THE GENERALIZED MEHLER-FOCK TRANSFORMATION OF DISTRIBUTIONS

Ram S. Pathak*
Department of Mathematics, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia

and
Ram K. Pandey \dagger
Deparment of Mathematics, Banaras Hindu University, Varanasi 221005, U.P., India

الملاصة :

$$
F(r):=\int_{0}^{\infty} f(x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} x
$$

 بتفسير التقارب في حدود التوزيع الضعيف . طررت النظرية وطبقت على مسألة ديرشلت بشروط حدية توز يعية .

ABSTRACT

The generalized Mehler-Fock transformation

$$
F(r):=\int_{0}^{\infty} f(x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} x,
$$

where $P_{k}^{m, n}(z)$ denotes the generalized Legendre function, is extended to a class of generalized functions. An inversion theorem is established by interpreting convergence in the weak distributional sense. The theory thus developed is applied to a Dirichlet problem with distributional boundary conditions.

[^0]0377-9211/85/010039-19\$01.90
(C) 1985 by the University of Petroleum and Minerals

THE GENERALIZED MEHLER-FOCK TRANSFORMATION OF DISTRIBUTIONS

1. INTRODUCTION

The classical Mehler-Fock transformation has been successfully applied to deal with problems occurring in the mathematical theory of elasticity, particularly those concerned with analysis of stress in the vicinity of external cracks.

A generalization of the Mehler-Fock transformation has been given by Braaksma and Meulenbeld [1] in the following form:

$$
\begin{equation*}
f^{*}(r):=\int_{0}^{\infty} f(x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} x, \tag{1.1}
\end{equation*}
$$

where $P_{-1 / 2+\mathrm{ir}}^{m, n}(\cosh x)$ is the generalized Legendre function defined by

$$
\begin{equation*}
P_{k}^{m, n}(z)=\frac{(z+1)^{n / 2}}{\Gamma(1-m)(z-1)^{m / 2}} F\left[k+\frac{n-m}{2}+1 ;-k+\frac{n-m}{2} ; 1-m ; \frac{1-z}{2}\right] \tag{1.2}
\end{equation*}
$$

for z not lying on the cross-cut along the real x-axis from 1 to $-\infty$ for complex values of the parameters k, m, and n. The corresponding inversion formula is

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} \chi(r) P_{-1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) f^{*}(r) \mathrm{d} r, \tag{1.3}
\end{equation*}
$$

where

$$
\begin{align*}
\chi(r)= & \Gamma\left(\frac{1-m+n}{2}+\mathrm{ir}\right) \Gamma\left(\frac{1-m+n}{2}-\mathrm{i} r\right) \Gamma\left(\frac{1-m-n}{2}+\mathrm{i} r\right) \Gamma\left(\frac{1-m-n}{2}-\mathrm{i} r\right) \times \\
& {\left[\Gamma(2 \mathrm{i} r) \Gamma(-2 \mathrm{i} r) \pi 2^{n-m+2}\right]^{-1} . } \tag{1.4}
\end{align*}
$$

Note that Equation (1.1) reduces to the generalized Mehler-Fock transform when $m=n$, and to the Mehler-Fock transform when $m=n=0$ (see [2]).
The conditions of validity for Equations (1.1) and (1.3) are provided by the following theorem due to Braaksma and Meulenbeld (see [1], p. 245).

Theorem 1.1

Let m, n be complex numbers with $|\operatorname{Re} n|<1-\operatorname{Re} m$, and $f(t)$ a function such that for all $a>1$

> (i) $f(t)(t-1)^{-1 / 4} \log (t-1) \in L(1, a)$ if $\quad \operatorname{Re} m=0$;
> (ii) $f(t) t^{-1 / 2} \in L(a, \infty)$.

Further, let this function be of bounded variation in a neighborhood of $t=x(x>1)$.
Then $f(t)$ satisfies the relation

$$
\begin{equation*}
\int_{0}^{\infty} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(x) \mathrm{d} r \int_{1}^{\infty} P_{-(1 / 2)+\mathrm{i} r}^{m, n}(t) f(t) \mathrm{d} t=\frac{1}{2}\{f(x-0)+f(x+0)\} \tag{1.5}
\end{equation*}
$$

In this paper, we extend this transformation to a class of generalized functions and prove the inversion theorem by interpreting convergence in the weak distributional sense. In the end, we develop an operational calculus that is applied to solve a certain boundary value problem. (The aforesaid transformation with $n=0$ was extended to generalized functions by Buggle [3] and the case $m=n=0$ was treated by Tiwari and Pandey [4].)

We make use of the following integral representation in our subsequent analysis.

$$
\begin{equation*}
P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)=\frac{2^{(n-m+1) / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}-m\right)} \mathrm{i}^{m+1} \sinh ^{m} t \int_{0}^{t} \frac{\cos r \phi}{(\cosh t-\cosh \phi)^{m+1 / 2}} F\left[\frac{n-m}{2},-\frac{n+m}{2} ; \frac{1}{2}-m ; \frac{\cosh t-\cosh \phi}{1+\cosh t}\right] \mathrm{d} \phi \tag{1.6}
\end{equation*}
$$

where $\operatorname{Re} m<\frac{1}{2}$. This can be obtained from the representation

$$
F[a, b ; c ; z]=\frac{\Gamma(c)}{\Gamma(c-\mu) \Gamma(\mu)} \int_{0}^{1} t^{\mu-1}(1-t)^{c-\mu-1}(1-t z)^{\lambda-a-b} F[\lambda-a, \lambda-b ; \mu ; t z] F\left[a+b-\lambda, \lambda-\mu ; c-\mu ; \frac{(1-t) z}{1-t z}\right] \mathrm{d} t
$$

where

$$
\operatorname{Re} c>\operatorname{Re} \mu>0, \quad z \neq 1, \quad|\arg (1-z)|<\pi
$$

on using

$$
F[a, b ; c ; z]=(1-z)^{-a} F\left[a, c-b ; c ; \frac{z}{(z-1)}\right]
$$

From Equation (1.6) we conclude that

$$
\begin{equation*}
\left|P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right| \leqslant\left|P_{-1 / 2}^{m, n}(\cosh t)\right|, \quad \operatorname{Re} m<1 / 2 \tag{1.7}
\end{equation*}
$$

From Equation (1.2) we have

$$
\begin{equation*}
P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)=\mathrm{O}\left(t^{-\operatorname{Re} m}\right), \quad t \rightarrow 0+ \tag{1.8}
\end{equation*}
$$

Also, Equation (1.2), together with Equation (9) on p. 76 of [5], yields

$$
\begin{equation*}
P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)=\mathrm{O}\left(\mathrm{e}^{-(1 / 2) t}\right), \quad \mathrm{t} \rightarrow \infty . \tag{1.9}
\end{equation*}
$$

Lastly, from Equation (1.2), and Equation (17) on p. 77 of [5], we obtain

$$
\begin{align*}
P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t)= & \mathrm{O}(1), \quad r \rightarrow 0+ \tag{1.10}\\
= & 2^{(1 / 2)(n-m-1)} \pi^{-1 / 2}(\sinh t)^{-1 / 2}(\mathrm{ir})^{m-(1 / 2)} \times \\
& \left\{\mathrm{e}^{\mathrm{i} r t}+\mathrm{i}^{-\mathrm{i}(m \pi+r t)}+\mathrm{O}\left(r^{-1}\right)\right\}, \quad r \rightarrow+\infty \tag{1.11}
\end{align*}
$$

The function $\chi(r)$ defined by Equation (1.4) possesses the following asymptotic behavior.

$$
\chi(r)=\left\{\begin{array}{l}
\mathrm{O}\left(r^{2}\right), \quad r \rightarrow 0+, \quad|\operatorname{Re} n|<1-\operatorname{Re} m \tag{1.12}\\
\frac{(\mathrm{i} r)^{1-2 m}}{\pi 2^{n-m+2}}\left[1+\mathrm{O}\left(r^{-1}\right)\right], \quad r \rightarrow \infty
\end{array}\right.
$$

2. THE TEST FUNCTION SPACE $M_{\beta}^{\alpha}(I)$ AND ITS DUAL

Let I denote the open interval $(0, \infty)$. For a real number $\alpha \geqslant \operatorname{Re} m$ and real number $\beta \leqslant \frac{1}{2}$, let ζ be a continuous positive function on I such that

$$
\zeta(t):=\zeta_{\alpha, \beta}(t):=\left\{\begin{array}{lll}
\mathrm{O}\left(t^{\alpha}\right) & \text { as } & t \rightarrow 0+ \\
\mathrm{O}\left(\mathrm{e}^{\beta t}\right) & \text { as } & t \rightarrow \infty .
\end{array}\right.
$$

