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ABSTRACT 

The generalized Mehler-Fock transformation 

F(r): = f.rof(X)P~;~/l)+i' (cosh x) sinh x dx, 

where p~,/I(z) denotes the generalized Legendre function, is extended to a class of 
generalized functions. An inversion theorem is established by interpreting con­
vergence in the weak distributional sense. The theory thus developed is applied to a 
Dirichlet problem with distributional boundary conditions. 
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THE GENERALIZED MEHLER-FOCK 
TRANSFORMATION OF DISTRIBUTIONS 

1. INTRODUCTION 

The classical Mehler-Fock transformation has been successfully applied to deal with problems occurring in the 
mathematical theory of elasticity, particularly those concerned with analysis of stress in the vicinity of external 
cracks. 

A generalization of the Mehler-Fock transformation has been given by Braaksma and Meulenbeld [1] in the 
following form: 

J*(r): = LooJ(X)P~("1/2)+i' (cosh x) sinh x dx, (1.1) 

where P~'~12 +ir (cosh x) is the generalized Legendre function defined by 

(z+ l)n/2 [-m n-m l-Z]
p~,n(z) F(I-m)(z-l)m/2F k 2 +1; -k+-2-; I-m;-2- (1.2) 

for z not lying on the cross-cut along the real x-axis from 1 to - 00 for complex values of the parameters k, m, and 
n. The corresponding inversion formula is 

J(x)= Loo x(r)P~~/2)+~ (cosh x)J*(r)dr, (1.3) 

where 

1 m+n .) (l-m+n l-m-n ) ,jl-m-n )
x(r)=F --2-+lr F 2 ir F 2 +ir.L \--2--ir x( ) ( 

[F(2ir)F( - 2ir)1t2n - m + 2] -1. (1.4) 

Note that Equation (1.1) reduces to the generalized Mehler-Fock transform when m=n, and to the Mehler-Fock 
transform when m=n=O (see [2]). 

The conditions of validity for Equations (1.1) and (1.3) are provided by the following theorem due to Braaksma 
and Meulenbeld (see [1], p. 245). 

Theorem 1.1 

Let m, n be complex numbers with IRe nl < 1 Re m, and J(t) a function such that for all a> 1 

(i)J(t)(t-l)-1/4Iog(t-l)EL(I,a) if Re m=O; 
(ii) J(t)t -1/2 E L(a, 00). 

Further, let this function be of bounded variation in a neighborhood of t=x (x> 1). 

Then J(t) satisfies the relation rx(r) P~~!2)+i' (x)dr rP~(~f2)+i' (t)J(t) dt = HJ(x - 0) +J(x +O)}. (1.5) 

In this paper, we extend this transformation to a class of generalized functions and prove the inversion theorem 
by interpreting convergence in the weak distributional sense. In the end, we develop an operational calculus that is 
applied to solve a certain boundary value problem. (The aforesaid transformation with n=O was extended to 
generalized functions by BuggIe [3] and the case m = n = 0 was treated by Tiwari and Pandey [4].) 
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We make use of the following integral representation in our subsequent analysis. 

n-m n+m I-m' cosh t-cosh ¢Jd¢F-­[ 2 ' 2 2 ' 1+ cosh t ' 

(1.6) 

where Re m< t. This can be obtained from the representation 

F[a,b;c;zJ ~~;I'(,u) J: to- 1(1 ty- o-I(1_tz»-a-b F[) -a,). b;,u; tz] F[a+ b-l,). ,u; c -,u; (: -;:z}(, 

where 

Rec>Rej,i>O, z#1, larg(1-z)I<1t, 

on using 

F[a, b; c; zJ = (1 F[a, c ­ b; c; -(_z-J.
z-1t 

From Equation (1.6) we conclude that 

IP~';/2)+ir (cosh t) I~ IP~'~/2 (cosh t) I, Re m < 1/2. (1.7) 

From Equation (1.2) we have 

p~(~/2)+ir(cosht) O(t-Rem), t~O+. (1.8) 

Also, Equation (1.2), together with Equation (9) on p. 76 of [5J, yields 

pm,n (cosht)=0(e-(1/2)t) t~co-(1/2)+ir ,. (1.9) 

Lastly, from Equation (1.2), and Equation (17) on p. 77 of [5J, we obtain 

p~(~/2)+ir(cosh t)=0(1), r~O+ (1.10) 

= 2(1/2)(n-m-l)1t -1/2 (sinh t) -1/2(ir)m-(1/2) x 

{e irt + ie -i(m It+rt) +O(r -I)}, r~ + co. (1.11) 

The function x(r) defined by Equation (1.4) possesses the following asymptotic behavior. 

r _{ 0(r
2

), r~O+, IRe nl < 1-Re m (1.12) 

x()- (' )1-2m 
lr [1 + 0 (r - l)J (1.13)1t 2n - m +2 ' r ~ co. 

