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ABSTRACT

In this paper we describe a method for obtaining simultaneously rational and
polynomial approximations for functions defined by linear differential equations
with associated boundary conditions. The essence of the method is that an
expansion in either Chebyshev or Legendre polynomials is assumed for the function
and its derivatives occurring in the differential equation; the coefficients of expansion
are then determined by substituting in the differential equation and equating the
coefficients. Some numerical examples are given of the application to some first and
second order differential equations.

The method in its present form may be considered as an extension of Clenshaw’s
method (1957) into the complex domain.
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RATIONAL AND POLYNOMIAL APPROXIMATIONS
FROM CHEBYSHEV AND LEGENDRE SERIES
FOR LINEAR DIFFERENTIAL EQUATIONS

1. INTRODUCTION

Our principal aim in this paper is to describe a
method that enables us to obtain simultaneously an
accurate polynomial and rational approximations for
functions defined by linear differential equations. The
latter will be considered as an extension of the method
to the complex domain.

Suppose that we have a linear differential equation
of order m of the form

i

(x)—=:= 1
T p) gi=a) M
where ¢g(x) and p(x), i=0,1,2,..., m, are functions in

x. The complete system uniquely determining the
function y(x) needs m initial or boundary conditions
together with Equation (1). Two methods for the
numerical solution of Equation (1) are due to Lanczos
[1] and Clenshaw [2]. Lanczos [1] appends a
perturbation term proportional to a Chebyshev poly-
nomial to the right-hand side of Equation (1) and
solves the perturbed equation exactly; the result is a
polynomial approximation to y(x). Lanczos’s method
may also be extended to yield rational approximations
to y(x) valid for arbitrary complex values of x (see Fox
and Parker [3] and Lanczos [4]).

On the other hand, Clenshaw [2] assumes that y(x)
and its derivatives may be expanded in Chebyshev
series, and derives by means of recurrence relations the
coefficients for the expansion of y(x). The main aim of
the following is to give a straightforward extension of
Clenshaw’s method into the complex domain, which
consequently yields a rational approximation instead
of a polynomial one.

There is no need to discuss the error analysis of this
method, because the coefficients of the expansion are
in general readily evaluated, and approximations of
any specified accuracy are provided by mere trunca-
tion. An analysis similar to that given in this work
could be made for expansions in terms of ultra-
spherical polynomials C!”(x). We hope to describe this
analysis in a forthcoming paper.

The present method is described in Sections 2 and 3,
and is illustrated by numerical examples in Section 4.
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In Section 5, we deal with the application of the
method when the solution of the differential equation
is expanded in terms of Legendre polynomials.

2. CLENSHAW’S METHOD OF SOLUTION

Suppose that the range of integration is the closed
interval [—1, 1], and that the required solution of the
differential equation (1) is y(x). Then if y(x) is con-
tinuous in [—1, 1], we can write

wx)=dap+ 3 0, Tx) @)

where the coefficients a, are to be determined. The sth

derivative of y, y*(x), is expanded formally as

YO =19+ Y, 9T, () A3
for s=1, 2,..., m. T (x) is the Chebyshev polynomial
defined over the interval [—1,1] by

T (x)=cosnf, O=cos™!x. 4)

The method of determining the coefficients a,
depends upon two simple relations. From
1 1
ZJv;(x)dw——mmAx)—,m?;,_l(x) B

it can be found easily that the equation relating the
coefficients of y' to those of y** 1), is

znai’s) za;sjli) = aﬁs‘:-li) (6)
and from
2xT(x)=T,,,(x)+ T, _,(x), (7

if C,(y) denotes the coefficient of T, (x) in the expan-
sion for y(x) when n>0, and twice this coefficient when
n=0, then