Let $M_{\beta}^{\alpha}(I)$ be the collection of all infinitely differentiable complex valued functions ϕ defined on I such that for every non-negative integer k,

$$
\gamma_{k}(\phi):=\sup _{0<t<\infty}\left|\zeta(t) \Delta_{t}^{k} \phi(t)\right|<\infty
$$

where

$$
\Delta_{t}^{k}=\left(\mathrm{D}^{2}+(\operatorname{coth} t) \mathrm{D}+\frac{m^{2}}{2(1-\cosh t)}+\frac{n^{2}}{2(1+\cosh t)}\right)^{k}
$$

and

$$
\mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} t} .
$$

One can readily see that $M_{\beta}^{\alpha}(I)$ is a linear space and $\gamma_{k}, k=0,1,2, \ldots$, is a seminorm while γ_{0} is a norm. Therefore, the collection of seminorms $\left\{\gamma_{k}\right\}, k=0,1,2, \ldots$, is separating (see p. 8 of [6]). We equip $M_{\beta}^{\alpha}(I)$ with the topology generated by the seminorms $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$. A sequence $\left\{\phi_{v}\right\}_{v=1}^{\infty}$ in $M_{\beta}^{\alpha}(I)$ converges to ϕ in $M_{\beta}^{\alpha}(I)$ if and only if for each k, $\gamma_{k}\left(\phi_{v}-\phi\right) \rightarrow 0$ as $v \rightarrow \infty$. A sequence $\left\{\phi_{v}\right\}_{v=1}^{\infty}$ is said to be a Cauchy sequence if for each $k, \gamma_{k}\left(\phi_{v}-\phi_{\mu}\right) \rightarrow 0$ as v and μ both tend to infinity independently of each other. Following the technique of Pandey [7] it can be shown that $M_{\beta}^{\alpha}(I)$ is a sequentially complete locally convex topological vector space. $\mathrm{D}(I)$, the space of infinitely differentiable functions of compact support with the usual topology, is a linear subspace of $M_{\beta}^{\alpha}(I)$. The topology of $\mathrm{D}(I)$ is stronger than the topology induced on it by $M_{\beta}^{\alpha}(I)$. Hence the restriction of any $f \in M_{\beta}^{\alpha^{\prime}}(I)$ to $\mathrm{D}(I)$ is in $\mathrm{D}^{\prime}(I)$, the dual space of $\mathrm{D}(I)$.
For $r \geqslant 0$, the generalized Legendre function $P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)$ is an element of $M_{\beta}^{\alpha}(I)$, for $P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)$ satisfies the differential equation

$$
\mathrm{D}^{2} y+(\operatorname{coth} t) \mathrm{D} y+\left[\frac{m^{2}}{2(1-\cosh t)}+\frac{n^{2}}{2(1+\cosh t)}+\left(r^{2}+\frac{1}{4}\right)\right] y=0 .
$$

Therefore

$$
\begin{equation*}
\Delta_{t} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)=-\left(r^{2}+\frac{1}{4}\right) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) . \tag{2.1}
\end{equation*}
$$

Using (2.1) we get

$$
\gamma_{k}\left[P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right]=\sup _{0<t<\infty}\left|\zeta(t) \Delta_{t}^{k} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right| \leqslant \sup _{0<t<\infty}\left|\left(r^{2}+\frac{1}{4}\right)^{k} \zeta(t) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right| .
$$

Now, using Equations (1.2), (1.8), and (1.9) we have

$$
\begin{equation*}
\gamma_{k}\left[P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right]<\infty . \tag{2.2}
\end{equation*}
$$

3. THE DISTRIBUTIONAL GENERALIZED MEHLER-FOCK TRANSFORMATION

For $f \in M_{\beta}^{\alpha^{\prime}}(I)$ where $\alpha \geqslant \operatorname{Re} m$ and $\beta \leqslant \frac{1}{2}$, define the distributional generalized Mehler-Fock transformation F of f by

$$
\begin{equation*}
F(r):=\left\langle f(t), P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right\rangle, \tag{3.1}
\end{equation*}
$$

where $r \geqslant 0$.
Lemma 3.1 For $\operatorname{Re} m<\frac{1}{2}, \alpha \geqslant \operatorname{Re} m$ and $\beta<\frac{1}{2}$, the functions $\zeta(t)(\partial / \partial r)^{q} P_{-(1 / 2) \text { ir }}^{m, n}(\cosh t), q=0,1,2, \ldots$ are uniformly bounded over $0<t<\infty$.

Proof. For $0 \leqslant \phi \leqslant t$, we have

$$
\left|F\left(\frac{n-m}{2}, \frac{-(m+n)}{2} ; \frac{1}{2}-m ; \frac{\cosh t-\cosh \phi}{1+\cosh t}\right)\right| \leqslant \sum_{k=0}^{\infty}\left|\frac{\left(\frac{n-m}{2}\right)_{k}\left[-\left(\frac{m+n}{2}\right)\right]_{k}}{k!\left(\frac{1}{2}-m\right)_{k}}\right|\left(\frac{\cosh t-1}{\cosh t+1}\right)^{k}
$$

$$
\leqslant \sum_{k=0}^{\infty}\left|\frac{\Gamma\left(\frac{1}{2}-m\right)}{\Gamma\left(\frac{n-m}{2}\right) \Gamma\left[-\left(\frac{m+n}{2}\right)\right]} k^{-3 / 2}\left[1+\mathrm{O}\left(k^{-1}\right)\right]\right| \leqslant\left|\frac{\Gamma\left(\frac{1}{2}-m\right)}{\Gamma\left(\frac{n-m}{2}\right) \Gamma\left[-\left(\frac{m+n}{2}\right)\right]}\right| \sum_{k=0}^{\infty} k^{-3 / 2}\left[1+\mathrm{O}\left(k^{-1}\right)\right]<\infty
$$

Therefore, from Equation (1.6) by differentiating with respect to r within the integral sign, we have

$$
\left|\left(\frac{\partial}{\partial r}\right)^{q} P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t)\right| \leqslant C(\sinh t)^{m_{r}} \int_{0}^{t} \frac{\phi^{q} \mathrm{~d} \phi}{(\cosh t-\cosh \phi)^{m_{r}+(1 / 2)}}
$$

where C is a constant independent of t and r, and m_{r} denotes $\operatorname{Re} m$.
Now, using the integral representation given by Equation (8) on p. 156 of [5]:

$$
P_{v}^{\mu}(\cosh t)=P_{v}^{\mu, 0}(\cosh t)=\left(\frac{1}{2} \pi\right)^{-1 / 2} \frac{(\sinh t)^{\mu}}{\Gamma\left(\frac{1}{2}-\mu\right)} \int_{0}^{t}(\cosh t-\cosh \phi)^{-\mu-(1 / 2)} \cosh \left[\left(v+\frac{1}{2}\right) \phi\right] \mathrm{d} \phi
$$

where $\operatorname{Re} \mu<\frac{1}{2}$, we have

$$
\left|\zeta(t)\left(\frac{\partial}{\partial r}\right)^{q} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right| \leqslant C \zeta(t) t^{q}\left(\frac{1}{2} \pi\right)^{1 / 2} \Gamma\left(\frac{1}{2}-m_{r}\right) P_{-1 / 2}^{m_{r} 0}(\cosh t)
$$

In view of the asymptotic estimates (1.8) and (1.9), the right-hand side is bounded uniformly for all $t \in(0, \infty)$ provided that

$$
\alpha \geqslant \operatorname{Re} m, \quad \operatorname{Re} m<\frac{1}{2}, \quad \text { and } \quad \beta<\frac{1}{2}
$$

Theorem 3.2

For $f \in M_{\beta}^{\alpha^{\prime}}(I)$, where $\alpha \geqslant \operatorname{Re} m$, $\operatorname{Re} m<\frac{1}{2}, \beta<\frac{1}{2}$, and $r \geqslant 0$, let $F(r)$ be defined by Equation (3.1). Then

$$
\begin{equation*}
\left(\frac{\mathrm{d}}{\mathrm{~d} r}\right)^{q} F(r)=\left\langle f(t), \quad\left(\frac{\partial}{\partial r}\right)^{q} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\right\rangle, \quad q=0,1,2, \ldots \tag{3.2}
\end{equation*}
$$

Proof. The proof is standard (see p. 30 of [8]).