2. THE TEST FUNCTION SPACE Mp(l) AND ITS DUAL 

Let I denote the open interval (0, co). For a real number ex ~Re m and real number fJ ~t, let' be a continuous 
positive function on I such that 

Let Mp (1) be the collection of all infinitely differentiable complex valued functions ¢ defined on I such that for 
every non-negative integer k, 

'Yk(¢): = sup "(t)L1~¢(t)1 < 
O<t< 
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where 

m2 n2)k
LI~ = ( D2 + (coth t)D + 2(I-cosh t) + 2(1 +cosh t) 

and 

d 
D=-d·

t 

One can readily see that Mp(1) is a linear space and Yk' k =0, 1,2, ... , is a seminorm while Yo is a norm. Therefore, 
the collection of seminorms {Yk}' k =0, 1,2, ... , is separating (see p. 8 of [6]). We equip Mp(1) with the topology 
generated by the seminorms {Yk}~=O. A sequence {4>J:=l in Mp(1) converges to 4> in Mp(1) if and only if for each k, 
Yk(4)v-4>)~O as v~oo. A sequence {4>J:=l is said to be a Cauchy sequence if for each k, Yk(4)v-4>Il)~O as v and f.1 

both tend to infinity independently of each other. Following the technique of Pandey [7] it can be shown that 
Mp(1) is a sequentially complete locally convex topological vector space. D(1), the space of infinitely differentiable 
functions of compact support with the usual topology, is a linear subspace of Mp(1). The topology of D(1) is 
stronger than the topology induced on it by Mp(1). Hence the restriction of any f E Mp'(1) to D(1) is in D'(1), the 
dual space of D(1). 

For r ~o, the generalized Legendre function P':(~/2)+ir(cosh t) is an element of Mp(1), for p~;~/2)+ir(cosh t) satisfies 
the differential equation 

Therefore 

(2.1) 

Using (2.1) we get 

Yk [P':(~/2)+ir(cosh t)] = sup 1C(t)LI~ p~(~/2)+ir(cosh t) 1 < sup 1 (r2 +i)kC(t) P':(~/2)+ir(cosh t) I. 
O<t<oo 	 O<t<oo 

Now, using Equations (1.2), (1.8), and (1.9) we have 

Yk [P~(~/2)+ir (cosh t)] < 00. (2.2) 

3. 	THE DISTRIBUTIONAL GENERALIZED MEHLER-FOCK TRANSFORMATION 

ForfE MO' (1) where (X ~Re m and f3 <!, define the distributional generalized Mehler-Fock transformation F off 
by 

F(r): = <f(t), P~(~/2)+ir (cosh t), 	 (3.1) 

where r~O. 

Lemma 3.1 For Rem<!, (X~Rem and f3<!, the functions C(t)(a/ar)qP:'(~/2)+ir(cosht), q=0,1,2, ... are uniformly 
bounded over 0< t < 00. 

Proof. For O<4><t, we have 

(TU-(~)l COSh t _1)kn-m -(m+n).1._ .cosht-cOSh4» I ~ ~ 
F , '2 m, 	 "'" ~ (( cosh t+ 1k! (i-m)k2 2 1 + cosh t k = 0I 
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L k- 3/2 [1 +O(k- 1 )J < 00.~L 
k==Ok=O 

Therefore, from Equation (1.6) by differentiating with respect to r within the integral sign, we have 

1(:rYP"'i:12)+i, (cosh t) I.;; C(sinh tt,1(cosh t _~;:h"'",)m,+(112)' 

where C is a constant independent of t and r, and m,. denotes Re m. 

Now, using the integral representation given by Equation (8) on p. 156 of [5]: 

(sinh t) Jl f.t 
P~(cosht)=P~·O(cosht) (in) 1/2 r(i-Jl) 0 (cosh t-cosh tfJ)-Jl-(1/2)cosh [(v+i)tfJJdtfJ, 

where Re Jl we have 

I'(t) (:r). P"';~12)+i' (cosh t) I.;; C,(t)t'(pr)112 lli - m,)P""i~2 (cosh t). 

In view of the asymptotic estimates (1.8) and (1.9), the right-hand side is bounded uniformly for all tE (0, (0) 
provided that 

a~Rem, Rem<i, and P<i. 

Theorem 3.2 

For fEM~'(I), where a ~Rem, Rem<i, P and r ~O, let F(r) be defined by Equation (3.1). Then 

(:,yF(r) = <J(t), (:,y P''';;12 )+i, (cosh t) >, q 1,2, ... (3.2) 

Proof. The proof is standard (see p. 30 of [8J). 

Theorem 3.3 

ForfEMp'(I), a~Rem, Rem<i, P<i, let F(r) be defined by Equation (3.1). Then 

O(I) as r~O+ 
(3.3)F(r)= {O(r2q) as r~oo, 

where q is a non-negative integer depending on f. 

