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ABSTRACT

The generalized Mehler—Fock transformation
F(r).= f J ()P4, (cosh x) sinh x dx,
0

where P;"(z) denotes the generalized Legendre function, is extended to a class of
generalized functions. An inversion theorem is established by interpreting con-

vergence in the weak distributional sense. The theory thus developed i$ applied to a
Dirichlet problem with distributional boundary conditions.
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THE GENERALIZED MEHLER-FOCK
TRANSFORMATION OF DISTRIBUTIONS

1. INTRODUCTION

The classical Mehler—Fock transformation has been successfully applied to deal with problems occurring in the
mathematical theory of elasticity, particularly those concerned with analysis of stress in the vicinity of external
cracks.

A generalization of the Mehler—Fock transformation has been given by Braaksma and Meulenbeld [1] in the
following form:

f*0):= j SG)P™ )4, (cosh x) sinh x dx, (1.1)
0
where P™7 . (coshx) is the generalized Legendre function defined by
(z+1y"2 n—m n—m 1—z
Pmi(z)= k I, —k+——— 1 —m; —— .
v(2) I‘(l—m)(z—-l)’"’ZF + 3 + + 7 l—m 5 1.2)

for z not lying on the cross-cut along the real x-axis from 1 to — oo for complex values of the parameters k, m, and
n. The corresponding inversion formula is

f (x)=J 1) P oy, (COSh X) f*(r)dr, (1.3)
0
where
_r l—m+n . r l—m+n . r 1l-m—n . l-m—n
x(r)— —2—-(-1?‘ ———2—-——”‘ —2—+1r ——-5 ............... —1r I x
[rQir[(—=2irm2"~m+2]-1, (1.4)

Note that Equation (1.1) reduces to the generalized Mehler—Fock transform when m=n, and to the Mehler-Fock
transform when m=n=0 (see [2]).

The conditions of validity for Equations (1.1) and (1.3) are provided by the following theorem due to Braaksma
and Meulenbeld (see [1], p. 245).

Theorem 1.1

Let m, n be complex numbers with |Re n|<1—Re m, and f(t) a function such that for all a>1

() fit)t—1)"Y*log(t —1)eL(l,a) if Re m=0;
(ii) f(0¢™'"* € Lia, o0).

Further, let this function be of bounded variation in a neighborhood of t=x (x> 1).

Then f{(¢) satisfies the relation

€0

J L P 211y (X7 f Py (O Ot =3{f(x = 0)+ £ (x+0)}. (L)
0 1

In this paper, we extend this transformation to a class of generalized functions and prove the inversion theorem
by interpreting convergence in the weak distributional sense. In the end, we develop an operational calculus that is
applied to solve a certain boundary value problem. (The aforesaid transformation with n=0 was extended to
generalized functions by Buggle [3] and the case m=n=0 was treated by Tiwari and Pandey [4].)
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We make use of the following integral representation in our subsequent analysis.

2mmriz cosrg n—m n+m
m hm F - ;
(cosh 1)= rer (2 sin o (cosh t —cosh @)™ *1/2 2 2

(ST

(1 2)+ir

cosh t —cosh ¢
e | d
1+cosht —l¢’

(1.6)

where Re m <. This can be obtained from the representation

I(c) v 1=z -0z
F[a,b;c;z]-—--———J L=t 1=tz T F[A—a, A= btz FI:tH—b—-/L A= c— dt,
=T Jo A piiz] abia ey
where
Rec>Reu>0, z#1, |arg(l—z)|<m,
on using
Fla,bic;z]=(1—2 “F[ac by, }
(z—1)
From Equation (1.6) we conclude that
| PTed 2y, (COSh )| S|P ) (cosh £)], Re m<1/2. (L7
From Equation (1.2) we have
P2 Cosh )=0("R™), t—-0+. (1.8)
Also, Equation (1.2), together with Equation (9) on p. 76 of [5], yields
P™4 2y, (COsh 1) =0(e /2", t— 0. (1.9)
Lastly, from Equation (1.2), and Equation (17) on p. 77 of [5], we obtain
Pt ain(cosh )=0(1), r—0+ (1.10)
_2(1/2)(n—m—1)n—1/2(sinh I)—I/Z(ir)m—(l/Z)x
{ m+1e~x(mn+rt)+0 1)} ¥— + 00. (111)
The function y(r) defined by Equation (1.4) possesses the following asymptotic behavior.
O(?), r—»0+, [Ren|<l—Rem (1.12)
b=
x(r) (iry! 2 B
TR [1+O0¢~ "], r—co. (1.13)

2. THE TEST FUNCTION SPACE Mj(I) AND ITS DUAL
Let I denote the open interval (0, c0). For a real number « >Rem and real number f<1, let { be a continuous
positive function on I such that

O@) as t-0+
O@E*) as r—o0.