Theorem 3.3

For $f \in M_{\beta}^{\alpha^{\prime}}(I), \alpha \geqslant \operatorname{Re} m$, $\operatorname{Re} m<\frac{1}{2}, \beta<\frac{1}{2}$, let $F(r)$ be defined by Equation (3.1). Then

$$
F(r)=\left\{\begin{array}{lll}
\mathrm{O}(1) & \text { as } & r \rightarrow 0+ \tag{3.3}\\
\mathrm{O}\left(r^{2 q}\right) & \text { as } & r \rightarrow \infty
\end{array}\right.
$$

where q is a non-negative integer depending on f.
Proof. The proof is given by using the boundedness property of generalized functions (see p. 18 of [6]). Indeed

$$
\begin{aligned}
|F(r)| & \leqslant C \max _{0<k \leqslant q} \gamma_{k}\left(P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t)\right) \\
& \leqslant C \max _{k} \sup _{0<t<\infty}\left|\left(r^{2}+\frac{1}{4}\right)^{k} \zeta(t) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t)\right| \\
& \leqslant C \max _{k} \sup _{0<t<\infty}\left|\left(r^{2}+\frac{1}{4}\right)^{k} \zeta(t) P_{-1 / 2}^{m, n}(\cosh t)\right| \\
& \leqslant C^{\prime} \max _{k}\left(r^{2}+\frac{1}{4}\right)^{k},
\end{aligned}
$$

from which the result follows.

Theorem 3.4

Let $f \in M_{\beta}^{\alpha^{\prime}}(I)$, where $\alpha \geqslant \operatorname{Re} m, \operatorname{Re} m<\frac{1}{2}$, and $\beta<\frac{1}{2}$. Then for a fixed real number N,

$$
\begin{align*}
& \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t)\left\langle f(x), P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x)\right\rangle \mathrm{d} r \\
= & \left\langle f(x), \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) \mathrm{d} r\right\rangle . \tag{3.4}
\end{align*}
$$

Proof. The expression (3.4) is meaningful since the integral on the right-hand side belongs to $M_{\beta}^{a}(I)$. Indeed, for fixed $t>0$, let

$$
\theta(x, t):=\int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r
$$

Then

$$
\begin{aligned}
\Delta_{x}^{k}[\theta(x, t)] & =\int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) A_{x}^{k}\left[P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x)\right] \mathrm{d} r \\
& =(-1)^{k} \int_{0}^{N} \chi(r)\left(r^{2}+\frac{1}{4}\right)^{k} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sup _{0<x<\infty}\left|\zeta(x) A_{x}^{k}[\theta(x, t)]\right|=\sup _{0<x<\infty}\left|\zeta(x) \int_{0}^{N} \chi(r)\left(r^{2}+\frac{1}{4}\right)^{k} P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \mathrm{d} r\right| \\
& \leqslant C \int_{0}^{N}\left|P_{-1 / 2}^{m, n}(\cosh t) \Gamma\left(\frac{1-m+n}{2}+\mathrm{i} r\right) \Gamma\left(\frac{1-m+n}{2}-\mathrm{ir}\right) \Gamma\left(\frac{1-m-n}{2}+\mathrm{i} r\right) \Gamma\left(\frac{1-m-n}{2}-\mathrm{i} r\right) r \sinh 2 \pi r\left(r^{2}+\frac{1}{4}\right)^{k}\right| \mathrm{d} r \\
& <\infty
\end{aligned}
$$

The fact that both sides of Equation (3.4) are equal can be proved by the Riemann-sums technique (see p. 186 of [6]).

4. INVERSION OF THE DISTRIBUTIONAL GENERALIZED MEHLER-FOCK TRANSFORMATION

For x, t, and y in $I=(0, \infty)$ and $N>0$, define

$$
\begin{aligned}
& \text { (a) } G_{N}(t, x):=\int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) \sinh t \mathrm{~d} r \\
& \text { (b) } \psi_{N}(y, x):=\int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m . n}(\cosh x) R_{-(1 / 2)+\mathrm{ir}}^{m, n}(y) \mathrm{d} r
\end{aligned}
$$

where

$$
R_{-(1 / 2)+\mathrm{i} r}^{m, n}(y):=\int_{0}^{y} \sinh t P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} t, \quad \operatorname{Re} m<2
$$

Lemma 4.1 Let $|\operatorname{Re} n|<1-\operatorname{Re} m$. Then for fixed $y>0$,

$$
\lim _{N \rightarrow \infty} \psi_{N}(y, x)=\left\{\begin{array}{lll}
1 & \text { for } & 0<x<y \\
\frac{1}{2} & \text { for } & x=y \\
0 & \text { for } & x>y
\end{array}\right.
$$

Proof. In Theorem 1.1 we can set

$$
f(\cosh t)=\left\{\begin{array}{lll}
1 & \text { for } & 0<t<y \\
0 & \text { for } & t>y
\end{array}\right.
$$

and get

$$
\begin{gathered}
\int_{0}^{\infty} P_{-(11 / 2)+\mathrm{ir}}^{m, n}(\cosh t) f(\cosh t) \sinh t \mathrm{~d} t \\
=\int_{0}^{y} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t \mathrm{~d} t \\
=R_{-(1 / 2)+\mathrm{ir}}^{m, n}(y)
\end{gathered}
$$

Now, using inversion Theorem 1.1 we get

$$
\int_{0}^{\infty} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) R_{-(1 / 2)+\mathrm{ir}}^{m, n}(y) \mathrm{d} r=\left\{\begin{array}{lll}
1 & \text { for } & 0<x<y \\
\frac{1}{2} & \text { for } & x=y \\
0 & \text { for } & x>y .
\end{array}\right.
$$

The left-hand side of the equation is nothing but the limit of $\psi_{N}(y, x)$ as $N \rightarrow \infty$.
Lemma 4.2 Let a and b be any two real numbers satisfying $0<a<b$ and let $|\operatorname{Re} n|<1-\operatorname{Re} m$. Then

$$
\lim _{N \rightarrow \infty} \int_{a}^{b} G_{N}(t, x) \mathrm{d} t=\left\{\begin{array}{lll}
1 & \text { for } & x \in(a, b) \\
0 & \text { for } & x \notin[a, b] \\
\frac{1}{2} & \text { for } & x=a, b .
\end{array}\right.
$$

Proof. We have

$$
\begin{aligned}
\int_{a}^{b} G_{N}(t, x) \mathrm{d} t & =\int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \mathrm{d} r \int_{a}^{b} P_{-(-1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t \mathrm{~d} t \\
& =\int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x)\left[R_{-(1 / 2)+\mathrm{ir}}^{m, n}(b)-R_{-(1 / 2)+\mathrm{ir}}^{m, n}(a)\right] \mathrm{d} r \\
& =\psi_{N}(b, x)-\psi_{N}(a, x) .
\end{aligned}
$$

Therefore, in view of Lemma 4.1, we obtain

$$
\lim _{N \rightarrow \infty} \int_{a}^{b} G_{N}(t, x) \mathrm{d} t=\left\{\begin{array}{lll}
1 & \text { for } & x \in(a, b) \\
0 & \text { for } & x \notin[a, b] \\
\frac{1}{2} & \text { for } & x=a, b .
\end{array}\right.
$$

In the rest of this work, L will denote an arbitrarily large but fixed positive number.
Lemma 4.3 Let $b>a>0$ and let $|\operatorname{Re} n|<1-\operatorname{Re} m$. Then, for a fixed δ satisfying $0<\delta<\frac{1}{4} a$,

$$
\text { (i) } \int_{a}^{x-\delta} G_{N}(t, x) \mathrm{d} t \rightarrow 0
$$

uniformly for all $x \in(a, L]$ as $N \rightarrow \infty$;

$$
\text { (ii) } \int_{x+\delta}^{b} G_{N}(t, x) \mathrm{d} t \rightarrow 0
$$

uniformly for all $x \in[\delta, b-\delta]$ as $N \rightarrow \infty$.