Proof. The proof is given by using the boundedness property of generalized functions (see p. 18 of [6J). Indeed 

~C max sup I(r2 + it '(t)P~(~/2)+i" (cosh t)1 
k O<t< 

~Cmax sup l(r2+i)k'(t)P~'~/2(cosh t)1 
k 0<'<00 

~ C' max (r2 +it, 
k 

from which the result follows. 
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Theorem 3.4 

LetfEM~'(I), where a:PRem, Rem<t, and f3<t. Then for a fixed real number N, 

N 

f
o x(r)P~i~/2)+ir(cosh t)(f(x), p~(~/2)+ir(cosh x)dr 


= <f(x), rx(r) P",j;j 2)+i,(cosh x) P:';;12)+i, (cosh t)dr>. (3.4) 

Proof. The expression (3.4) is mean~ngful since the integral on the right-hand side belongs to Mrp(I). Indeed, for 
fixed t> 0, let 

e(x, t): =rx(r) P'~;; /21+.,(cosh x) P:';; 12 )+i, (cosh t) dr. 

Then 

N 

LI~[O(x, t)] = f0 x{r) P~(~/2)+ir (cosh t) LI~ [P~(~/2)+ir (cosh x)] dr 

Therefore 

sup I((x)LI~[e(x, t)] I= sup I ((x) roN x(r)(r2+±t p~(7/2)+ir(cosh t) P~i~/2)+ir(cosh X)drl 
o<x<w O<x< J( 

l-m+n 
pm.n (cosh t)F + 

-1/2 ( 2 

<00. 

The fact that both sides of Equation (3.4) are equal can be proved by the Riemann-sums technique (see p. 186 of 
[6J). 

4. INVERSION OF THE DISTRIBUTIONAL GENERALIZED MEHLER-FOCK TRANSFORMATION 

For x, t, and y in 1=(0, ex:) and N > 0, define 

(a) GN(t, x): = rx(r) P:';; 12 )+i, (cosh x) P:'i; 12)+i, (cosh t) sinh t dr; 

(b) '" N(Y, x): = LN x(r) P:';;/2)+i,(cosh x) R:i;12)+i,(y)dr, 

where 

f
y 

R~i~/2)+ir(Y): 0 sinh tP~i~/2)+ir(cosh t)dt, Rem<2. 

Lemma 4.1 Let IRe n I< 1 - Re m. Then for fixed y > 0, 

for o<X<Y 

lim I/J N{Y' X)={; for X=y 
N-t'~ 

° for x>y. 
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Proof. In Theorem 1.1 we can set 

for O<t<y
J(cosh t)={~ 

for t> y, 

and get 

L~ P"'i;/21+;,(cosh t) J(cosh t) sinh tdt 

lOy 

= 1P:(~i2l+i,,(cosh t) sinh tdt 

Now, using inversion Theorem 1.1 we get 

for O<x<y 

= for 

for x>y. 

The left-hand side of the equation is nothing but the limit of 1/1 N(Y' x) as N ~ 00. 

rx(r) P"'i~/2l+;,(cosh x) R",n/2l+i,(y)dr { i x=Y 

Lemma 4.2 Let a and b be any two real numbers satisfying 0 < a < b and let IRe n I < 1 - Re m. Then 

for XE(a, b) 

for x~[a,bJ 

for x=a,b. 

Proof. We have 

b N br r r1 GNU, x)dt= Jo x(r)P:(~/2)+ir(cosh x)dr Ja P:(~/2)+ir(cosh t) sinh tdt 

LN x(r) P"';;/2,+;, (cosh x)[R"',;m+;,(b)- R""~1/21+i,(a)]dr 
= I/IN(b, x) -I/IN(a, x). 

Therefore, in view of Lemma 4.1, we obtain 

for XE (a, b) 
b 

lim r GN(t, x)dt = {~ for x~ [a, bJ 
N-+oo Ja 

l 
2 for x=a,b. 


In the rest of this work, L will denote an arbitrarily large but fixed positive number. 


Lemma 4.3 Let b>a>O and let IRenl<l-Rem. Then, for a fixed b satisfying O<b<ia, 

(i) r-' GN(t, x)dt--+O 

uniformly for all xE(a, LJ as N~oo; 

(ii) lb GN(t, x)dt~O 
x+i5 

uniformly for all xE[b,b-bJ as N~oo. 
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Proof of (i). In view of the asymptotic behavior of Equations (1.10)-(1.13), we have 

2Ir-' dt rx(r)p"';;/2)+,,(cosh x)P~i~12)+i,(cosh t) sinh tdr I.;; Ir-'dt IlL'0(r )Q,(t, x)dr I 

+f:-' dt If: C.,m sinh'12 tsinh -112x{ei"'+X) (1-e- 2m .i) + 2ie -im·COS r(X -t)+ O(r 1)}dr I, 
where Cn,m is a constant and Qr(t, x) is bounded for 0 ~ r ~ 1 and (t, X)E [a, L- 8] x [a, L]. 