Co(xy)=3a,_+a,,,) ®)
and thus
C,(x*y)=3a,_,+2a,+a,,,). )
Generalizing, we see that

k
Cx*)=27% ¥ (), sy (10)
=0

i=



where a_,,=a, for all m. In this equation we may
replace y(x) by y®(x) provided a, is changed by a®.
From Equation (10), the quantities C,(xy),
C,(x*y),..., C (x™y) can easily be found, and so in
Equation (1) C,(p,(x)(d'y/dx')) can rapidly be written
down if p,(x) is a polynomial in x. In cases where p,(x),
i=0, 1,..., m, are not polynomials in x it is sometimes
best to replace them by suitable polynomial approx-
imations. Substituting Equations (2) and (3) into
Equation (1) we obtain, by means of Equations (6) and
(10), relations for the coefficients a® for s=0, 1, 2,.. .,
m and all n. These relations and those obtained from
the boundary or initial conditions are equivalent to an
infinite set of linear equations in the unknowns a.
The numerical solution of these equations can be
performed by the two methods described in detail by
Clenshaw [2]. These are the method of recurrence and
the iterative method. The starting point of the method
of recurrence is to assume that a® =0 for s=0, 1, 2,...,
m and n>N, where N is some arbitrary positive
integer, and to assign arbitrary values to a'9. The
values of ¢ for n=N—1, N—2,..., 0, may then be
obtained from the recurrence relations. Thus, apart
from a small residual in the equations near n=N, all
the equations are satisfied, except possibly a few in the
neighborhood of n =0 which will not have been used if
the recurrence process yields a, without making use of
them. The solution of the problem requires the satis-
faction of these remaining equations, and of the boun-
dary conditions. This may be achieved by repeating
the recurrence process with different arbitrary values
of a¥, and taking the appropriate linear combination.
For instance, if the solution we seek is the only
solution of the differential equation with a convergent
Chebyshev expansion, then a single trial solution
obtained by recurrence will yield this required result
when multiplied by a constant factor. This factor is
usually given by the satisfaction of a boundary con-
dition. The method is in general quick, the main
disadvantage being that N may be chosen either too
small or too large. In the former case the required
accuracy for the coefficients may not be obtained, in
which case the computation must be repeated with a
larger N. If N is chosen too large, more computation
than necessary will have been done. In general a
solution by recurrence is direct and rapid although
care must be taken that figures are not lost from the
most significant end when linear combinations of solu-
tions are taken. If this does occur, the solution may be
improved using the iterative method.

The iterative method starts with some initial guess
for the a, that satisfies the boundary conditions. From
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these values, Equation (6) can be used to compute a'"),
a?, etc. When all @, s=1, 2, ..., m have been found,
these values can be used to compute a new a, from the
recurrence relation, again satisfying the boundary
conditions. This procedure is continued until the
desired accuracy is reached.

3. EXTENSION OF THE METHOD TO
THE COMPLEX DOMAIN

To extend Clenshaw’s method to the complex
domain, we consider instead the function y(zx), where
x is the independent variable, —1<x<1, and z is
regarded as a parameter that may take any real or
complex value. The function y(zx) satisfies the
differential equation

3 00 2 a0 (i)

Clenshaw’s method is applied to get a polynomial
approximation in x, say Rz, x), for y(zx) in the form

Ry(z,x)= a:)[zao(z)+z (@)T (x :| (12)

The coefficients a,(z) are now rational functions in z
since the recurrence relations for the coefficients a®(z)
involve such functions. The multiplying factor 1/a(z) is
another rational function in z resulting from the satis-
faction of an initial condition. Finally, putting x=1 in
Equation (12) yields a rational function R (z, 1)=Y(z),
say, which approximates y(z) for any real or complex
values of z.

It is to be noted that if we put z=1 in Equation (12),
then we get the usual polynomial approximation for
the function y(x). It is also interesting to note that the
rational approximation obtained by the above method
and Lanczos’s method [4] have been found not to be
the same. While it has been reported by Fox [5] that
in the case of polynomial approximation, the two
methods yield the same approximation.

4. NUMERICAL EXAMPLES

Example 1
Consider the differential equation

2

d dy
Sl +16xy=0; y0)=1,

x e y(©)=0. (13)
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First, we observe from the differential equation, and
the boundary condition y'(0)=0, that the solution

sought is even. Let x-xz, R(z,x)=Y(zx), and
—1<x<1. Then Equation (13) takes the form
xR"(z, x)+ R'(z, x)+ 1622 xR(z, x) =0
R(z,0)=1, R'(z,0)=0 (14)

where primes denote derivatives with respect to x, and
z is a parameter. Also, let

Y(zx)=R(z, x) =1a,(z)+ i a,(2)T (x). (15)
n=1

Comparing coefficients of T, (x) in the expansion of the
terms of the equation, we have

C,(xR")+C,(R')+16z2C,(xR)=0.