Ly =, ,(0: = {

Let M (I) be the collection of all infinitely differentiable complex valued functions ¢ defined on I such that for
every non-negative integer k,

7{@):= sup [{(D4;d(t)|< o0

O0<t<w
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where
2 2 k
4 =<D2 Tlcoth D+ o SR oo z))
and
_4
dt
One can readily see that M;(I) is a linear space and y,, k=0, 1,2,..., is a seminorm while y, is a norm. Therefore,

the collection of seminorms {y,}, k=0, 1,2,..., is separating (see p. 8 of [6]). We equip M;E(I) with the topology
generated by the seminorms {y, };2 .. A sequence {¢, };”, in Mj(I) converges to ¢ in Mj(I) if and only if for each k,
(@, —¢)—0 as v—o0. A sequence {¢ }>_, is said to be a Cauchy sequence if for each k, y, (¢,—¢,)—0asvand u
both tend to infinity independently of each other. Following the technique of Pandey [7] it can be shown that
M;i(I) is a sequentially complete locally convex topological vector space. D(I), the space of infinitely differentiable
functions of compact support with the usual topology, is a linear subspace of M{(I). The topology of D(I) is
stronger than the topology induced on it by M;(I). Hence the restriction of any f eM;'(I) to D(I) is in D’(I), the
dual space of D(J).

m

For r >0, the generalized Legendre function P ) ir(cosh t) is an element of M;(I), for Py ., (cosh 1) satisfies
the differential equation

m? n?
D2 th 1)D : 244 ly=0.
y+(eoth by + [2(1 “coshp) 21 +coshy T +4)]y
Therefore
A4, Pm0 o (cosh )= — (2 +HP™ . (cosh ). 2.1)

Using (2.1) we get

7e[P™ 2y (COsh )] = sup [{(0)4F P 5, (cosh £)| < . sup |(r* + L) P 5,45, (cosh 1),
0<t<owo <t< oo

Now, using Equations (1.2), (1.8), and (1.9) we have
Y LPT 2y (cosh t)] < co. (2.2)

3. THE DISTRIBUTIONAL GENERALIZED MEHLER-FOCK TRANSFORMATION

ForfeM ;’ (I) where « >Rem and B<3, define the distributional generalized Mehler—Fock transformation F of f
by

F(r): =< f(8), P71 )54, (cOsh 1), (3.1

where r 20.

Lemma 3.1 For Rem <3, a>Rem and f <3, the functions {(¢)(0/0r)! P75, (cosh t), ¢=0,1,2,... are uniformly
bounded over 0<t < 0.

Proof. For 0<¢ <t, we have

(SIS

2’ 2 - 1+4cosht cosht+1

(n—m) |: (m+n }
‘cosht—coshd)) } <§: 2 )L\ 2 >k (cosht—l)k
k=0

‘ F(n—m —(m+n)_
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<y G —m) rG—m T k-¥2[1+0(k ] < .

=0 n—m m+n n—m m+n o
— r I — .
Therefore, from Equation (1.6) by differentiating with respect to r within the integral sign, we have

q t q
(6&) Py 5y €osh t) | <Clsinh t)'"’f ¢dé
r

o (cosh t —cosh @)™+ (/27
where C is a constant independent of ¢ and 7, and m_denotes Rem.

k=32[1+0%k 1] | <

@O

Now, using the integral representation given by Equation (8) on p. 156 of [5]:

(sinh)* [*
F(%_#) 0

P¥(cosh t)=P*O (cosh t)= ()~ 1/? (cosht—cosh ¢) " *~ D cosh [(v+1)p1dg,
where Re <2, we have

<C{ep(Gm)'? IG—m,) P75, (cosh ).

a q
{@® (67) pra J2yHir {(cosht)

In view of the asymptotic estimates (1.8) and (1.9), the right-hand side is bounded uniformly for all te(0, o0)
provided that

a>Rem, Rem<j, and f<i.

Theorem 3.2
For fe M7 (I), where « >Rem, Rem<3, p<i, and r >0, let F(r) be defined by Equation (3.1). Then

d\¢ o\4
(a) F(r)= <f(l)’ (—a.;) PT{JI’/Z)-HV (COSh t)>a q '_':09 1, 25 e (32)
Proof. The proof is standard (see p. 30 of [8]).