Proof of (i). In view of the asymptotic behavior of Equations (1.10)-(1.13), we have

$$
\begin{aligned}
& \left|\int_{a}^{x-\delta} \mathrm{d} t \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(-1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t \mathrm{~d} r\right| \leqslant\left|\int_{a}^{x-\delta} \mathrm{d} t\right|\left|\int_{0}^{1} \mathrm{O}\left(r^{2}\right) Q_{r}(t, x) \mathrm{d} r\right| \\
& +\int_{a}^{x-\delta} \mathrm{d} t\left|\int_{1}^{N} C_{n, m} \sinh ^{1 / 2} t \sinh ^{-1 / 2} x\left\{\mathrm{e}^{\mathrm{i} r(t+x)}\left(1-\mathrm{e}^{-2 m \pi \mathrm{i}}\right)+2 \mathrm{i}^{-\mathrm{i} m \pi} \cos r(x-t)+\mathrm{O}\left(r^{-1}\right)\right\} \mathrm{d} r\right|,
\end{aligned}
$$

where $C_{n, m}$ is a constant and $Q_{r}(t, x)$ is bounded for $0 \leqslant r \leqslant 1$ and $(t, x) \in[a, L-\delta] \times[a, L]$.
Now estimating the right-hand side of the above inequality we observe that the left-hand side is an absolutely convergent double integral with respect to t and r. Hence, using Fubini's theorem and changing the order of integration, we have

$$
\begin{aligned}
\int_{a}^{x-\delta} G_{N}(t, x) \mathrm{d} t & =\int_{0}^{N} \chi(r) \mathrm{d} r \int_{a}^{x-\delta} \sinh t P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \mathrm{d} t \\
& =\int_{N}^{\infty} \chi(r) \mathrm{d} r \int_{a}^{x-\delta} \sinh t P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \mathrm{d} t \\
& -\int_{N}^{\infty} \chi(r) \mathrm{d} r \int_{a}^{x-\delta} \sinh t P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \mathrm{d} t \\
& =T_{1}-T_{2}(\operatorname{say}) .
\end{aligned}
$$

Now, since both r - and t-integrals are absolutely convergent, using Fubini's theorem, we can write

$$
\begin{aligned}
T_{1} & =\lim _{N \rightarrow \infty} \int_{0}^{N} \chi(r) \mathrm{d} r \int_{a}^{x-\delta}(t-x) \sinh t P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) \mathrm{d} t \\
& =\lim _{N \rightarrow \infty} \int_{a}^{x-\delta} G_{N}(t, x) \mathrm{d} t=0
\end{aligned}
$$

by Lemma 4.2. Also, for sufficiently large N, substituting the asymptotic expressions for $P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)$, $P_{-(1 / 2)+\text { ir }}^{m, n}(\cosh x)$ and $\chi(r)$, we see that

$$
T_{2}=\int_{N}^{\infty} \mathrm{d} r \int_{a}^{x-\delta}(t-x) C_{n, m} \sinh ^{1 / 2} t \sinh ^{-1 / 2} x\left\{\mathrm{e}^{\mathrm{i} r(t+x)}\left(1-\mathrm{e}^{-2 m \pi \mathrm{i}}\right)+2 \mathrm{i}^{-m \pi \mathrm{i}} \cos r(x-t)+\mathrm{O}\left(r^{-1}\right)\right\} \mathrm{d} t,
$$

where $C_{n, m}$ is a finite constant. Now, integrating the inner integral by parts, it is not hard to see that

$$
T_{2}=\mathrm{O}\left(N^{-1}\right), \text { as } N \rightarrow \infty
$$

uniformly for all $x \in(a, L]$. Consequently, $T_{1}-T_{2} \rightarrow 0$ as $N \rightarrow \infty$ uniformly for all $x \in(a, L]$.
The proof of (ii) is similar to that of (i).
Lemma 4.4 Let $|\operatorname{Re} n|<1-\operatorname{Re} m$ and $\operatorname{Re} m<\frac{1}{2}$. Then for $0<a \leqslant t \leqslant b, 0<c \leqslant x \leqslant d$ and $N>0$, the function $G_{N}(t, x)$ is bounded uniformly for all t, x, and N.

Proof. Let N be any positive number less than N_{1} (say). Then

$$
\begin{aligned}
\left|G_{N}(t, x)\right| & \leqslant \int_{0}^{N_{1}}\left|\chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t\right| \mathrm{d} r \\
& \leqslant \sup _{c<x<d}\left|P_{-1 / 2}^{m, n}(\cosh x)\right| \sup _{a<t<b}\left|P_{-1 / 2}^{m, n}(\cosh t) \sinh t\right| \sup _{0<r N_{1}}|\chi(r)| \int_{0}^{N_{1}} \mathrm{~d} r \\
& <M_{1},
\end{aligned}
$$

M_{1} being a positive constant independent of x, t, and N.
Next assume that N is a large number greater than or equal to N_{1}. Then
$\left|G_{N}(t, x)\right| \leqslant \int_{0}^{N_{1}}\left|\chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t\right| \mathrm{d} r+\int_{N_{1}}^{N}\left|\chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t\right| \mathrm{dr}$.
We have already proved that the first integral is bounded by M_{1}.
In view of the asymptotic behavior of

$$
P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x), P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t), \text { and } \chi(r)
$$

for large r and for fixed $x \geqslant c, t \geqslant a$, we have

$$
\begin{aligned}
& \int_{N_{1}}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) \sinh t \mathrm{~d} r \\
& =\frac{1}{8 \pi^{2}}\left(\frac{\sinh t}{\sinh x}\right)^{1 / 2} \int_{N_{1}}^{N}\left[\mathrm{e}^{\mathrm{i} r x}+\mathrm{i}^{-\mathrm{i}(m \pi+r x)}\right]\left[\mathrm{e}^{\mathrm{i} r t}+\mathrm{i}^{-\mathrm{i}(m \pi+r t)}\right][1+\mathrm{O}(1 / r)] \mathrm{d} r \\
& =\frac{1}{8 \pi^{2}}\left(\frac{\sinh t}{\sinh x}\right)^{1 / 2} \int_{N_{1}}^{N}\left[\mathrm{e}^{\mathrm{i} r(x+t)}+\mathrm{i}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(t-x)}+\mathrm{i}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(x-t)}-\mathrm{e}^{-2 m \pi \mathrm{i}} \mathrm{e}^{-\mathrm{i} r(x+t)}\right][1+\mathrm{O}(1 / r)] \mathrm{d} r \\
& =\frac{1}{8 \pi^{2}}\left(\frac{\sinh t}{\sinh x}\right)^{1 / 2} \int_{N_{1}}^{N}\left[\mathrm{e}^{\mathrm{i} r(x+t)}+\mathrm{i}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(t-x)}+\mathrm{i}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(x-t)}-\mathrm{e}^{-2 m \pi \mathrm{i}} \mathrm{e}^{-\mathrm{i} r(x+t)}\right] \mathrm{d} r \\
& +\frac{1}{8 \pi^{2}}\left(\frac{\sinh t}{\sinh x}\right)^{1 / 2} \int_{N_{1}}^{N}\left[\mathrm{e}^{\mathrm{i} r(x+t)}+\mathrm{i}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(t-x)}+\mathrm{i}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(x-t)}-\mathrm{e}^{-2 m \pi \mathrm{i}} \mathrm{e}^{-\mathrm{i} r(x+t)}\right] \mathrm{O}(1 / r) \mathrm{d} r \\
& =J_{1}+J_{2}(\operatorname{say}) .
\end{aligned}
$$

J_{1} can be expressed as a sum of four integrals, each of which is separately bounded. For instance,

$$
\left|\int_{N_{1}}^{N} \mathrm{e}^{\mathrm{i} r(x+t)} \mathrm{d} r\right|=\left|\frac{\mathrm{e}^{\mathrm{i} N(x+t)}}{\mathrm{i}(x+t)}-\frac{e^{\mathrm{i} N_{1}(x+t)}}{\mathrm{i}(x+t)}\right| \leqslant \frac{2}{x+t} .
$$

J_{2} is also a sum of four integrals, each of which is separately bounded. For instance, the first term in J_{2} is

$$
\frac{1}{8 \pi^{2}}\left(\frac{\sinh t}{\sinh x}\right)^{1 / 2} \mathrm{O}\left[\int_{N_{1}}^{N} \frac{\mathrm{e}^{\mathrm{ir}(x+t)}}{r} \mathrm{~d} r\right]=\frac{1}{8 \pi^{2}}\left(\frac{\sinh t}{\sinh x}\right)^{1 / 2} \mathrm{O}\left[\left.\frac{1}{r} \frac{\mathrm{e}^{\mathrm{i} r(x+t)}}{\mathrm{i}(x+t)}\right|_{N_{1}} ^{N}+\int_{N_{1}}^{N} \frac{1}{r^{2}} \frac{\mathrm{e}^{\mathrm{i} r(x+t)}}{\mathrm{i}(x+t)} \mathrm{d} r\right]
$$

The first term within the square bracket is

$$
\left[\frac{\mathrm{e}^{\mathrm{i} N(x+t)}}{\mathrm{i} N(x+t)}-\frac{\mathrm{e}^{\mathrm{i} N_{1}(x+t)}}{\mathrm{i} N_{1}(x+t)}\right],
$$

which is bounded. The modulus of the second term is less than

$$
\frac{1}{|x+t|} \int_{N_{1}}^{N} \frac{1}{r^{2}} \mathrm{~d} r=\frac{1}{|x+t|}\left(\frac{1}{N_{1}}-\frac{1}{N}\right)
$$

which is also bounded. The other terms can similarly be shown to be bounded. This completes the proof of the lemma.