Therefore, from Equation (10) we obtain
%(“fﬁzl+aff—’1)+ai“+'8zz<a,,+l,+an.~1>=0~ (16)

Making use of Equation (6), Equation (16) simplifies
to

n
an—z=an+2‘@(“fnl+)1+aﬁfl—)1)‘ (17
This and the equation
alV =all) +2na, (18)

solution. Taking a,,=1 with a,,=a,,=...=a{!)=
aJ=...=0, we obtain the trial solution given in
Table 1. We find that when this trial solution has been
computed, all Equations (17) and (18) have been
satisfied to a certain accuracy. Thus, only the

condition R(z,0)=1 remains to be satisfied, i.e.
1 o
8, —a,ta,—a +ag—a;, =1

(19)

This is done by multiplying the trial solution by a
factor afz). The trial solution yields

Jao—a,+a,—ag+ag—a,,=—(3z'+17.5z%
+1122° 4 6482* +2,88022 + 7,200)/2*°

and must be multiplied by the reciprocal of this
quantity. Thus we have

o(z)

, 1 5
Re 9= B0+ 3 00T, 0| @0
n=1
where the values of a, are given in Table 1 and a(z) is
given by

a(z)= —(3z'°+17.528 4+ 1122° + 648z*
+2,8802 +7,200)/2'°,

Finally, put x=1. Equation (20) yields the sought-for
rational approximation in the form

R(z, 1)=y(z)

(—321°+241.528 - 3,7602° +17,9282* — 25,920z% +7,200)
(3210 +17.52% + 1122° + 6482* + 2,880z + 7,200)

can be used alternatively to get a rational approximate (21)
Table 1. Computation of Trial Solution for Example 1
n Trial 1 z2 z* 28 28
z197ng (2) 227 "all(z)

0 z'%, —14400 +23,040 —11,376 +1,728 -8l
1 284 +57,600 —63360 —18,624 —1,680 +36
2 z%a, + 14,400 — 8,640 +1,536 -72 +1
3 z8aP —28,800  +12,480 -1,392 +32
4 z%a, - 3,600 +960 —64
5 z*al) +4,800 —880 +32
6 z*ag +400 —40 +1

| 7 z2aP —400 +20

8 z2ay -25
9 ay) +20

10 a, +1

Note. z%a, = —3,600+9602% — 64z* and z*a{l’=4,800 — 88022 +32z*.
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As a check we find that y(1)= —0.39717, y(3)=0.22389
which arein agreement with the analytical values J,(4) =
—0.39715 and J,(2)=0.22389.

It is to be noted here that the polynomial
Chebyshev approximation can be obtained directly
from Equation (20) by taking z=1. In this case
Y(x)=R(1,x)=0.0502T,(x)—0.6653T,(x)

+0.2490T,(x)—0.0332T4(x)
+0.0023 T (x)~—0.0001T, 4 (x),

which is in agreement with that obtained by
Clenshaw [6].

Example 2

Suppose we want to find a rational approximation
for the function e**, xe[ — 1, 1]. This function satisfies

the differential equation
y=2xy=0, y0)=1. (22)

If x—>xz, R(z, x)=y(zx), and —1<x<1, then Equation
(22) takes the form

dR _,
F 2z°xR=0, R(z,0)=1. 23)

Also, let R(z, x) be given by Equation (15). Comparing
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the coefficients of T, (x) in the expansion of the terms
of Equation (23), we have

C(R")—2z*C,(xR)=0.
Therefore, from Equation (8) we get

al’—z%a,_,+a,,,)=0.
With this equation in the form

1
=-27ai11)—an+1 (24)

n—1

and Equzation (18) we can readily compute a, and a'".
Since e* is an even function, a,, , =a%)=0 for all n.

As a starting point we have taken a,,=1,
a,=a,,=...=ay=a)=...=0. With these starting
values, Equations (24) and (18) can be used to compute
a,,a! for all n < 12. The complete computation is shown
in Table 2. These values of g, have to be multiplied by a
factor 1/a(z) which is determined from the as-yet-
unsatisfied boundary condition. This gives

alz)= é‘ao(z) - az(z) + aa(z) - ae(z)
+ag(z)—a,q(z)+a,,(2)
from which we find

a(z)=(6.5z'% —1822'° +2,91228 — 29,9522
+199,680z* —798,72022 + 1,474,560)/z12.