Theorem 3.3
For fe M;’(I), a>Rem, Rem <3, p<3, let F(r) be defined by Equation (3.1). Then

F(r)={0(1) as r-0+

O(r*) as r—oo, (3.3)

where ¢ is a non-negative integer depending on f.
Proof. The proof is given by using the boundedness property of generalized functions (see p. 18 of [6]). Indeed

|[F(r)] <C max y,(P7] )., (cosh 1))
0 <k <q

<Cmax sup |(r*+1f¢)Pmr, .., (coshi)|
k

—(1/2y+i
O<t<w (/2ntir

<Cmax sup [(r*+3){(t)P™] ,(cosh?)|
k

O<t<w
<C max (r? +1),
k

from which the result follows.
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Theorem 3.4

Let fe M;’(I), where o >Rem, Rem <3, and <% Then for a fixed real number N,

N
j ()P 5y cosh D f(x), P70, (cosh x)dr

0

N
= { f(x), J (1) P15, (cosh x) P Ly (cosh ndr). 3.9
0

Proof. The expression (3.4) is meaningful since the integral on the right-hand side belongs to M(I). Indeed, for
fixed t>0, let

N
0(x, t): =Jv X(r)P'f("l'/z)Hr(cosh xj P )4, (cosh r)dr.

0

Then

N

A’;[f)(x, 1)] =J x(r) P15, (cosh t)AI;[PT{?/z)-H.» (cosh x)]dr
[¢]
N
=(=DF | dr)r?+FPY L, (cosh x) P, L (cosh r)dr.
JO
Therefore
f‘l\f
sup [{(x)45[0(x,0)]|= sup | {(x) J 2+ P L (cosh ) P L (cosh x)dr
0<x<ew O<x<ow 4}
< N l-m+n . 1—m+n 1-m—n l-m—n ) 21w
<C Py, (cosh )| — > -+ir | T-—lr r T-Hr r i rsinh 2qr(re 44 | dr
0

< 0.

The fact that both sides of Equation (3.4) are equal can be proved by the Riemann-sums technique (see p. 186 of

[6])-

4. INVERSION OF THE DISTRIBUTIONAL GENERALIZED MEHLER-FOCK TRANSFORMATION

For x, t, and v in I=(0, o) and N>0, Seﬁne
(@) Gult, x): =J x(r) PTY 12) +i,(cosh x) P71 2 (cOsh 1) sinh £dr;
0
N

(b) lp!\’(ys X): ZJ‘ X(V) PT{T/Z)H,.(COSh X)RT{;”Q).H,-(y)drs
0

where

¥
R” s (W) =J sinh t P, . (coshr)dr, Rem<2.
0

Lemma 4.1 Let |[Ren|<1—Rem. Then for fixed y>0,
1 for O<x<y
lim Yy, x)=< 3 for x=y

N

0 for x> y.
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Proof. In Theorem 1.1 we can set

for O<t<y
for t>y,

4 1
flcosht)= {0

and get
J Pﬁ‘(";’f,z)ﬁr(cosh t) f(cosh t) sinh tdt

0

.
=J pmt (cosh t) sinh tdt
0

~{(1/2)+ir
— pmmn R
=R )i (0):
Now, using inversion Theorem 1.1 we get
1 for O<x<y
¢}
P s ( s . — 1 — v
J‘ ,{(r)P"j("l/.z)ﬁr(cosh x)R'f(’;l,z)ﬁ,(y)dr- 7 for X=y
0

0 for x>y

The left-hand side of the equation is nothing but the limit of  \(y, x) as N—co.

Lemma 4.2 Let a and b be any two real numbers satisfying 0 <a<b and let |Ren| <1 —Rem. Then
1 for x€(a,b)
b
lim j G\(t,x)dt=< 0 for xé[a,b]
Now Jg

for x=a,b.

[Ny

Proof. We have

b N b
J’ Gt x)dt=j AP P74 5 4 (cosh x)dr J P74 4 (cosh ) sinh tdt

a (¢} a
N
= J x(r) P 5 ©Osh X)LR™Y o (D)= R™ 5, (@)]dr
0

= w’V(b7 x) - d’N(aa x).
Therefore, in view of Lemma 4.1, we obtain

1 for x€(a,b)
b
lim J G (t, x)dt = for xé¢[a,b]

N

<

a

for x=a,b.

N =

In the rest of this work, L will denote an arbitrarily large but fixed positive number.