Now estimating the right-hand side of the above inequality we observe that the left-hand side is an absolutely 
convergent double integral with respect to t and r. Hence, using Fubini's theorem and changing the order of 
integration, we have 

x-a IN lx-a 
la GN(t, x)dt = 0 x(r)dr a sinh t p~(7/2)+ir(cosh t) p~(~/2)+ir(cosh x)dt 

roo lx-a 
= JN x(r)dr a sinh t P~(~/2)+ir (cosh t) P~(~/2)+ir (cosh x)dt 

roo lx-a 
- IN x(r)dr a sinh t P~'~1/2)+ir(cosh t)P~'~1/2)+ir(cosh x)dt 

= Tl - T2 (say). 

Now, since both r- and t-integrals are absolutely convergent, using Fubini's theorem, we can write 

lx-a
Tl = lim x(r)dr (t x) sinh t p~(~/2)+jr(cosh t)P~(~/2)+ir(cosh x)dtf.

N 

N-+oo 0 a 

x-a 
= lim GN(t, x)dt =0 

N .... oo al 
by Lemma 4.2. Also, for sufficiently large N, substituting the asymptotic expressions for p~(~/2)+ir(cosh t), 
p~(~/2)+ir(cosh x) and x(r), we see that 

T2 = too dr f:-' (t-x)C.,msinh'/2 t sinh -112 x{ei"'+X) (1_e- 2m ",)+ 2ie -m.icos r (x t)+ O(r ')}dt, 

where C is a finite constant. Now, integrating the inner integral by parts, it is not hard to see that n,m 

T2 O(N- 1 
), as N-HYJ 


uniformly for all xE(a,L]. Consequently, Tl -T2~0 as N~oo uniformly for all xE(a,L]. 


The proof of (ii) is similar to that of (i). 


Lemma 4.4 Let /Ren/ <I-Rem and Rem<t. Then for O<a~t~b, O<c~x~d and N>O, the function GN(t,x) is 
bounded uniformly for all t, x, and N. 

Proof. Let N be any positive number less than N 1 (say). Then 

IGN(t, xJl .;; LN I Ix(r) P"'i~12}H, (cosh x) P",i;/2l+i, (cosh t) sinh t Idr 

sup /x(r)/ dr~ sup I p~'~/2(cosh x) I sup ~'~/2 (cosh t) sinh t 
c ';;x.;;d a';;t.;;b o<rNl 0f. 

N! 
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M 1 being a positive constant independent of x, t, and N. 

Next assume that N is a large number greater than or equal to N l' Then 

We have already proved that the first integral is bounded by M l' 

In view of the asymptotic behavior of 

P~:~1/2)+ir(cosh x), P~:~1/2)+ir(cosh t), and x(r) 

for large r and for fixed x ~c, t ~a, we have 

INx(r)P~(;/2)+ir (cosh x)P~(;/2)+ir (cosh t) sinh t dr 
Nt 

1 ( . h )1/2 IN=_ s.m t [eirX+ie-i(mn+rX)][eirt+ie-i(mn+rt)][1+0(1/r)]dr 

81t2 smh x N 


t 

1 (s.inh t )1/2 IN [eir(x+t) + ie -mnieir(t-x) +ie -mnieir(x-t) -e -2m nie -ir(x+t)][1 + o (1/r)]dr 
smhx N 

1 

1 (sinh.__t ) 1/2 IN . . . . . . .=__ [elr(x+t)+ie-mnlelr(t-X)+ie-mltlelr(X-t) _e-2mnle-lr(x+t)]dr 
81t 2 smh x N 

t 

+_1_(s.inh t )1/21N [eir(x+t) + ie -mnieir(t-x) +ie-mnieir(x-t) _ e- 2mnie -ir(x+t)]O(1/r)dr 
81t 2 smh x N 

1 

=11+12 (say). 

11 can be expressed as a sum of four integrals, each of which is separately bounded. For instance, 

N I I eiN(x+t) eiNt(x+t) I
eir(x+t)dr = .

Ii Nt 1(X+t) i(x + t) x+ 

12 is also a sum of four integrals, each of which is separately bounded. For instance, the first term in 12 is 

1 (sinh t )1/2 [iN eir(x+t) ] 1 (sinh t )1/2 [1 eir(x+t) 
NI IN 1 eir(x+t) ]

- -- 0 --dr =- -- 0 --- + ---dr 
81t2 sinh x N r 81t 2 sinh x r i(x + t) N r2 i(x + t) . 