Lemma 4.5 Let $\phi(t) \in \mathrm{D}(I)$ with its support contained in $[a, b]$. Then for $0<\delta<\frac{1}{4} a$,

> (i) $\int_{a}^{x-\delta} G_{N}(t, x) \phi(t) \mathrm{d} t \rightarrow 0$
> as $N \rightarrow \infty$ uniformly for all $x \in[a+\delta, L]$
(ii) $\int_{x+\delta}^{b} G_{N}(t, x) \phi(t) \mathrm{d} t \rightarrow 0$
as $N \rightarrow \infty$ uniformly for all $x \in[\delta, b-\delta]$.
Proof of (i). Assume at first that $\phi(t)$ is an infinitely differentiable real valued function on $[a, x-\delta], a+\delta \leqslant x \leqslant L$. Then ϕ is a function of bounded variation on [$a, x-\delta$]. Consequently, there exist monotonically increasing functions $p(x)$ and $q(x)$ on $[a, x-\delta]$, with $p(a)=q(a)=0$ such that

$$
\phi(t)=\phi(a)+p(t)-q(t), \quad a \leqslant t \leqslant x-\delta
$$

(see Theorem 6.27 on p. 120 of [9]). Hence

$$
\begin{gathered}
\int_{a}^{x-\delta} G_{N}(t, x) \phi(t) \mathrm{d} t \\
=\int_{a}^{x-\delta} p(t) G_{N}(t, x) \mathrm{d} t-\int_{a}^{x-\delta} q(t) G_{N}(t, x) \mathrm{d} x .
\end{gathered}
$$

The result can now be proved by using the second mean value theorem of the integral calculus and Lemma $4.3(\mathrm{i})$.
The proof for a complex valued C^{∞} function ϕ can be given by separating it into its real and imaginary parts.
The proof of (ii) is similar to that of (i).
Lemma 4.6 Let $\phi(t) \in \mathrm{D}(I)$ with its support contained in the interval $[a, b]$, then

$$
\int_{a}^{b} G_{N}(t, x) \phi(t) \mathrm{d} t \rightarrow \phi(x)
$$

in $M_{\beta}^{\alpha}(I)$ as $N \rightarrow \infty$, provided that

$$
\alpha \geqslant \operatorname{Re} m, \quad \beta<\frac{1}{2}, \quad \operatorname{Re} m<\min \left(\frac{1}{2}, 1-|\operatorname{Re} n|\right) .
$$

Proof. It can be readily seen that

$$
\Delta_{x} G_{N}(t, x)=\sinh t \Delta_{t} G_{N}(t, x)
$$

where

$$
G_{N}(t, x)=\int_{0}^{N} \chi(r) P_{-11 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r .
$$

Now

$$
\begin{aligned}
\Delta_{x} \int_{a}^{b} G_{N}(t, x) \phi(t) \mathrm{d} t & =\int_{a}^{b} \sinh t \Delta_{t} G_{\mathcal{N}}(t, x) \phi(t) \mathrm{d} t \\
& =\int_{a}^{b} G_{N}(t, x) \Delta_{t}[\phi(t)] \mathrm{d} t \text { (by integration by parts). }
\end{aligned}
$$

Therefore, operating Δ_{x} successively k times, we get

$$
\Delta_{x}^{k} \int_{a}^{b} G_{N}(t, x) \phi(t) \mathrm{d} t=\int_{a}^{b} G_{N}(t, x) \phi_{k}(t) \mathrm{d} t,
$$

where

$$
\phi_{k}(t)=\Delta_{t}^{k} \phi(t) .
$$

Now, using Lemma 4.2 we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \zeta(x) \Delta_{x}^{k}\left[\int_{a}^{b} G_{N}(t, x) \phi(t) \mathrm{d} t-\phi(x)\right] \\
& =\lim _{N \rightarrow \infty} \zeta(x) \int_{a}^{b} G_{N}(t, x)\left[\phi_{k}(t)-\phi_{k}(x)\right] \mathrm{d} t .
\end{aligned}
$$

It is therefore reduced to proving that

$$
\zeta(x) \int_{a}^{b} G_{N}(t, x)[\psi(t)-\psi(x)] \mathrm{d} t \rightarrow 0
$$

uniformly for all x as $N \rightarrow \infty$ where $\psi(t) \in \mathrm{D}(I)$ with its support contained in $[a, b]$.
For a fixed $x \geqslant 2 \delta$, where $0<\delta<\min \left(\frac{1}{2}, \frac{1}{4} a\right)$, we can write

$$
\begin{aligned}
\zeta(x) \int_{a}^{b} & G_{N}(t, x)[\psi(t)-\psi(x)] \mathrm{d} t \\
& =\zeta(x)\left(\int_{a}^{x-\delta}+\int_{x-\delta}^{x+\delta}+\int_{x+\delta}^{b}\right) G_{N}(t, x)[\psi(t)-\psi(x)] \mathrm{d} t \\
& =I_{1}+I_{2}+I_{3} \text { (say). }
\end{aligned}
$$

At first we consider I_{2}. For $x \geqslant b+\delta$ or $x \leqslant a-\delta, I_{2}$ is clearly zero. Therefore we consider I_{2} for the case when $a-\delta<x<b+\delta$. We can write

$$
\begin{aligned}
\left|I_{2}\right| & \leqslant \zeta(x) \int_{x-\delta}^{x+\delta}\left|G_{N}(t, x) \| \psi(t)-\psi(x)\right| \mathrm{d} t \\
& \leqslant\left.\delta \zeta(x) \sup _{a \leqslant \eta \leqslant b}\left|\psi^{\prime}(\eta)\right|\right|_{x-\delta} ^{x+\delta}\left|G_{N}(t, x)\right| \mathrm{d} t \\
& \leqslant \delta \mathrm{D}_{1} \sup _{a<\eta \leqslant b}\left|\psi^{\prime}(\eta)\right| \sup _{\substack{(3 / 4) a<x<b+(1 / 2) a \\
(1 / 2) a<t<b+(1 / 2) a}}\left|G_{N}(t, x)\right| .
\end{aligned}
$$

Now using Lemma 4.4 , we can find a constant $\mathrm{D}>0$ independent of δ such that

$$
\left|I_{2}\right|<\mathrm{D} \delta .
$$

For a given $\varepsilon>0$, we can choose $\delta=\min \left(\frac{1}{4} a, \frac{1}{2}, \varepsilon / \mathrm{D}\right)$ and obtain

$$
\begin{equation*}
\left|I_{2}\right|<\frac{\varepsilon}{2} . \tag{4.1}
\end{equation*}
$$

Next, consider

$$
\begin{aligned}
I_{1} & =\zeta(x) \int_{a}^{x-\delta} G_{N}(t, x)[\psi(t)-\psi(x)] \mathrm{d} t \\
& =I_{1,1}-I_{1,2} \text { (say). }
\end{aligned}
$$

Now, $I_{1,2}=0$ if $x \leqslant a$ and $x \geqslant b$. For $x \in(a, b)$,

$$
\left|I_{1,2}\right| \leqslant \gamma_{0}(\psi)\left|\int_{a}^{x-\delta} G_{N}(t, x) \mathrm{d} t\right| \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

uniformly for all $x \in(a, b)$, in view of Lemma 4.3(i). Therefore,

$$
\lim _{N \rightarrow \infty} I_{1,2}=0
$$

uniformly for all $x>\delta$.
Now, consider $I_{1,1}$. Since $I_{1,1}=0$ if $x<a+\delta$, we have to consider $x \geqslant a+\delta$. In view of Lemma 4.5, $I_{1,1} \rightarrow 0$ uniformly for all $x \in[a+\delta, L]$ as $N \rightarrow \infty$. Hence, assume that $x>L$, where L is a large number greater than $\max \left(2, b+\frac{1}{2}\right)$. Since $\psi(t)$ is of compact support contained in $[a, b]$,

$$
\begin{aligned}
I_{1,1} & =\zeta(x) \int_{a}^{x-\delta} G_{N}(t, x) \psi(t) \mathrm{d} t \\
& =\zeta(x) \int_{a}^{b} G_{N}(t, x) \psi(t) \mathrm{d} t \\
& =\zeta(x) \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r .
\end{aligned}
$$