Lemma 4.3 Let b>a>0 and let |[Ren|<1—Rem. Then, for a fixed d satisfying 0 <8 <1q,

x—d
(i) J G A(t, x)dt—>0

a

uniformly for all xe(a,L] as N-ooo;
(]
(i) J G 1, x)dt -0
x+6

uniformly for all xe[6,b—48] as N—cc.
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Proof of (i). In view of the asymptotic behavior of Equations (1.10}-(1.13), we have

X~ &
J dt

N
J C, nsinh'2tsinh ™12 x {e*¥) (1 —e~2m ™) 4 2ie ™" cos r(x — 1)+ O(r ') }dr
1

] N
dt ,(cosh t) sinh tdr
0

X — 8
+J dt

where C,, is a constant and Q,(t, x) is bounded for 0<r<1 and (¢, x)e[a, L—8] x [a, L].

x(@) P™" . (cosh x) P™"

—(1/2)+ir —(1/2)y+ir

jl o) Q,(t, x)dr

0

3

Now estimating the right-hand side of the above inequality we observe that the left-hand side is an absolutely
convergent double integral with respect to t and r. Hence, using Fubini’s theorem and changing the order of
integration, we have

fx—0 N (fx—d
J Gut,x)dt=| x(dr | sinhePmr . . (cosh)P™7 . . (coshx)dt
a JO va
(* oo (*x~ 8
=| xr)dr sinh t P 5., (cosh ) P ) (cosh x)dt
JN Ja
(*oo (*x—3
- xlr)dr sinh t P™; ) +ip(cosh )P0 o (cosh x)dt
¥N va
=T,~T, (say).

Now, since both r- and t-integrals are absolutely convergent, using Fubini’s theorem, we can write

N X~ 3
T,=lim J. X(r)er\ (t—x)sinht P77} (cosh ) P71 . (cosh x)dt

N-w Jo a

x—&
= lim J G, x)dt=0

Now Jg

by Lemma 4.2. Also, for sufficiently large N, substituting the asymptotic expressions for P™" {cosh 1),

—{1/2)+ir
P"‘('l‘ 12) .i-(cosh x) and x(r), we see that

o x—0
T2=j drj (t—x)C, ,sinh'?¢sinh ™2 x {e"* 2 (1 —e ™" ™)+ 2ie """ cosr(x — )+ O(r ~1)}dt,
N

a

where C,  is a finite constant. Now, integrating the inner integral by parts, it is not hard to see that
T,=0(N7!), as N-o
uniformly for all xe(a, L]. Consequently, T, —T,—0 as N— oo uniformly for all xe(a, L].
The proof of (ii) is similar to that of (i).

Lemma 4.4 Let [Ren|<1—Rem and Rem<3. Then for 0<a<t<b,0<c<x<d and N >0, the function G(t, x) is
bounded uniformly for all ¢, x, and N.

Proof. Let N be any positive number less than N, (say). Then

Nl
|G (1, x)| < J' L) P2 oyir (cosh x) P71 5, (cosh £) sinh £|dr
0
Ny
< sup | P ,(coshx) sup P71, (cosh t)sinh ¢ sup | X(r)!J dr
c<x <d a<r< 0<rN, 0
<M,
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M, being a positive constant independent of x, ¢, and N.
Next assume that N is a large number greater than or equal to N,. Then

N N

[X(r) P 2y, (cOSh X) P ), (cosh £) sinh [ dr.
1

1Gn(t, %) <J

) P™ 5y (cosh x)P™R - (cosh £) sinh t;dr+.[
0

.
We have already proved that the first integral is bounded by M,.
In view of the asymptotic behavior of
P™r o e(Coshx), P2 (coshz), and x(r)

for large r and for fixed x >¢, t>a, we have

N
J X()P™ o (cosh x)P™n . (cosh ) sinh ¢ dr
Ny

sinh x N,
=g1_lt_2_(8811:}}:;)1/2'[:’ [0 jg ~m gt =) | jo —migirx—) _ g ~2mrig ~ir(x+0] g
1
1 /sinhe \Y2 [V . . . . . o
+§:—f(s—1£h_;) J.V [eu(x+:)+le~mmexr(z—x)+1€~mmew(x—z)_e»zmme—”-(xﬂyjo(l/r)dr
N
=J,+J, (say).