1 1 
Nl 

The first term within the square bracket is 

eiN(x+t) eiNl(x+t) ] 

[ iN(x+t) iN1(x+t) , 

which is bounded. The modulus of the second term is less than 

1 IN 1 1 (1 1)
Ix+tl N r2 dr Ix+tl N1 - N ' 

1 

which is also bounded. The other terms can similarly be shown to be bounded. This completes the proof of the 
lemma. 
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Lemma 4.5 Let ¢(t)ED(1) with its support contained in [a,bJ. Then for O<o<}a, 

(i) r-' GN(t,x)q,(t)dt-+O 

as N-+oo uniformly for all xE[a+o,LJ; 

(ii) lb GN(t, x)¢(t)dt-+O 
x+o 

as N -+ 00 uniformly for all XE [0, b-0]. 

Proof of (i). Assume at first that ¢(t) is an infinitely differentiable real valued function on [a,x-oJ, a+o~x~L. 
Then ¢ is a function of bounded variation on [a, x oJ. Consequently, there exist monotonically increasing 
functions p(x) and q(x) on [a, x-oJ, with p(a)=q(a)=O such that 

¢(t) ¢(a) +p(t) - q(t), a ~ t ~ x - 0 

(see Theorem 6.27 on p. 120 of [9J). Hence r-,GN(t, x) q,(t) dt 

= r-'p(t)GN(t, x)dt- r-'q(t)GN(t, x)dx. 

The result can now be proved by using the second mean value theorem of the integral calculus and Lemma 4.3(i). 

The proof for a complex valued Coo function ¢ can be given by separating it into its real and imaginary parts. 

The proof of (ii) is similar to that of (i). 

Lemma 4.6 Let ¢(t)E D(1) with its support contained in the interval [a, b], then rGN(t, x)q,(t)dt~q,(x) 
in Mp (1) as N -+ 00, provided that 

!X~Rem, /J<t, Rem<min(t,1-IRenj). 

Proof. It can be readily seen that 

d x GN( t, x) = sinh t d t GN( t, x) 

where 

GN(t,x)= f: x(r)P"'(~j2)+i,(cosh x)P"'(~I2)+i,(cosh t)dr. 

Now 

Ax rGN(t, x) q,(t)dt= rsinh tAt GN(t,x) q,(t)dt 

= rGN (t, x) At [q,(t)] dt (by integration by parts). 

Therefore, operating d successively k times, we get x 

A~rG",(t,x)q,(t)dt= rGN(t, x) q,k(t)dt, 
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where 

Now, using Lemma 4.2 we can write 

~: '(x)A! [fGN(t, x) q,(t) dt q,(x) ] 

= lim ((Xflb GN(t, x) [¢k(t)- ¢k(X)] dt. 
N-+oo a 

It is therefore reduced to proving that 

'(x) fGN(t, x) [1/1 (t)-I/I (x)]dt--+O 

uniformly for all x as N ~ 00 where tjI(t)E D(I) with its support contained in [a, b]. 

For a fixed x ~2b, where O<b <min (-}, ±a), we can write 

'(x) fGrit, x) [I/I(t) I/I(x)]dt 

b 

=((X)(IX-o+ rx+o+ r )GN(t,X)[tjI(t)-tjl(X)]dt 
a Jx-o Jx+cJ 

= I 1 +12 +13 (say). 

At first we consider 12, For x ~b +b or x ~a b, 12 is clearly zero. Therefore we consider 12 for the case when 
a-b<x<b+b. We can write 

~8D1 sup ItjI'(1J) I sup IGN(t,x)l· 
a<'1<b (3/4)a<x<b+(1/2)a 

(1/2)a<r<b+(1/2)a 

Now using Lemma 4.4, we can find a constant D > 0 independent of b such that 

1121 <Db. 

For a given s > 0, we can choose b = min (±a, -}, siD) and obtain 

(4.1) 

Next, consider 

I I = '(x) r-' GN(t, x) [I/I(t)- I/I(x)]dt 

=11,1-11,2 (say). 

Now, 11,2 =0 if x ~a and x ~b. For xE(a, b), 

as N~ooI I 1,2 1 <Yo (1/1) 1r-' GN(t, x) dt 1--+0 
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uniformly for all xE(a, b), in view of Lemma 4.3(i). Therefore, 

uniformly for all x> O. 

Now, consider 11,1' Since 11,1 =0 if x<a+c5, we have to consider x~a+o. In view of Lemma 4.5, 11,1--+0 
uniformly for all xE[a+o,L] as N--+oo. Hence, assume that x>L, where L is a large number greater than 
max (2, b+-}). Since t/J(t) is of compact support contained in [a, b], 

11,1 '(x) r-' GN(t, x) !/J(t) dt 

= '(x) J: GN(t, x) !/J(t) dt 

'(x) J: !/J(t) sinh t dt LN xC,) P:"(:/2l+i, (cosh x) P"'i:/2l+i, (cosh t)dr. 