Let N_{1} be a large but fixed number such that $1<N_{1}<N$. Then

$$
\begin{aligned}
I_{1,1}= & \zeta(x) \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \times \\
& \left(\int_{0}^{N_{1}}+\int_{N_{1}}^{N}\right) \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r \\
= & \zeta(x) \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \times \\
& \int_{0}^{N_{1}} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r \\
& +\zeta(x) \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \int_{N_{1}}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) \mathrm{d} r \\
= & J_{1,1}+J_{1,2}(\operatorname{say}) .
\end{aligned}
$$

Now

$$
\begin{aligned}
J_{1,1} & =\zeta(x) \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \int_{0}^{N_{1}} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \mathrm{d} r \\
& \leqslant \sup _{\substack{a \lll b \\
0<r \leqslant N_{1}}}\left|\psi(t) \sinh t \chi(r) P_{-1 / 2}^{m, n}(\cosh t)\right|(b-a) \mathrm{e}^{\beta x} \mathrm{O}\left(\mathrm{e}^{-1 / 2 x}\right) \int_{0}^{N_{1}} \mathrm{~d} r \\
& =\sup _{\substack{a \lll b \\
0<r \leqslant N_{1}}}\left|\psi(t) \sinh t \chi(r) P_{-1 / 2}^{m, n}(\cosh t)\right|(b-a) N_{1} \exp \left\{-\left(\frac{1}{2}-\beta\right) x\right\} \\
& =\mathrm{O}\left[\exp \left\{-\left(\frac{1}{2}-\beta\right) x\right\}\right] \quad \text { as } \quad x \rightarrow \infty .
\end{aligned}
$$

Estimating as in the proof of Lemma 4.4, we can show that

$$
J_{1,2}=O\left[\exp \left\{-\left(\frac{1}{2}-\beta\right) x\right\}\right] \quad \text { as } \quad x \rightarrow \infty .
$$

Therefore, $I_{1,1}$ can be made less than $\varepsilon / 2$ for all $N>0$ by choosing $x>L$. Thus

$$
\begin{equation*}
I_{1} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty . \tag{4.2}
\end{equation*}
$$

Similarly, using Lemma 4.5 (ii) it can be shown that

$$
\begin{equation*}
I_{3} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty \tag{4.3}
\end{equation*}
$$

uniformly for all $x \geqslant 2 \delta$.
Combining Equations (4.1), (4.2), and (4.3), we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} I=0 \tag{4.4}
\end{equation*}
$$

where $I=I_{1}+I_{2}+I_{3}$, uniformly for all $x \geqslant 2 \delta$.
For $0<x<2 \delta$, write

$$
\begin{aligned}
I & =\zeta(x)\left(\int_{a}^{x+\delta}+\int_{x+\delta}^{b}\right) G_{N}(t, x)[\psi(t)-\psi(x)] \mathrm{d} t \\
& =J_{1}+J_{2} \text { (say). }
\end{aligned}
$$

Now

$$
\begin{aligned}
J_{1} & =\zeta(x) \int_{a}^{x+\delta} G_{N}(t, x)[\psi(t)-\psi(x)] \mathrm{d} t \\
& =0 \quad \text { because } \quad x+\delta<3 \delta<a .
\end{aligned}
$$

Next consider J_{2}. Since $0<x<2 \delta, \delta \leqslant \min \left(\frac{1}{4} a, \frac{1}{2}\right)$ and $\psi(x)=0$ for $x<a$, therefore

$$
\begin{aligned}
J_{2} & =\zeta(x) \int_{x+\delta}^{b} G_{N}(t, x) \psi(t) \mathrm{d} t \\
& =\zeta(x) \int_{a}^{b} G_{N}(t, x) \psi(t) \mathrm{d} t \\
& =\zeta(x) \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) \mathrm{d} r \\
& =\frac{\zeta(x)\left(2 \cosh ^{2} \frac{x}{2}\right)^{n / 2}}{(\Gamma(1-m))^{2}\left(2 \sinh ^{2} \frac{x}{2}\right)^{m / 2}} \int_{a}^{b} \psi(t) \sinh t \mathrm{~d} t \frac{\left(2 \cosh ^{2} t\right)^{n / 2}}{\left(2 \sinh ^{2} \frac{t}{2}\right)^{m / 2}} \mathrm{~d} t \times \\
& \int_{0}^{N} \chi(r) F\left(\mathrm{ir}+\frac{n-m+1}{2},-\mathrm{i} r+\frac{n-m+1}{2} ; 1-m ; \frac{1-\cosh x}{2}\right) F\left(\mathrm{ir}+\frac{n-m+1}{2},-\mathrm{i} r+\frac{n-m+1}{2} ; 1-m ; \frac{1-\cosh t}{2}\right) \mathrm{d} r \\
& =\mathrm{O}\left(x ^ { \alpha - \operatorname { R e m }) } \left\{\int_{a}^{b} \psi(t) \sinh t 2^{(n-m) / 2} \cosh \frac{n}{2} \frac{t}{2} \sinh ^{-m} \frac{m^{t}}{2} \mathrm{~d} t \times\right.\right. \\
& {\left.\left[\int_{0}^{N_{1}} \mathrm{O}\left(r^{2}\right) \mathrm{d} r+\int_{N_{1}}^{N} 2^{n-m-1} \pi^{-1}\left\{\mathrm{e}^{\mathrm{i} r(t+x)}+\mathrm{ie}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(x-t)}+\mathrm{ie}^{-m \pi \mathrm{i}} \mathrm{e}^{\mathrm{i} r(x-t)}-\mathrm{e}^{-2 m \pi \mathrm{i}} \mathrm{e}^{-\mathrm{i} r(x+t)}\right\}\right] \mathrm{d} r\right\} } \\
& =\mathrm{O}\left(\delta^{\alpha-\operatorname{Rem})}, \quad \alpha \geqslant \operatorname{Re} m,\right.
\end{aligned}
$$

since the above integrals are bounded. Thus

$$
\begin{equation*}
\lim _{N \rightarrow \infty} I=0 \tag{4.5}
\end{equation*}
$$

uniformly for all $x \in(0,2 \delta)$.
Therefore, in view of Equations (4.4) and (4.5),

$$
\lim _{N \rightarrow \infty} I=0 \quad \text { uniformly for all } x>0
$$

This completes the proof of the lemma.

Theorem 4.7 (Inversion)

Let $\operatorname{Re} m<\min \left(\frac{1}{2}, 1-|\operatorname{Re} n|\right), \alpha \geqslant \operatorname{Re} m$, and $\beta<\frac{1}{2}$. Assume that $f \in M_{\beta}^{\alpha^{\prime}}(I)$ and $F(r)$ is the distributional generalized Mehler-Fock transformation of f defined by Equation (3.1). Then for each $\phi(t) \in \mathrm{D}(I)$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left\langle\int_{0}^{N} \chi(r) F(r) P_{-1 / 2)+\mathrm{i}}^{m, n}(\cosh t) \sinh t \mathrm{~d} r, \phi(t)\right\rangle \\
& \quad=\langle f(t), \phi(t)\rangle .
\end{aligned}
$$

Proof. Assume that the support of $\phi(t)$ is contained in the interval $[a, b] \subset(0, \infty)$. In view of Theorem 3.2,F(r) is a continuous function of r. The integral

$$
\int_{0}^{N} \chi(r) F(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) \sinh t \mathrm{~d} r
$$

is therefore a continuous function of t, and as a consequence it generates a regular distribution. Hence we can write

$$
\begin{aligned}
& \left\langle\int_{0}^{N} \chi(r) F(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t) \sinh t \mathrm{~d} r, \phi(t)\right\rangle \\
& =\int_{a}^{b} \phi(t) \sinh t \mathrm{~d} t \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh t)\left\langle f(x), P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x)\right\rangle \mathrm{d} r \\
& =\int_{a}^{b} \phi(t) \sinh t\left\langle f(x), \int_{0}^{N} \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh t) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \mathrm{d} r\right\rangle \mathrm{d} t
\end{aligned}
$$

(by Theorem 3.4)

$$
\begin{aligned}
& =\left\langle f(x), \int_{a}^{b} \phi(t) G_{N}(t, x) \mathrm{d} t\right\rangle \\
& \rightarrow\langle f(x), \phi(x)\rangle
\end{aligned}
$$

by Lemma 4.6. This completes the proof of the theorem.

Theorem 4.8 (Uniqueness)

Let $f, g \in M_{\beta}^{\alpha^{\prime}}(I)$ and let $F(r), G(r)$ be their generalized Mehler-Fock transforms respectively. If $F(r)=G(r)$ for all $r>0$, then $f=g$ in the sense of equality in $\mathbf{D}^{\prime}(I)$.
The proof is trivial.