J, can be expressed as a sum of four integrals, each of which is separately bounded. For instance,

N
J- eir(x + t)dr
Ny

J, is also a sum of four integrals, each of which is separately bounded. For instance, the first term in J , 18

N

1 /sinht\'? N oirlx+1) 1 /sinht\? [1erx+n (N 1 erx+n
=] O dr |=— ({2~ AR il '
8n? (smh x) U;,l r r] 8n? (sinh x) O[r i(x+1) * J N i+ dr]

Ny

eiNGx+1) INg(x+1)

e
ix+0)  i(x+1)

2
< .
x+t

The first term within the square bracket is

eiN(x-H) eiNl(xi»t)
[iN(x +1) iIN,(x+ z)]’

which is bounded. The modulus of the second term is less than
1 N1 1 1 1
| Zdr=—— =,
[x+t] le‘z |x+t|\N, N

which is also bounded. The other terms can similarly be shown to be bounded. This completes the proof of the
lemma.
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Lemma 4.5 Let ¢(t)e D(I) with its support contained in [a, b]. Then for 0<d < };a,
*x—3

(i) Gu(t, x) p(1)dt—0

as N— oo uniformly for all xe[a+9,L];

*d
(ii) G\(t, x)¢(t)dt—0

vx+d

as N — oo uniformly for all xe[d, b—4].

Proof of (i). Assume at first that ¢(t) is an infinitely differentiable real valued function on [a,x—6], a+d<x<L.
Then ¢ is a function of -bounded variation on [a,x—&]. Consequently, there exist monotonically increasing
functions p(x) and g(x) on [a, x— 8], with p(a)=g(a)=0 such that

P(t)=la)+p(t)—q(t), a<t<x-9
(see Theorem 6.27 on p. 120 of [9]). Hence

f‘éam, N d(0)dr

x—& x—&
=J PGt x)dt — l‘ q(t)G 4(t, x)dx.

a

The result can now be proved by using the second mean value theorem of the integral calculus and Lemma 4.3(i).
The proof for a complex valued C* function ¢ can be given by separating it into its real and imaginary parts.

The proof of (ii) is similar to that of (i).

Lemma 4.6 Let ¢(¢)e D(I) with its support contained in the interval [a,b], then

[ G\t x)p(1)dt—p(x)

~4a

in M3 (1) as N—oo, provided that

a>Rem, B<3, Rem<min(, 1—|Ren|).

Proof. It can be readily seen that
4, Gy(t,x)=sinht A, Gyl(t, x)

where

N
Gy(t,x)= J (U PZY o), (CcOsh x) P o 1 (cosh £)dr.
0

Now
b

b
AXJ Gult, x) ¢lr) dx:J sinh t 4, Gy(t, x) $(t)dt

b
=f G (t,x) 4, [¢(6)] dt (by integration by parts).
- a
Therefore, operating 4 successively k times, we get
b

b
A’;J Gft, x) ¢>(t)dt=J G(t,x) ¢, (1) dt,

a

The Arabian Journal for Science and Engineering, Volume 10, Number 1.
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where

@ (t)=4%9(t).

Now, using Lemma 4.2 we can write

lim {(x)45 [fGN(t, x) p(t) dt — ¢(X)J

b
=lim {(x) | Gu(t,x) [, ()=, (x)]dr.

N-ow

It is therefore reduced to proving that

b
C(X)j Gyt x) [¥ () —¥ (x)]dt—0

uniformly for all x as N— oo where y(t)e D(I) with its support contained in [a,b].

For a fixed x >23, where 0<d <min (3, 14), We can write

C(X)J Gt x) [Y () —Y(x)]de

x— & x + 8 b
=C(x)(J +j +J )GN(t,X)[lll(t)—ll/(x)]di

=I,+1,+1, (say).

At first we consider I,. For x b4 or x<a-34, I, is clearly zero. Therefore we consider I, for the case when
a—d0<x<b-+4. We can write

fx+o
1L, <c(x)J |G (e, )19 — () dt

8((x) sup |y’ Vl)l Gy(t,x)|dt

as<np<b

<8D; sup [¥'(m|  sup |Gyt x)l.
a<n<h (B/4a<x<b+(1/2a
(1/2a<1<b+(1/2)a
Now using Lemma 4.4, we can find a constant D >0 independent of é such that
|1,| <Dé.

For a given ¢>0, we can choose é =min (4a, 5»&/D) and obtain
£
1,] <§' “4.1)
Next, consider
x—&
I,= C(X)J Gylt, x) [Y(0)—y(x)]de

=l ,-1, (say).
Now, I, ,=0 if x<a and x>b. For xe(a, b),
X = &
J Glt, x)dr

-0 as N-oo

51 <vo (§)
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uniformly for all xe(a, b), in view of Lemma 4.3(i). Therefore,
lim I, ,=0

N—ow

1,2
uniformly for all x> 4.