Table 2. Computation of Trial Solution for Example 2

n 1 z? z* z® z8 z10 12
zt27"g (z) zH7mgl)(z)
0 z”ao 2,949,120 —122,880 153,600 —6,144 1,152 —36 1
1 z1%g(Y 2,949,120 + 614,400 122,880  +9,216 576 +12
2 10g, 737,280 —30,720 15,360 —576 48 -1
3 z8 a$} 737,280 + 61,440 11,520 +384 16
4 zfa, 92,160 —3,840 960 -32 1
5 z%alV 92,160 + 3,840 640 +8
6 z8ay 7,680 -320 40 —1
7 Z4alh 7,680 +160 20
8 z* ag 480 -20 1
9 z2al) 480 +4
10 2ay, 24 -1
11 aty) 24
12 ag, 1

Note. z8a,(z)=92,160—3,840z% +960z* — 322°+ z® and z%a'! (z)=92,160 + 3,8402* + 640z* + 82°.
4 5
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Thus we have
1 6
R(Z’X)=F‘Z)|:%a0(2)+n§1 a2n(z)T2n(‘x)}‘ (25)

Put x=1, and Equation (25) yields the required
rational approximation for e*® in the form
¢’ =R(z,1)=P(2)/Q(2) 26)
where
P(z)=(0.5z'% + 4229 4+ 1,120z5+ 16,1282°
+138,240z* + 675,8402% 4+ 1,474,560)
0(z)=(6.52"2 — 182219+ 29122% — 29,9525
+199,680z* — 798,720z + 1,474,560).
As a check we find R(1,1)=2.718282=e. Again the
usual polynomial Chebyshev approximation can be
obtained from Equation (25) by taking z=1. In this
case
e*? =R(1, x) = 1753388 T, (x) +0.850392 T,(x)

+0.105209T,(x) +0.008722T(x)
+0.000543 T, (x) + 0.000027T, o(x)
+0.00001T, ,(x). 27)

Relation (27) is in agreement with that obtained by
Clenshaw [2].

Example 3

Consider the exponential integral

E()= jx S;—dt. (28)

For large values of 1, the following asymptotic
expansion holds

e’ 1 2t 3!
Ei(t):T(l—?+;§—t—3+. . )

The function E(t) is an important transcendental
function not only in the real range but everywhere in
the complex domain. Let us now write

-t

‘ 1
E()="——yx), x=1, @9

then the function y(x) satisfies the differential equation
x2y +(1+x)y=1. (30)

A knowledge of the function y(x) in the range 0<x <1
enables us to find the values of E,f) in the range
1<t<cw. We therefore solve Equation (30) in the
range O0<x<1, using the shifted Chebyshev

The Arabian Journal for Science and Engineering, Volume 10, Number |

polynomial T }(x) defined by
T ¥(x)=cos[ncos ™' (2x —1)].

In the range 0<x<1, the coefficients of the
expansion of y®(x) are denoted by A®, and the
coefficient of T¥*(x) in the expansion of y(x) by C¥(y)
for n>0. Again C*(y) denotes twice the coefficient of
T#(x). The equations corresponding to Equations (6)
and (10) are then given by

AP =AP— AR (1)
1 k
C:(xky)zf Z (i;k)A,.—IH-," (32)
i=0

Now, let x—xz, R(z,x)=Y(zx), and 0<x<1. Then
Equation (30) transforms to

dR
L R=1.
zZX dx +(1+2zx) (33)

Here the function R(z,x) has the expansion

R(z,x)=3A4,2)T¥x)+ Y A,@)T*x). (34
n=1
Comparing the coefficients of T *(x) in Equation (33)
yields

z
1—6(;15}:2 +4A40) +640+4410 +40,

P4, 424,404, )=CLO (9

The right-hand side is of course zero for all n except
n=0. Using Equation (31) to climinate A"}, and A",
we have

z(A;ﬂZl +2A§”+A§f_) J+nz(A,_ —A4,. )
+2(z+2)4,=4CX(1). (36)
This equation and Equation (31) are used to obtain
the coefficients by recurrence from an arbitrary

starting value in the usual way. For n>0 the
equations, in the form in which they are used, are

A _, =4

n+1

1 z+2
[Ai,ljl +241+A40 +2( )An], (37)

n 4

n—1

AD =AW 4anA | (38)

It is to be noted that when A, has been obtained,
Equation (36) with n=0 has not yet been satisfied. If


http:P(z)=(0.5Z

we denote the left-hand side of this equation by L, we
have

L=2[z(AL+APV)+(z+2)4,].