Let N 1 be a large but fixed number such that 1< N 1 < N. Then 

11,1 ((x)r!/J(t) sinh t dt x 

= ((x) J: !/J(t) sinh t dt x 

N\ 

Io x(r) P~(~/2)+ir (cosh x)P~(~/2)+ir (cosh t) dr 

+((X)f. 
b 

t/J(t)SinhtdtfN x(r)P~(;12)+ir(coshx)P~'~1/2)+ir(cosht) dr 
a Nl 

J 1,1 +J1,2 (say). 

Now 

b INl
J 1,1=((X) a t/J(t)sinhtdt 0 x(r)P~'~1/2)+ir(Coshx)P~'(1/2)+ir(Cosht)dr

f. 

<;; sup It/J(t) sinh t x(r) P~'~/2 (cosh t)1 (b-a)eflXO(e 1/2x) iON1dr 
a<;r<;b 


O<;r<;N 1 


= sup It/J(t) sinh t x(r) P~'~/2 (cosh t)l(b a)N 1 exp { (-}- P)x} 
a<;t<;b 


O<;r<;N1 


=O[exp { (-}-P)x)] as x--+oo. 
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Estimating as in the proof of Lemma 4.4, we can show that 

J 1,2 =O[exp{ - (!- f1)x} ] as x-+oo. 

Therefore, 11,1 can be made less than e/2 for all N > 0 by choosing x> L, Thus 

11 -+0 as (4.2) 

Similarly, using Lemma 4.5(ii) it can be shown that 

13 -+0 as N-+oo (4.3) 

uniformly for all x;;;.. 2B. 
Combining Equations (4.1), (4.2), and (4.3), we have 

lim 1=0 (4.4) 
N-oo 

where 1=11 + 12 + 13 , uniformly for all x ;;;"2b. 

For 0<x<2b, write 

I = (x) (rH +[J GN(t, xl[ifJ(t) - vAx)] dl 

= J 1 +J 2 (say). 

Now 

=0 because x+B<3B<a. 

Next consider J 2, Since 0<x<2b, b~min(}a,!) and ljJ(x) =0 for x<a, therefore 

J 2 =((X)lb GN(t,x)ljJ(t)dt 
x+.5 

(x)f ifJ(I) sinh I dtrx(r) P"'(;12)+i, (cosh x) P",;; /2)+i, (cosh t) dr 

iN ()F(' n-m+l . n m+l' l ,l-COShX)F(' n-m+l . n-m+l 1_m.l-Cosht)dr
Xr lr + 2 ,-lr+ 2 ' m, 2 lr + 2 ,-lr+ '2 

o 

=o(x:X-Rem){lb ljJ(t) sinh t2(n-m)/2coshn~sinh -m~dtx 
a 2 2 

IX ;;;"Re m, 
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since the above integrals are bounded. Thus 

lim 1=0 (4.5) 
N-+oo 

uniformly for all x E(0, 2b). 


Therefore, in view of Equations (4.4) and (4.5), 


lim 1=0 uniformly for all x> 0. 
N-.oo 

This completes the proof of the lemma. 

Theorem 4.7 (Inversion) 

Let Re m <min(t, I-IRe nl), a ~Re m, and f1 Assume thatfE M~'(I) and F(r) is the distributional generalized 
Mehler-Fock transformation off defined by Equation (3.1). Then for each ¢(t)E D(I), 

~!(r x(r) F(r) P "'i:/2)+1, (cosh t) sinh t dr, 4>(t) 

= <f(t), ¢(t). 

Proof. Assume that the support of ¢(t) is contained in the interval [a, bJ c(O, ex)). In view of Theorem 3.2, F(r) is a 
continuous function of r. The integral 

IN x(r) F(r) P"';:/2)+i, (cosh t) sinh t dr 

is therefore a continuous function of t, and as a consequence it generates a regular distribution. Hence we can write ( r x(r) F (r) P"';;/2 )+i, (cosh t) sinh t dr, 4>(t) 

= r4>(t) sinh t dt IN x(r) P""~[/2)+i,(cosh t)(f(x), p ....~[/2)+[,(cosh x)dr 

= r4>(t) sinh t(f(x), rx(r) P"';;/2)+i, (cosh t) P "'(; /2)+i, (cosh x) dr) dt 

(by Theorem 3.4) 

([(x), r4>(t) GN(t, x) dt) 

~<f(x), ¢(x) 

by Lemma 4.6. This completes the proof of the theorem. 

Theorem 4.8 (Uniqueness) 

Let f, gE M~'(I) and let F(r), G(r) be their generalized Mehler-Fock transforms respectively. If F(r) = G(r) for all 
r>O, then f =g in the sense of equality in D'(I). 