Now, consider [, ,. Since I, , =0 if x<a+4, we have to consider x=>a+4. In view of Lemma 4.5, I, -0
uniformly for all xe[a+5 L] as N-. Hence, assume that x>L, where Lis a large number greater than
max (2,b+3). Since () is of compact support contained in [a,b],

Px—8&

11’1 = C(X) GN(ts x)z//(t) dt

va

(*b

=C(X)J Gnl(t, x)y(r) dt

a

(*b N

={(x) | Y(¢)sinhrdt J x(r) P74 o4, (cosh x) PTE L (cosh t)dr.

va 0

Let N, be a large but fixed number such that 1 <N, <N. Then

b
=C(X)f Y(?) sinh £ dt x
N, N
(J +J )X(r)P’f("{,ZH,., (cosh x)P™4 .., (cosh t)dr
0 N,
b
=C(x)j W(t) sinh t dt x

Nl
J x(r) P75 4 (cosh x) P71 o (cosh t) dr
0

J Y(t)sinh t dtJ (PP 2y, (COSh X) P o L (cosh t) dr

=J,, +J1,2(say).
Now

N

b 1
Jia =C(x)J Y(¢) sinh tdtJ ANP™ o (cosh ) Pmr o (cosh ) dr

a 0

< sup [y(¢)sinh ¢ y(r) P™} , (cosh ¢)| (b—a)e™ Of(e “1’2")J dr

a<i<bh

0<r<N,

= sup |y(t)sinh ¢ y(r) P™} , (cosh1)|(b—a)N, exp {—(G—fB)x}

as<i<b
0<r<N

=O[exp{—G—p)x}] as x—co.

The Arabian Journal for Science and Engineering, Volume 10, Number 1.



Ram §. Pathak and Ram K. Pandey

Estimating as in the proof of Lemma 4.4, we can show that
J, ,=O[exp{—G—B)x}] as  x— o0,
Therefore, I, | can be made less than ¢/2 for all N>0 by choosing x> L. Thus
I,-0 as N—co. 4.2)
Similarly, using Lemma 4.5(ii) it can be shown that
1,-0 as N-owo 4.3)

uniformly for all x >283.
Combining Equations (4.1), (4.2), and (4.3), we have

lim I=0 (4.4)

N> o0

where I =1, +1, +1,, uniformly for all x>24.

x+é b
I=C(x)(J + 1‘

a vx+é

=J,+J, (say).

For 0< x <26, write

) G(t, x) [Y(1) —¥(x)] de

Now

x +é
J, =g(x)f Gt I —y(] dr

a

=0 because x+d<3d<a.

Next consider J,. Since 0<x <28, 6 <min (3, ) and Y(x)=0 for x <a, therefore

b

J, ==C(X)J G(t, x)y(r) de

x+d

b
={(x) J G (e, (1) dt
N

b
= C(x)J Y(t) sinh tdtJ‘ x(r) P23 24, (cOsh x) PTY o (cosh t) dr

[}

_ Ux)(2cosh?3)"? b . (2 cosh? )2
=T A—m) @smn? 5y | YOS G T

N . n—m+1 . n—-m+l 1 —cosh . on—m+1 . n-m+l 1—cosht
¥ F 1r+n m+ ,~1r+n m+ ;1——m;-~-«9§—i F 1r+z—ﬂi—,——1r+n m+ s 1—m; cos dr
o 2 2 2 2 2 2

a

b
=O(XVR""){J‘ W (¢) sinh £2"=™/2 cosh "% sinh ‘m%dt X

N

N N
[j IO(rz)dr+J 2n—-m~ln-—1 {eir(H-x)+ie~m1rieir{x—t)+ie~mnieir(x—t)__e~2m1:ie—ir(x+t)}}d’}
0

1

= (3% Rem), o >Rem,
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since the above integrals are bounded. Thus

lim I =0 “.5)

N0

uniformly for all xe(0, 29).
Therefore, in view of Equations (4.4) and (4.5),

lim I=0 uniformly for all x>0.

N-ow

This completes the proof of the lemma.

Theorem 4.7 (Inversion)

Let Re m<min(j, 1 —|Ren|), « >Re m, and f<3. Assume that fe M{(I) and F(r) is the distributional generalized
Mehler—Fock transformation of f defined by Equation (3.1). Then for each ¢(t)e D(I),

N

im | x(r) F(r)PY (cosh t) sinh t dr, ¢(1)>
N_aoo o

=S (1) $(1))-

Proof. Assume that the support of ¢(z) is contained in the interval [a,b] =(0, o). In view of Theorem 3.2, F(r) is a
continuous function of r. The integral

N
J x(r) F(r) P™% i, (cosh t) sinh ¢ dr
0

is therefore a continuous function of ¢, and as a consequence it generates a regular distribution. Hence we can write
N

| xnF@pmn .. (cosht)sinhtdr, (1))

—(1/2)+ir
00

(‘b N

= qb(t) Sinh t dt J\ X(") P’z.{nl/Z)-é- ir (COSh t)< f(x)’ PT’?UZ) +ir (COSh X) >d?‘

va 0

b N

= | ¢(t)sinh t{f(x), f x(r) P o), (cosh ) P (cosh x) dr ) de
)

va

(by Theorem 3.4)
b
={f(x), J #(1) Gy(t, x)dt)

= {f(x), p(x)>

by Lemma 4.6. This completes the proof of the theorem.