5. AN OPERATIONAL CALCULUS

In this section, we shall apply the preceding theory in solving certain differential operator equations. Define the operator

$$
\Delta_{t}^{*}: M_{\beta}^{\alpha^{\prime}}(I) \rightarrow M_{\beta}^{\alpha^{\prime}}(I)
$$

by the relation

$$
\left\langle\Delta_{t}^{*} f(t), \phi(t)\right\rangle:=\left\langle f(t), \Delta_{t} \phi(t)\right\rangle
$$

for all $f \in M_{\beta}^{\alpha^{\prime}}(I)$ and $\phi(t) \in M_{\beta}^{\alpha}(I)$ for $\alpha \geqslant \operatorname{Re} m$ and $\beta<\frac{1}{2}$. It can be readily seen that

$$
\left\langle\left(\Delta_{t}^{*}\right)^{k} f(t), \phi(t)\right\rangle=\left\langle f(t), \Delta_{t}^{k} \phi(t)\right\rangle
$$

for each $k=1,2,3 \ldots$ In case f is a regular distribution generated by an element of $\mathrm{D}(I)$, then

$$
\Delta_{t}^{*}=\mathrm{D}^{2}-(\operatorname{coth} t) \mathrm{D}+\operatorname{cosech}^{2} t+\frac{m^{2}}{2(1-\cosh t)}+\frac{n^{2}}{2(1+\cosh t)} .
$$

It can be proved that

$$
\begin{equation*}
M_{r}\left(\Delta_{x}^{*}\right)^{k} f(x)=(-1)^{k}\left(\frac{1}{4}+r^{2}\right)^{k} M_{r}[f(x)] \tag{5.1}
\end{equation*}
$$

where $M_{f}[f(x)]$ denotes the generalized Mehler-Fock transform of $f(x)$. Now we consider the operator equation

$$
\begin{equation*}
P\left(A_{x}^{*}\right) u=g \tag{5.2}
\end{equation*}
$$

where $g \in M_{\beta}^{\alpha^{\prime}}(I)$ and P is any polynomial having no zeros on $-\infty<x \leqslant 0$.
We wish to find a generalized function $u \in M_{\beta}^{\alpha^{\prime}}(I)$ satisfying the operator equation (5.2). Taking the generalized Mehler-Fock transform of both sides of Equation (5.2) and using Equation (5.1) we get

$$
P\left[-\left(\frac{1}{4}+r^{2}\right)\right] U(r)=G(r)
$$

where U and G are generalized Mehler-Fock transforms of $u(x)$ and $g(x)$ respectively. So that if $P\left[-\left(\frac{1}{4}+r^{2}\right)\right] \neq 0$, we can apply the inversion formula for the distributional Mehler--Fock transform and for each $\phi \in D(I)$, we get

$$
\begin{equation*}
\langle u, \phi\rangle=\lim _{N \rightarrow \infty}\left\langle\int_{0}^{N} \frac{G(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right]} \chi(r) P_{-(1 / 2)+\text { ir }}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle . \tag{5.3}
\end{equation*}
$$

By Theorem 3.3 we know that

$$
|G(r)| \leqslant C r^{2 q} \quad \text { as } \quad r \rightarrow \infty
$$

for some non-negative integer q depending upon g. Now, let $Q(x)$ be a polynomial of degree greater than or equal to $q-\operatorname{Re} m+2$ having no zeros on the negative real axis. Then, the convergence of the right-hand side of Equation (5.3) can be established as follows:

$$
\begin{aligned}
& \left\langle\int_{0}^{N} \frac{G(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right]} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle \\
& \quad=\left\langle Q\left(\Delta_{x}^{*}\right) \int_{0}^{N} \frac{G(r) \chi(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right] Q\left[-\left(\frac{1}{4}+r^{2}\right)\right]} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle \\
& \quad=\left\langle\int_{0}^{N} \frac{G(r) \chi(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right] Q\left[-\left(\frac{1}{4}+r^{2}\right)\right]} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, Q\left(\Delta_{x}\right) \phi(x)\right\rangle
\end{aligned}
$$

(by integration by parts).

Let us suppose that the support of $\phi(x)$ is contained in $[A, B]$. Then, we can find a constant L such that for N_{1}, $N_{2}>L$ we have

$$
\begin{aligned}
|J| & =\left|\left\langle\int_{N_{1}}^{N_{2}} \frac{G(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right]} \chi(r) P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle\right| \\
& \leqslant C \int_{N_{1}}^{N_{2}}\left|\frac{r^{2 q} \chi(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right] Q\left[-\left(\frac{1}{4}+r^{2}\right)\right]}\right| \mathrm{d} r \int_{A}^{B}\left|P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x Q\left(\Delta_{x}\right) \phi(x)\right| \mathrm{d} x .
\end{aligned}
$$

Since for $x \in[A, B]$,

$$
\left|P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) \sinh x\right| \leqslant C_{1} \quad \text { for all } r \geqslant 0
$$

using the estimate (1.7) we can find a positive constant M such that

$$
|J| \leqslant C M \int_{N_{1}}^{N_{2}} \frac{r^{2 q-2 \operatorname{Re} m+1}}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right] Q\left[-\left(\frac{1}{4}+r^{2}\right)\right]} \mathrm{d} r \rightarrow 0 \quad \text { as } \quad N_{1}, N_{2} \rightarrow \infty
$$

Therefore

$$
\lim _{N \rightarrow \infty}\left\langle\int_{0}^{N} \frac{G(r) \chi(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right]} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle
$$

exists and by completeness of $\mathrm{D}^{\prime}(I)$ there exists $f \in \mathrm{D}^{\prime}(I)$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\langle\int_{0}^{N} \frac{G(r) \chi(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right]} P_{-(1 / 2)+\mathrm{ir}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle=\langle f, \phi\rangle . \tag{5.4}
\end{equation*}
$$

Now for all $\phi \in \mathrm{D}(I)$, we have

$$
\lim _{N \rightarrow \infty}\left\langle P\left(\Delta_{x}^{*}\right) \int_{0}^{N} \frac{G(r) \chi(r)}{P\left[-\left(\frac{1}{4}+r^{2}\right)\right]} P_{-(1 / 2)+\mathrm{i}}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle=\left\langle P\left(\Delta_{x}^{*}\right) f, \phi\right\rangle
$$

or

$$
\lim _{N \rightarrow \infty}\left\langle\int_{0}^{N} G(r) \chi(r) P_{-(1 / 2)+\mathrm{i} r}^{m, n}(\cosh x) \sinh x \mathrm{~d} r, \phi(x)\right\rangle=\left\langle P\left(\Delta_{x}^{*}\right) f, \phi\right\rangle
$$

Hence by our inversion Theorem 4.7, it follows that

$$
\langle g, \phi\rangle=\left\langle P\left(\Delta_{x}^{*}\right) f, \phi\right\rangle
$$

This proves that f determined by Equation (5.4), which belongs to $\mathrm{D}^{\prime}(I)$ and is the restriction of $u \in M_{\beta}^{\alpha^{\prime}}(I)$ to $\mathrm{D}(I)$, satisfies the operator equation (5.2).

6. A DIRICHLET PROBLEM WITH A DISTRIBUTIONAL BOUNDARY CONDITION

In this section we discuss a boundary value problem associated with the Legendre function $P_{-(1 / 2)+\mathrm{i} r}(z) \equiv \mathrm{P}_{-(1 / 2)+\mathrm{ir}}^{0,0}(z)$. Let us determine a function v which satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial \tau^{2}}-\operatorname{coth} \tau \frac{\partial v}{\partial \tau}+\frac{\partial^{2} v}{\partial \theta^{2}}+\left(\operatorname{cosech}^{2} \tau+\frac{1}{4}\right) v=0 \tag{6.1}
\end{equation*}
$$

under the following boundary conditions.
(i) As $\theta \rightarrow O+, v(\tau, \theta)$ converges in $\mathrm{D}^{\prime}(I), I=(0, \infty)$ to some generalized function $g(\tau) \in\left(M_{\beta}^{\alpha}\right)^{\prime}(I)$.
(ii) As $\theta \rightarrow \pi-, \partial v / \partial \theta$ converges to zero uniformly on every compact subset of $0<\tau<\infty$.