The proof is trivial. 
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5. AN OPERATIONAL CALCULUS 

In this section, we shall apply the preceding theory in solving certain differential operator equations. Define the 
operator 

L1*' M!X'(J)-+ M!X'(J)
t • Ii fl 

by the relation 

<L1:f(t), </>(t): <f(t), L1t</>(t) 

for allfEMp'(1) and </>(t)EMp(1) for C(~Rem and fJ It can be readily seen that 

<(L1nkf(t), </>(t) <!(t), L1~ </>(t) 

for each k = 1, 2, 3 ... In case f is a regular distribution generated by an element of 0(1), then 

2 2m n
(coth t)D+cosech2 t+ h + h .

2(1 -cos t) 2(1 + cos t) 

It can be proved that 

(5.1) 

where Mf[f(x)J denotes the generalized Mehler-Fock transform off(x). Now we consider the operator equation 

(5.2) 

where gEMp'(1) and P is any polynomial having no zeros on -ClJ<x<O. 

We wish to find a generalized function UE Mp' (1) satisfying the operator equation (5.2). Taking the generalized 
Mehler-Fock transform of both sides of Equation (5.2) and using Equation (5.1) we get 

P[ Ci-+ r 2)J U(r) = G(r) 

where U and G are generalized Mehler-Fock transforms of u(x) and g(x) respectively. So that if P[ -(i+ r 2 )J #0, 
we can apply the inversion formula for the distributional Mehler-Fock transform and for each </>E D(1), we get 

<U, <p) = lim <IN G1(r) 2 x(r) P~(~/2)+ir (cosh x)sinh x dr, </>(x). 	 (5.3) 
N.... ex: 0 P [ - (4 + r )] . 

By Theorem 3.3 we know that 

IG(r) 1< C r2q as r-+ CIJ 

for some non-negative integer q depending upon g. Now, let Q(x) be a polynomial of degree greater than or equal 
to q - Re m+ 2 having no zeros on the negative real axis. Then, the convergence of the right-hand side of Equation 
(5.3) can be established as follows: 

Nr G(r)<Jo P[ (± + r2 )J x(r) P~(~/2)+ir (cosh x) sinh x dr, </>(x) 

N _ * r G(r) x(r) m.n . 
-<Q(L1J Jo P[ (±+r2 )JQ[ -(±+~2)]P -(1/2)+ir(coshx) smhxdr, </>(x) 

= <	rN 

__... G(r) x(r) pm.n (cosh x) sinh x dr Q(L1 ) A.(x)J0 P[ - (± + r 2)]Q[ (± + r 2 )J -( 1/2)+ir ' x 0/ 

(by integration by parts). 
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Let us suppose that the support of ¢(x) is contained in [A, B]. Then, we can find a constant Lsuch that for N l' 
N 2 >Lwe have 

rN2 G(r) . IIJI = i <jN P[ -(i-+r2)] x(r) p~(~/2)+ir(cosh x)smh x dr, ¢(x) 
1 

N2 2q~ f r x(r) I f8 I m n . I1 "'" C 1 2 1 2 dr P -(1/2l+ir (cosh x) smh x Q(LI J ¢(x) dx. 
N

j 
P[ -(±+r )]Q[ -(4:+ r )] A 

Since for XE [A, B], 

I P~(~/2)+ir (cosh x) sinh x I <C 1 for all r ~O, 
using the estimate (1.7) we can find a positive constant M such that 


rN2 r2q-2Rem+l 

IJI<CM jN P[-(i+ r2 )]Q[ -(i+r2)] dr~O as Nl'N2~00. 

j 

Therefore 

. rN G(r) x(r) m n • 

~~<Jo P[ - (i + r2)] P -(1/2)+ir (cosh x) smh x dr, ¢(x) 

exists and by completeness of 0' (1) there exists j E 0'(1) such that 

. iN G(r) x(r) m,n . _
l!m < P[ _(1.. 2)] P -(1/2)+ir (cosh x) smh xdr, ¢(x) - <J, ¢). (5.4) 
N-H:j) a 4+ r 

Now for all ¢EO(1), we have 

!i~<PtA ;)rP[~(~~;2)l"'(~12)+;, (cosh x) sinh x dr, 1>(xl> = <P(A;)J, 1> >, 

or 

lim <rN 

G(r) x(r)P~(~/2)+ir (cosh x) sinh x dr, ¢(x) =<P(LI :)j, ¢). 
N-'>oo Jo 

Hence by our inversion Theorem 4.7, it follows that 

<g, ¢) =<P(LI :)j, ¢). 

This proves that j determined by Equation (5.4), which belongs to 0'(1) and is the restriction of 
UE Mp'(J) to 0(1), satisfies the operator equation (5.2). 

