution only 
when cr is complex. The imaginary part of cr contains 
the terms arising from R and fractional processes. 
From (29) we observe that the frequency of the 
damped waves is smaller than that of the undamped 
waves (111 = 113 = 0). The frequency of the waves is 
also reduced in the presence of a magnetic field: If 

cr is always real and only critically damped motions 
exist. We can characterize the damping rate by a 
time-constant ", in which the wave amplitude 
decreases by a factor lie where 
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(31) 


Comparing this with the one given by LeBlond [6] 
for viscous now, we observe that the damping rate is 
much larger in the presence of a magnetic field than 
that in the case of ordinary viscous flows. This is 
similar to that obtained by Rudraiah [11] in the case 
of waves in turbulent flow through porous media. 

Since the velocity of the wave is also affected by 
mixing, friction, and the magnetic field; it is more 
meaningful to compare the distance Xe travelled by 
the wave during the time T with the wavelength 
L( = 2Trlk): 

1~·.--.--------------~~ 

H • 1000 m 
H • 100 m 

280 • 0·62 x10-· w.b I m

o ,
t::' -I,
N ..... I
t::' 

....... 

N 
K a: 

~'" ~-4' 
\., 

t::' 

iF 

Figure 1. The Influence of Eddy Viscosity on the Frequency of 
Internal Waves. 

Physically this represents, for small dissipation rates, 
the ratio of the average energy content of the wave to 
the amount of energy lost per cycle through the 
turbulent interaction. 

To understand the influence of dissipative proces­
ses on the frequency of internal waves, we have 
drawn in Figure 1 the values of 

against the wave number k for different values of Kn 

and H with dPo = 10-3, Kf3=102cm2s-1 and TJI =O.l. 
Po TJ3 

From the Figure we observe that as Kfl increases the 
value of 

. [(~3 ~I + A2~:1TT~o]-

4a2R 

increases and hence frequency decreases. In other 
words, as the eddy viscosity increases the frequency 

1~~-----r-~--~------------
-- H -1000 m 

0 
C' 

~ 
cot 


C' 

....... 


cot 
IC a: 

N 

..
-4'N« 

c 

I 

fit 


C' 
I... 
c' 

[f1---+----;.----+-- - - H • 500 m 

log Kf1 • 2 

10
1 

10
0 

101 
\ 
\ 

Figure 2. The Influence of Magnetic Field on the Frequency. 
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of the wave decreases. Also if the depth of the fluid 
decreases, the frequency of the wave decreases. 
From Figure 1, we also observe that the effect of 
eddy viscosity is very small on the frequency of long 
waves. Figure 2 depicts the effect of magnetic field 
on the frequency. As the magnetic field increases we 
observe that the frequency of the internal waves 
decreases. Figures 3 and 4 show the effect of eddy 
viscosity and magnetic tield respectively on the rate 
of dissipation of internal waves. These figures reveal 
that as the eddy viscosity or magnetic field increases 
the waves are dissipated faster. One important 
conclusion is that the variation of depth and the 
magnetic field has no significant effect on short 
waves and the dissipation time decreases rapidly for 
large wavenumbers. This means that the short waves 
are damped strongly for all magnetic field and depths 
of the fluid. From Figures 5 and 6 we observe that 
the damping length decreases as the eddy viscosity 
and magnetic field increases. Also the dependence of 
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Figure 4. The 	 Influence of Eddy Viscosity on the Rate of 
Dissipation of Internal Waves. 
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Figure 3. The Influence of Magnetic Field on the Rate of 

Dissipation of Internal Waves. 
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Figure 5. The Influence of Eddy Viscosity on Damping Length. 


The Arabiall Journal for Science and Engineering, Volume 12. Number 1. 107 




N. Rudraiah, M. Venkatachalappa, and B. Siddalingappa 

10S..----....,--------.,.-----r-----, 

H :: 1000 m 

H = 100 m 1----1-----1 

log K f1 :: 2 

....J 80 =0·62 x 10 
1 

....... 

a-

X 101 

10 

101 

106 

Fif.iure 6. The Influence of Eddy Vis cosily all Damping Lenglh. 

relative damping length on the tluid layer is in 
opposite direction for long and short waves. Further, 
as the depth decreases, the damping length de­
creases. From Figures 1 and 5 we observe that the 
period increase and relative damping length present 
a minimum and maximum respectively at the in­
termediate wavelength, the positions of these extre­
ma depend on magnetic field, the depth of the fluid 
layer and eddy viscosity. 

4. CONCLUSIONS 

We have studied the propagation behavior of 
internal gravity waves, through turbulent mixing, in 
a stratified, weakly conducting fluid in the presence 
of a magnetic field. To study the behavior of waves, 
the differential model based on eddy diffusivity 
concept is used. We find that the short waves are 
damped strongly for all depths of the fluid and for all 
strengths of the magnetic field. Also the long waves 
decay faster in shallow depths and the effect of 
increase in depth has no significant effect on the 
attenuation of shott waves but changes markedly in 
long waves. However, the waves are more damped 

long waves. However, the waves are more damped 
due to the presence of a magnetic diffusive term 
(A2n21j':!/TJ2) (this may be indicated by the shift of 
maximum frequency upwards and the steepness of 
the curves). 
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