All the equations that have been used in computing
the trial solution are homogeneous, and we can
therefore arrange for the whole set to be satisfied by
multiplying the trial solution by the factor 1/a(z),
where

oz)= =[zZ(AP+AP)+(z+2)4,]/4.

4Cx* (1)

The coefficients so obtained satisfy all the Equations
(36) and are thus the coefficients in the required
Chebyshev expansion. The computational details,
starting from a trial solution, 4,,=10, 4, =4,,=
..=AY)=A4"=...=0 are given in Table 3.

From the trial solution, a(z) is found to be

a(z)=(102z1 425,456z + 518,7162° + 2,733,405z
+5,532,17127 4 5,232,8862° + 2,580,58823

+707,0372% 4+ 112,625z + 11,0142% + 664z + 16)/4z°.

Thus we have

10
R(z,x)=i|:%Ao(z)+ Y A"(z)T:(x)}. (39)

d(Z) n=1

Put x=1, Equation (39) yields the required rational
approximation for the function y(z) defined by
Equation (29) in the form

y(2)=R(z,1)=P(2)/Q(2), (40)

where

P(z)=4(1882'° + 21,5842° 4+ 244,030z® + 746,049.5z7
+897,087.52° + 511,6362° +153,215z*
+25,710.523 4 2,595.522 + 162z + 4),

0(z)=(102z1 4+25,4562'° + 518,7162° + 2,733,4052®

+5,532,17127 +5,232,8862° + 2,580,5882°

+707,037z% +112,625z° + 11,0142% + 664z + 16).
As a check we find E,(1)=0.2193838, the correct value
being 0.2193839. Here it is to be noted that y(0)=1
which is exactly correct with the value of y at zero.
Again the polynomial Chebyshev approximation is
obtained from Equation (39) by taking z=1. This
gives
y(x)=R(1,x)

=0.757872T ¥(x)—0.191887T ¥(x) +0.037503 T *(x)
—0.009074T ¥(x)+0.002511T }(x) —0.000764 T ¥(x)

E. H. Doha

+0.000250T %(x)—0.000087T *(x)+0.000031 T ¥(x)
—0.000011T ¥(x)+0.000002T *,(x). 41)

The relation (41) is again in agreement with that
obtained by Clenshaw [2].

5. POLYNOMIAL AND RATIONAL
APPROXIMATION FROM LEGENDRE
EXPANSION

We shall consider in this section the expansion of a

function f(x) in terms of the Legendre polynomials
P (x). Let

yx)= 73 a,P,(x) (42)
n=0
and for the s™ derivative of y
yWx)=Y a¥P (x), s=1,2,...,m. 43)
n=0

Then,
@«
s+1 +1
Y=Y gt*VP (x).
n=0
On making use of the recurrence relation

1 dP, ., (x) 1 dP,_ (%)

P = —
) 2n+1 dx 2n—1 dx
we get
['e} a(s+1) a(s+1) dP (X)
(s+1) _ n—1  “n+1 n . 44
Y El[zn_l 2n+1:| dx “44)
On differentiating Equation (43), we find
x . dP (x)
(s+1) _ (s) n . 45
Y ngl a" dx ( )

Equations (44) and (45) give
ails—:‘-ll) a(s +1)

@1 ner 5 4
" Toam—1 2+l " (46)

This equation is not as easy to use as Equation (6),
since the coefficients on the right-hand side are func-
tions of n. To simplify the computing, we define

a¥=mn+)PbY; n>0, s=0,1,2,...,m (47
The Equation (46) then takes the simpler form
@Cn+1)pY=pD—psrD  p>1. (48)
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http:746,049.5z