Theorem 4.8 (Uniqueness)

Let f, ge M;'(I) and let F(r), G(r) be their generalized Mehler—Fock transforms respectively. If F(r)=G(r) for all
r>0, then f=g in the sense of equality in D’(I).

The proof is trivial.
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5. AN OPERATIONAL CALCULUS

In this section, we shall apply the preceding theory in solving certain differential operator equations. Define the
operator

A% M1 M%(D)
by the relation
AT f(1), p0)y:=L f(8), 4,0(1))
for all f € M5 (I) and ¢(t)e M3 (I) for « >Rem and f<3. It can be readily seen that
LA}V @), G0 =< (), AF p(1))
for each k=1,2,3...In case f is a regular distribution generated by an element of D(I), then

2 n2

m
2(1 ~cosh 1) +2(1 +cosh )’

4*=D?—(coth t)D +cosech® t +

It can be proved that
M (438 f () =(= D G+r2) M [f ()], (5.1)
where M [ f(x)] dénotes the generalized Mehler-Fock transform of f(x). Now we consider the operator equation
PA*u=g (5.2)
where ge M;'(I) and P is any polynomial having no zeros on — oo <x<0.

We wish to find a generalized function ue M? (I) satisfying the operator equation (5.2). Taking the generalized
Mehler—Fock transform of both sides of Equation (5.2) and using Equation (5.1) we get

PG+ U =Glr)

where U and G are generalized Mehler—Fock transforms of u(x) and g(x) respectively. So that if P[—(E+r?)]#£0,
we can apply the inversion formula for the distributional Mehler—Fock transform and for each ¢ D(I), we get

G(r)

P[— ( ey z(r) P™" (cosh x)sinh x dr, ¢(x)>. (5.3)

~{1/2)+ir

{u, ¢ = lim <JN

Nesor

By Theorem 3.3 we know that
|G(r)| <Cr?® as r—-w

for some non-negative integer g depending upon g. Now, let Q(x) be a polynomial of degree greater than or equal
to g—Rem+2 having no zeros on the negative real axis. Then, the convergence of the right-hand sxde of Equation
(5.3) can be established as follows:

N G )
<J F[—,_(g?ﬁ 2(r) P™4 1, (cosh x) sinh x dr, ¢(x))
0 4

_ o " G(r) x(r) - -
_.<Q(Ax)-)o P[_(i_‘_rz)]Q[_&_l_rz)]P,mz,w(coshx)smhxdr,qb(x))

G( (7‘) m.n :
<J P[—(G+r "-)r]é[ E+r2)] P73 2y (COsh x) sinh x dr, Q(4,) ¢(x))

(by integration by parts).
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Let us suppose that the support of ¢(x) is contained in [4, B]. Then, we can find a constant Lsuch that for N,
N, > Lwe have

; <J G(r) (r) P (cosh x)sinh x dr, ¢(x)> }

P[ (4 + 7 2)] ~(1/2)+ir
B
< CJ dr J
N, A

Since for xe[A4, B},
] P71 2+ (cosh x) sinh x ; <C, forall r>0,

29 y(r)
P[*(z+r"')]Q[ G+

(cosh x) sinh x Q(4 )d)(w)

—-( 1 f2)+ir

using the estimate (1.7) we can find a positive constant M such that

N, r2q-2Rcm+l
JIsCM dr—-0 as N, N,-o0.
Vi L,P[-(ﬁwz)}at—(ﬁwzn N

Therefore

(Y G ar)
lim PL=GL )] s

exists and by completeness of D’(I) there exists f € D'(I) such that

(cosh x) sinh x dr, ¢(x) >

. YOG e - ,
ix_{ri 4 L ml’ " e (COsh X)sinh xdr, ¢(x)>=<f, ¢>. (5.4)

Now for all ¢eD(I), we have

lim (P(43) O\T(i(g_ ’f:’;)z)] pra . (cosh x)sinh x dr, p(x)>= (P(4%) [, $,

or
N
im{ | G(r)x(rP™] )., (coshx)sinh xdr, ¢(x)> ={P(4}) [, d>.
N-sco 0
Hence by our inversion Theorem 4.7, it follows that

g, 6> =C(PUA})]. $>-

This proves that f determined by Equation (5.4), which belongs to D’(I) and is the restriction of
ue M3 (I) to D(I), satisfies the operator equation (5.2).