6. A DIRICHLET PROBLEM WITH A DISTRIBUTIONAL BOUNDARY CONDITION 

In this section we discuss a boundary value problem associated with the Legendre function 
P -(l/2)+ir (z) P~-'(~/2)+ir(z). Let us determine a function v which satisfies the equation 

02V OV 02V 
-coth T OT (cosech2 T+i)v=O (6.1) 

under the following boundary conditions. 

(i) As O~O+, V(T, 0) converges in 0'(1), 1=(0,00) to some generalized function g(T)E(Mp)'(1). 
(ii) As 0~1t -, ov /00 converges to zero uniformly on every compact subset of 0 < T < 00. 
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Let v(r, e) be the distributional generalized Mehler-Fock transform of order zero of v(r, e). Then by Equation 
(6.1), we get 

~2 ­u V 2 _ 
ae 2 -r v=O, 

so that 

V= A(r)cosh re +B(r)sinh reo 

In view of the boundary conditions (i) and (ii) we get 

V= <g{r), P -(1/2)+ir(cosh r)(cosh re-tanh r1t sinh re) 

G(r) (cosh re - tanh r1t sinh re), 

where 

G(r) = <g(r), P -(1/2)+ir (cosh t». 
Now, applying the inversion theorem for the generalized Mehler-Fock transform, we have 

<v(r, e), </>(r) ) 
N 

= lim <r x(r)G(r) (cosh r e-tanh r1t sinh re) P _(1/2)+ir(cosh r) sinh r dr, </>(i) 
N-+oo Jo 

for each </>E D(I). Consequently, in the conventional sense, 

. IN cosh r(1t - e) .
v(r, e)= hm x(r)G(r) h P _(1/2)+ir(cosh r) smh r dr. (6.2) 

N-+oo 0 cos r1t 

Therefore 

av lim IN x{r)G(r) (-r Sin~(1t-e)) P _(1/2)+ir(cosh r) sinh r dr (6.3) 
ae N-+oo 0 cos r1t 

1 (-rsinhr(1t-e)) .
x(r)G(r) h P -(1/2)+ir (cosh r) smh r dr 

o cos r1t1
( - r sinh r(1t - e) ) . 

+ f1 
N 
x(r)G(r) coshr1t p_O/2)+ir{coshr)smhrdr 

Now, II is easily shown to satisfy 

and using Theorem 3.3, 

,I21";C21°O e-,Or2q-Rcm+3!2dr. 

Therefore the integral in Equation (6.3) converges absolutely and uniformly for all e satisfying 0 < eo < e < 1t. 

Hence we can take the limit e~1t - within the integral sign and verify the boundary condition (ii). 

To verify the boundary condition (i), assume as in Section 5 that Q(x) is a polynomial of degree greater than or 
equal to q - Re m+ 2, having no zeros on the negative real axis. Then for each </> ED(I) with support contained in [a, bJ 
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we have 

(V(t, e), </>(t) 

. * IN x(r)G(r) cosh r(n - e) 	 . 
= hm (Q(A ) I 2 ] P-(I/2)+" (cosh t) smh t dr, </>(t)

N -+ 00 t 0 Q [ - (! + r) cosh rn Ir 

. IN X (r)G(r) cosh r (n - e) f.b 	 . 
= hm Q [_(± 2)] h dr P _(I/2)+ir(Cosh t)smh t Q(At)</>(t)dt 	 (6.4) 

N -+ ':YJ 	 0 + r cos rn a 

(by integration by parts). 

Now in view of the asymptotic behavior of x(r) and G(r), the right-hand side converges uniformly with respect to 
8, o~e~n. Therefore, letting e~o+ and interchanging the limiting operation with respect to Nand ein the right­
hand side of Equation (6.4) we get 

lim (v(r., 8), </>(t) 
/1-+0+ 

N . f.b r X(r)G(r) 	 . 
= !l~ a Q(At) </>(t)dt Jo Q[ _(±+r2)] P_(l/2)+ir(cosht)smhtdr 

= l,im f.b </>(t) dt IN x(r) G(r) P -(1/2)+ir (cosh t) sinh t dr 
IV -+':YJ 	 a 0 

(by integration by parts) 

(g, </» (by Theorem 4.7). 

Lastly, in view of the asymptotic orders of x(r) and G(r) and the fact that 0 ~e~n, it can be readily justified that 

2
a2 a a 2 ) 

( at 2 -coth t at + ae 2 +i+cosech t l'(t, e) 

2 
_ l' IN cosh r(n - e) (a 2 

a a 1 2 ) ~. 
- 1m x(r) G(r) h -a2 -coth t -a+ ae 2 +4" + cosech 	 t P -(1/2)+ir (co:sh t) smh t dr. 

N-+oo 	 0 cos rn t t 

Therefore, v(t, e) as defined by Equation (6.2) satisfies the differential equation (6.1). The solution is unique in view 
of Theorem 4.8. 
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