E. H. Doha

EZIST+4p1) — =(2)J¥Z pue ;286 +29¢ +7=(2)*y ,2 310N
o1

o1+ 14 01
00t + . .
w— - ti14 Ve 6
TISTI—  whI—
86+  9¢+ T+ Bz Y.z 8
9¢s° e+ TSTT+  $9+
081— IL1— 87— 1— BV o2 ez L
6S9—  PO6Y— v8L—  8T— . .
167+ 6L+ 10T+ oz+ I+ mV¢? Vo 9
0Zs'01+  8v0°sT+  888%+ 08P+ T+ . .
9Ey — £T91— SYO'T—  TIT— 81— - WV 2 vz S
TULTST~ POCLE—  PRITT—  89TH— 09¢—  OT— . .
9+ 110+ 9SH'y + 8091+  oOvZ+ 61+ I+ WV % Vo? ¥
LY OT + YTTi6L+ P81°9L+  80T9T+  ¥98°¢+ pOE+ 91+ . .
658 — 96— 01,91 — 010'0T—  8¢§T—  91E—  ¥T— - oV oZ V.2 €
08$'sT— 966'9%1— $0TTCT—  88EWCT—  9I80€— TIRE— 88—  TI— . .
POI°T+ #88°61 + $8T'8S + $L6°6S+ S60cT+  889%F+ TS+ LE+ I+ WV .2 VeZ 4
vRL6T+  96T°8ET+ 95 TS + 800vLy+  $T9'88T+  808°LE+ 80T+ 96T+ 8+ . .
TLS'T— Tir'ey—  8L8107— £LT°80€ — 110°€0T—  8€¥99—  8PL1I— TITT— 6L— - V8?2 V62 I
$98°1€—  thP'6IE— 91L6T0T—  O8F'LSET—  098°TH8—  +9569T— O08TLP— 006v— 91— 8- . .
T8T°T+  OPTTOT+  96€°T08+ S8R°CTOT+  LE9'8STT+  89€LPI‘T+ +T68TE+ €6L°¢S+  LvEs+ 8T+ 8+ V2 V012 0
:_ﬂv\fmm Amwnv\roﬁn
012 6Z 4 Z of ¢Z »Z ez Z z 1 Jeny u

¢ odurexy| xo§ wonnjog Jewry, jo wonpeyndwo)) ¢ Jjqel

The Arabian Journal for Science and Engineering, Volume 10, Number 1

10



Again, let C, (y) denote the coefficient of P (x) in the
expansion of y. Then

on using the relation

WP ) @)

P (x)=—t"
P =319 2+ 1

Thus,

1
Cn(xy)zzn—n_-a nt n=0, (50)

{41 g gt
and in terms of the coefficients b,, we find

+1
cn(xy)ng,,_ . +nTb"+1’ n>0.  (51)
By continued application of Equation (50), we can find
C, (x?y), C (xy), etc.

In general, Equations (46) and (48) are only valid for
n=1, since a, and b, have not yet been defined for
negative values of n. (For the Chebyshev polynomials
T (x), a_,=a, for all values of n.)

E. H. Doha

For an expansion in Legendre polynomials, we can
give a meaning to a__ and b_, for n=1, 2,.... With
n=0, and from the recurrence relation (49), we see that
P_,(x) is indeterminate. We define P_ (x)= — P, (x),
so we find that in general

P_ (x)=—P,_,(x)

For the coefficients a* we must have a® = —a¥ |,
and from Equation (47) we deduce that b =b® | for
n=0, 1, 2,... and for all values of s.

To get a rational approximation from the Legendre
expansion for the differential equation (1), the same
procedure as given in Sections 2 and 3 can be fol-
lowed.