6. A DIRICHLET PROBLEM WITH A DISTRIBUTIONAL BOUNDARY CONDITION

In this section we discuss a boundary value problem associated with the Legendre function

P_ oy @)= P‘lg J2ytir (2). Let us determine a function v which satisfies the equation
N 2
2 o cothrgv 292 +(cosech? £ + 1) =0 ©6.1)

under the following boundary conditions.

(i) As §—0+, v(z, ) converges in D'(I), I=(0, o) to some generalized function g(r)e (M} ) (J).
(i) As 8—>n—, 0v/08 converges to zero uniformly on every compact subset of 0 <1< c0.

The Arabian Journal for Science and Engineering, Volume 10, Number 1.



Ram S. Pathak and Ram K. Pandey

Let (r, 8) be the distributional generalized Mehler—Fock transform of order zero of v(z, §). Then by Equation
(6.1), we get

0%v

367 "

25=0,
so that

U= A(r)cosh r@ + B(r)sinh r0.
In view of the boundary conditions (i} and (i) we get

v={g(t), P_, . (cosh 7)) (cosh rf —tanh rn sinh r6)
= G(r)(cosh rf —tanh rr sinh r@),

where

G(r)=<g(1), P_; 3, (cosh 1)).

Now, applying the inversion theorem for the generalized Mehler-Fock transform, we have
ulr, ), Pl1)>

N
= lim (J x(r)G(r) (cosh r 6 —tanhrrsinhr@) P_, ) ., (cosh 1) sinh tdr, (7))

N-ow 0

for each ¢e D(I). Consequently, in the conventional sense,

oz, 0)= lim LN ;c(r)G(r)99%8%(11;—}9z P _ 5, (cosh 7)sinh 7 dr. (6.2)
Therefore
%= }il_r}}o LN x(r)G(r) (_—LSCI_;%%:_Z_:__&) P_ 1 21, (cOsh 1) sinh 7 dr (6.3)
= J: x(r)G(r) (:r%g?ﬁr%;@)") P_ ;21 (cosh t)sinh 7 dr
+ JINX(")G(") (%W)P—mzwr (cosh 7) sinh tdr

=1,+1, (say).
Now, I, is easily shown to satisfy
|1,| <C,sinh (n—-0),
and using Theorem 3.3,

o
“21 <C2J~ eerqu—Rcm+3/2dr-

1

Therefore the integral in Equation (6.3) converges absolutely and uniformly for all § satisfying 0 <60, <0 <.
Hence we can take the limit 6 —~m— within the integral sign and verify the boundary condition (ii).

To verify the boundary condition (i), assume as in Section 5 that Q(x) is a polynomial of degree greater than or
equal to g —Rem+2, having no zeros on the negative real axis. Then for each ¢ e D(I) with support contained in [a, b]
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we have

{u(z, 0), $(7))

—9
ﬂm@WﬁQﬁﬁ%fﬁxnywmmmeWWD
N b
= lim J é(E)Gg)ff%rcfsh ff)[ drf P_ 1y (cosh 7)sinh © (4 )(r)dz (6.4)
N-w Jo a

(by integration by parts).

Now in view of the asymptotic behavior of y(r) and G(r), the right-hand side converges uniformly with respect to
6, 0<0 <m. Therefore, letting -0+ and interchanging the limiting operation with respect to N and @ in the right-

hand side of Equation (6.4) we get

lim <ov(t, ), p(z)>

-0+
b

=lim | Q(4,)¢(r)dr
N-ow Ja

= lim
0

(by integration by parts)
={g.¢>

N

G0
o Q[_(%_*_rZ)] —(1/2)+ir

(by Theorem 4.7).

(cosh t)sinh tdr

b N
N;w ¢(r)dz J x(r) GOr) P _, 5y, (cosh 1) sinh T dr

Lastly, in view of the asymptotic orders of y(r) and G(r) and the fact that 0<0 <, it can be readily justified that

02 i}
(ar —cotht— a

82 5

7 02 +5 L+ cosech )v(r )

cosh r(t —6)
cosh rn

=Mfwm>
0

Nosoo

J0 0
(62 cthra 07

2

—5+5+cosech? ) —a2+ir(cOsh 7) sinh T dr.

Therefore, v(z, 8) as defined by Equation (6.2) satisfies the differential equation (6.1). The solution is unique in view

of Theorem 4.8.
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