Let $\bar{v}(r, \theta)$ be the distributional generalized Mehler-Fock transform of order zero of $v(\tau, \theta)$. Then by Equation (6.1), we get

$$
\frac{\partial^{2} \bar{v}}{\partial \theta^{2}}-r^{2} \bar{v}=0
$$

so that

$$
\bar{v}=A(r) \cosh r \theta+B(r) \sinh r \theta .
$$

In view of the boundary conditions (i) and (ii) we get

$$
\begin{aligned}
\bar{v} & =\left\langle g(\tau), P_{-(1 / 2)+i r}(\cosh \tau)\right\rangle(\cosh r \theta-\tanh r \pi \sinh r \theta) \\
& =G(r)(\cosh r \theta-\tanh r \pi \sinh r \theta),
\end{aligned}
$$

where

$$
G(r)=\left\langle g(\tau), P_{-(1 / 2)+\mathrm{i} r}(\cosh t)\right\rangle .
$$

Now, applying the inversion theorem for the generalized Mehler-Fock transform, we have

$$
\begin{aligned}
& \langle v(\tau, \theta), \phi(\tau)\rangle \\
& =\lim _{N \rightarrow \infty}\left\langle\int_{0}^{N} \chi(r) G(r)(\cosh r \theta-\tanh r \pi \sinh r \theta) P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r, \phi(\tau)\right\rangle
\end{aligned}
$$

for each $\phi \in \mathrm{D}(I)$. Consequently, in the conventional sense,

$$
\begin{equation*}
v(\tau, \theta)=\lim _{N \rightarrow \infty} \int_{0}^{N} \chi(r) G(r) \frac{\cosh r(\pi-\theta)}{\cosh r \pi} P_{-(1 / 2)+\mathrm{i} r}(\cosh \tau) \sinh \tau \mathrm{d} r . \tag{6.2}
\end{equation*}
$$

Therefore

$$
\begin{gather*}
\frac{\partial v}{\partial \theta}=\lim _{N \rightarrow \infty} \int_{0}^{N} \chi(r) G(r)\left(\frac{-r \sinh r(\pi-\theta)}{\cosh r \pi}\right) P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r \tag{6.3}\\
=\int_{0}^{1} \chi(r) G(r)\left(\frac{-r \sinh r(\pi-\theta)}{\cosh r \pi}\right) P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r \\
+\int_{1}^{N} \chi(r) G(r)\left(\frac{-r \sinh r(\pi-\theta)}{\cosh r \pi}\right) P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r \\
=I_{1}+I_{2}(\text { say }) .
\end{gather*}
$$

Now, I_{1} is easily shown to satisfy

$$
\left|I_{1}\right| \leqslant C_{1} \sinh (\pi-\theta),
$$

and using Theorem 3.3,

$$
\left|I_{2}\right| \leqslant C_{2} \int_{1}^{\infty} \mathrm{e}^{-r \theta} r^{2 q-\operatorname{Rem} m / 3 / 2} \mathrm{~d} r
$$

Therefore the integral in Equation (6.3) converges absolutely and uniformly for all θ satisfying $0<\theta_{0}<\theta<\pi$.
Hence we can take the limit $\theta \rightarrow \pi$ - within the integral sign and verify the boundary condition (ii).
To verify the boundary condition (i), assume as in Section 5 that $Q(x)$ is a polynomial of degree greater than or equal to $q-\operatorname{Re} m+2$, having no zeros on the negative real axis. Then for each $\phi \in \mathrm{D}(I)$ with support contained in $[a, b]$
we have

$$
\begin{align*}
& \langle v(\tau, \theta), \phi(\tau)\rangle \\
& =\lim _{N \rightarrow \infty}\left\langle Q\left(\Delta_{\tau}^{*}\right) \int_{0}^{N} \frac{\chi(r) G(r)}{Q\left[-\left(\frac{1}{4}+r^{2}\right)\right]} \frac{\cosh r(\pi-\theta)}{\cosh r \pi} P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r, \phi(\tau)\right\rangle \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\chi(r) G(r) \cosh r(\pi-\theta)}{Q\left[-\left(\frac{1}{4}+r^{2}\right)\right] \cosh r \pi} \mathrm{~d} r \int_{a}^{b} P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau Q\left(\Delta_{\tau}\right) \phi(\tau) \mathrm{d} \tau \tag{6.4}
\end{align*}
$$

(by integration by parts).
Now in view of the asymptotic behavior of $\chi(r)$ and $G(r)$, the right-hand side converges uniformly with respect to $\theta, 0 \leqslant \theta \leqslant \pi$. Therefore, letting $\theta \rightarrow 0+$ and interchanging the limiting operation with respect to N and θ in the righthand side of Equation (6.4) we get

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0+}\langle v(\tau, \theta), \phi(\tau)\rangle \\
& =\lim _{N \rightarrow \infty} \int_{a}^{b} Q\left(\Delta_{\tau}\right) \phi(\tau) \mathrm{d} \tau \int_{0}^{N} \frac{\chi(r) G(r)}{Q\left[-\left(\frac{1}{4}+r^{2}\right)\right]} P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r \\
& =\lim _{N \rightarrow \infty} \int_{a}^{b} \phi(\tau) \mathrm{d} \tau \int_{0}^{N} \chi(r) G(r) P_{-(1 / 2)+\mathrm{i} r}(\cosh \tau) \sinh \tau \mathrm{d} r
\end{aligned}
$$

(by integration by parts)

$$
=\langle g, \phi\rangle \quad \text { (by Theorem 4.7). }
$$

Lastly, in view of the asymptotic orders of $\chi(r)$ and $G(r)$ and the fact that $0 \leqslant \theta \leqslant \pi$, it can be readily justified that

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial \tau^{2}}-\operatorname{coth} \tau \frac{\partial}{\partial \tau}+\frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{4}+\operatorname{cosech}^{2} \tau\right) v(\tau, \theta) \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} \chi(r) G(r) \frac{\cosh r(\pi-\theta)}{\cosh r \pi}\left(\frac{\partial^{2}}{\partial \tau^{2}}-\operatorname{coth} \tau \frac{\partial}{\partial \tau}+\frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{4}+\operatorname{cosech}^{2} \tau\right) P_{-(1 / 2)+\mathrm{ir}}(\cosh \tau) \sinh \tau \mathrm{d} r .
\end{aligned}
$$

Therefore, $v(\tau, \theta)$ as defined by Equation (6.2) satisfies the differential equation (6.1). The solution is unique in view of Theorem 4.8.

ACKNOWLEDGMENT

The authors express their most sincere thanks to the referees for their valuable comments and suggestions.

REFERENCES

[1] B. L. J. Braaksma and B. Meulenbeld, 'Integral Transforms with Generalized Legendre Functions as Kernels', Composito Mathematica, 18 (1967), pp. 235287.
[2] I. N. Sneddon, The Use of Integral Transforms. New York: McGraw-Hill, 1972.
[3] G. Buggle, 'Die Kontorovich-Lebedev Transformation und Die Mehler-Fok Transformation für Klassen Verallgemeinerter Funktionen mit Anwendungen auf Probleme Der Mathematischen Physik', Ph.D. Thesis, Technische Hochschule, Darmstadt, 1977.
[4] U. N. Tiwari and J. N. Pandey, 'The Mehler-Fock

Transform of Distributions', Rocky Mountain Journal of Mathematics, 10 (1980), pp. 401-408.
[5] A. Erdélyi and others, Higher Transcendental Functions, Vol. 1 New York: McGraw-Hill, 1953.
[6] A. H. Zemanian, Generalized Integral Transformations. New York: Wiley-Interscience, 1968.
[7] J. N. Pandey, 'An Extension of Haimo's Form of Hankel Convolutions', Pacific Journal of Mathematics, 28 (1969), pp. 641-651.
[8] R. S. Pathak and J. N. Pandey, 'The Kontorovich-Lebedev Transformation of Distributions', Mathematische Zeitschrift, 165 (1979), pp. 29-51.
[9] W. Rudin, Principles of Mathematical Analysis, 2nd Edition. New York: McGraw-Hill, 1964.

BIBLIOGRAPHY

Pandey, R. K., 'Some Distributional Transformations', Ph.D. Thesis, Banaras Hindu University, 1982.
Pathak, R. S., 'A Class of Dual Integral Equations', Proceedings Koninklijke Nederlandse Akademi, A81 (1979), pp. 491-501.

Rosenthal, P., 'On a Generalization of Mehler's Inversion Formula and Some of Its Applications', Ph.D. Thesis, Oregon State University, 1961.

Rosenthal, P., 'Inversion of Generalized Mehler-Fock Transform', Pacific Journal of Mathematics, 52 (1974), pp. 539-543.

Schwartz, L., Théorie des Distributions. Paris: Hermann, 1978.
Tiwari, U. N., 'Some Distributional Transformations and Abelian Theorems', Ph.D. Thesis, Carleton University, 1976.

Paper Received 25 July 1983; Revised 7 March 1984.

[^0]: *Present address: the Department of Mathematics, Banaras Hindu University, Varanasi 221005, U.P., India.
 \dagger Present address: Shri Durgaji Post-Graduate College, Chandeshwar, Azamgarh, India.