In the following, we compute the polynomial and
rational approximations for the solution of the dif-
ferential equation of Example 2 using Legendre poly-
nomials instead of Chebyshev polynomials. Let

o0

Wzx)=Rz,x)= Y a,(z)P,x). (52)

n=0

Comparing the coefficients of P,(x) in the expansion of
the terms of the differential equation (23), we get

1
W92 | 1 n+ _
@ @)-2z [2n-1a"“‘(z)+2n+3a"”(z) 0

Table 4. Computation of Trial Solution for Example 2 in Terms of b, and b" using Legendre Polynomials

n Trial 1 z? z* z® z8 710 712
2'27"p (2) 717 rpi(z)
0 712 b, 11,814,150 —2,149,507 589,981 —49,933 4,329 — 158 4
1 710 by 7,876,100 +667,289 211,214 +8,533 769 +12
2 zmb2 1,575,220 — 136,580 31,366 —1,588 88 -1
3 28pY 1,350,189 + 54,384 16,473 +329 17
4 8b, 150,021 -9,111 1,479 -51 1
5 26b0 136,383 +3,162 778 +8
6 z6b6 10,491 - 510 50 —1
7 b 9,792 +138 21
8 Z*b, 576 —24 1
9 e 546 +4
10 22b,, 26 ~1
1 bih) 25
12 b,, 1

Note. z*by(z)=576—24z2 + z* and z*b\1(2)=9,792 + 13822 + 21z*.
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and in terms of the coefficients b,, we find
2n+1 ;
lz-—b;“(z)ﬁii[nbn“1(z)+(n+ )b, ., (2)]=0.
With this equation in the form

17 2n+1
”_1=§;["?—-by>-—z(n+1)bm] (53)

and using Equation (48) with s=0 in the form

BV =) +(2n+1)b, (54)
we can compute b_, b'" and hence a, by the method of
recurrence,

Taking b,,=1, with b,,=b,=...=b}=b{l=

...=0, and rounding the coefficients of the powers of z
in the other coefficients as they are calculated, we
obtain the trial solution shown in Table 4. The coef-
ficients a(z) and a'’(z) can now be computed by
making use of Equation (47) with s=0 and s=1
respectively. These are given in Table 5. We find that
when this trial solution has been computed, all
Equations (53) and (54) have been satisfied to a certain
accuracy. The as-yet-unsatisfied condition gives

6
2 45,2 P,, (0)=u(z)
n=0

from which
a(z)= (5,907,075 —3,043,778.52% + 718,875.962*
—100,858.662°+9,02028 — 499.5921° + 14.7212)/z12.

Thus we have
1 6
y(zx)=R(z, x)= &(2_),;0 a,,(2) P,,(x). (55)

Put x=1 and Equation (55) yields the required
rational approximation for e** obtained from the
Legendre expansion in the form

e**=R(z, 1)=P(2)/Q(z),

E. H. Doha

where

P(z)=5,907,075+2,863,296.52% + 628,635z*
+80,640.52% + 6,43128 +305.5219 4+ 8212

and

0(z)=5,907,075—3,043,778.522
+718,875.96z* —100,858.662°
+ 9,020:/::3 —499.59210 +14.7212,

As a check we find y(1)=2.718281 =e. The polynomial
Legendre approximation is obtained from Equation
(55) by taking z=1, which gives

Wx)=R(1, x)=1.46265P(x)+ 1.05198P, (x)
+0.18354P, (x)+0.01868P (x) 4 080135P, (x)
+0.00008P, , (x). (56)

The relation (56) is in agreement with that obtained by
Elliott [7].

REFERENCES

[1] C. Lanczos, ‘Trigonometric Interpolation of Empirical
and Analytical Functions’, Journal of Mathematics and
Physics, 17 (1938), p. 123.

[2] C. W. Clenshaw, ‘The Numerical Solution of Linear
Differential Equations in Chebyshev Series’, Proceed-
ings of the Cambridge Philosophical Society, 83 {1957),
p. 134.

[3] L. Fox and 1. B. Parker, Chebyshev Polynomials in
Numerical Analysis, London: Oxford University Press,
1972, p. 151.

[4] C. Lanczos, Applied Analysis. London: Pitman, 1957.

[51 L. Fox, ‘Chebyshev Methods for Ordinary Differential
Equations’, Computer Journal, 4 (1961), p. 318.

[6] C. W. Clenshaw, ‘Chebyshev Series for Mathematical
Functions’, in National Physical Laboratory, Mathema-
tical Tables. London: Her Majesty’s Stationary Office,
1962.

[7] D. Elliott, ‘The expansion of Functions in Ultra-
spherical Polynomials’, Journal of the Australian
Mathematical Society, 1 (1960), p. 428.

Paper Received 15 August 1983; Revised 6 March 1984.

The Arabian Journal for Science and Engineering, Volume 10, Number 1

13





