ON COMPLETE BOOLEAN ALGEBRA OF PROJECTIONS

Adnan A. S. Jibril

Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, Saudi Arabia

The aim of this note is to prove that a bounded Boolean algebra of projections on a weakly complete Banach space X can be embedded in a σ -complete Boolean algebra of projections on X.

Throughout this note, X will be a complex Banach (3) If $E \in \mathbf{B}$ then $I - E \in \mathbf{B}$; space with a dual space X^* . The value of the functional x^* in X^* at *x* in *X* will be denoted by $\langle x, x^* \rangle$. (4) If *E*, $F \in \mathbf{B}$ then $E \vee F = E + F - EF$
We use $I(Y)$ to denote the plashed of all linear and $E \wedge F = EF$ are in **B**. We use $L(X)$ to denote the algebra of all linear bounded operators on X . The zero and identity operators in $L(X)$ will be denoted by 0 and I, respectively. ators in $L(X)$ will be denoted by 0 and 1, respectively. A Boolean algebra of projections, **B**, on X is said to $C(X)$ will be the algebra of all continuous, complexvalued functions on X . If A is a subset of X then real number. *clm(A)* is the closed linear manifold spanned by *A.* The field of complex numbers will be denoted by C.

commutative subset, **B**, of $L(X)$ such that $(\mathbf{A}E_i)X = \mathbf{A}E_iX$.

0377-9211/84/010051--03\$01.00

© 1984 by the University of Petroleum and' Minerals

- 1. NOTATIONS (1) $E^2 = E$ for each $E \in \mathbf{B}$;
	- (2) $0 \in \mathbf{B}$;
	-
	-

be bounded if $||E|| \leq M$ for every E in **B**, where M is a

2.2. Definition

2. PRELIMINARIES A Boolean algebra **B** of projections on X is com-**2.1. Definition 2.1. Definition here** if σ -complete) if for every subset (sequence) $\{E_i\}$ in **B**, the greatest lower bound λE_i and the least upper A Boolean algebra of projections on *X* is a bound vE_i of $\{E_i\}$ exist in **B** and $(vE_i)X = \text{clm}\{E_iX\}$,

2.3. Theorem

Let B be a σ -complete Boolean algebra of projections on X . Then the following statements are equivalent:

- (1) B is complete.
- (2) B is strongly closed.
- (3) B is weakly closed.

Proof

 $(1) \rightarrow (2)$: see Reference [4] (Corollary 7, p. 2201).

 $(2) \rightarrow (3)$: Since **B** is strongly closed, **B** = **B**^s (the strong closure of **B**). Since **B** is σ -complete then by Reference [4] (Theorem 27, p. 2218), $\mathbf{B}^s \supseteq \mathbf{B}^w$ (the weak closure of **B**). Since always $B^s \subseteq B^w$, it follows that $B = B^s = B^w$. Hence **B** is weakly closed.

 $(3) \rightarrow (2)$: Since **B** is σ -complete, **B**^s=**B**^w. Since **B** is weakly closed, it follows that $\mathbf{B} = \mathbf{B}^w = \mathbf{B}^s$ which means that B is strongly closed.

 $(2) \rightarrow (1)$: Since **B** is σ -complete, then by Reference [1] (Theorem 2.7, p. 350), \mathbf{B}^s is complete. Since **B** is strongly closed, $B = B^s$ which implies that **B** is complete.

2.4. Let B be a complete Boolean algebra of projections on X and let Ω be its Stone representation space [4], Theorem 1.12.1, p. 41). Then by Reference $[4]$ (Exercise 16, p. 2225), Ω is extremely disconnected in the sense that the closure of every open subset is open. If Σ_0 denotes the Borel field of Ω , then to each Borel set e_0 in Σ_{Ω} , corresponds a unique open-and-closed set *e* such that $(e_0 \backslash e) \cup (e \backslash e_0)$ is a set of the first category. Moreover, each Borel function differs from a unique continuous function, on a Borel set of the first category. Now if *e* is an open-and-closed subset of Ω , we denote by $E(e)$ the element of **B** corresponding to *e*. This mapping is extended to the Borel field Σ_{Ω} by setting $E(e_0) = E(e)$ for each Borel set e_0 , where *e* is the open-and-closed subset of Ω which differs from e_0 by a set of the first category, in the above sense. It follows from the definition of completeness and Reference [4J (lemma 4, pp. 2197-2198) that the vector and scalar-valued measures $E(\cdot)x$ and $\langle E(\cdot)x, x^* \rangle$ associated with *XeX* and *X*eX*,* respectively, are countably additive on Σ_{Ω} . By Theorem 2.2 of Reference $[1]$, **B** is uniformly bounded. Comparison of the above with the definition of a spectral measure ([3J, p. 119) shows that we may regard a complete Boolean algebra of projections as a spectral measure defined on the Borel field of the Stone representation space.

2.5. Theorem

A bounded Boolean algebra B of projections on a weakly complete Banach space X can be embedded in a σ -complete Boolean algebra of projections on X.

Proof. Let Ω be the Stone representation space of **B**. Let $K(\Omega)$ be the set of all characteristic functions of open-and-closed subsets of Ω , and let $\psi: K(\Omega) \to \mathbf{B}$ such that $\psi(K_e) = \mathbf{B}(e)$ be the representation isomorphism for **B**. Let $K^1(\Omega)$ be the algebra of all finite sums $\Sigma c_i K_{e_i}$ ($c \in \mathbb{C}$, e_i is open and closed in Ω), and let **B**¹ be the corresponding algebra of sums $\Sigma c_i B(e_i)$. Then ψ extends to an algebra isomorphism ψ^1 : $K^1(\Omega) \rightarrow B^1$ such that $\psi^1(\Sigma c_j K_{e_j}) = \Sigma c_j B(e_j)$ and ψ^1 is an isometry ([2], Theorem 2.1). Since Ω is totally disconnected, $K^1(\Omega)$ is norm dense in $C(\Omega)$. Hence ψ^1 can be extended to an isometric isomorphism (also denoted by ψ^1) ψ^1 : $C(\Omega) \rightarrow L(X)$ and by Reference [4] (Theorem 4, p. 2184),

$$
\psi^1(f)^* = \int_{\Omega} f(\lambda) E(d\lambda), \quad (f \in C(\Omega))
$$

where E is a spectral measure in X^* defined on the Borel sets in Ω . Let Σ be the algebra of Borel sets in Ω and let Σ_0 be the class of sets in Σ such that there is a spectral measure *F* defined by $F(e)^* = E(e)$ for every *e* in Σ_0 . Then it is easy to show that Σ_0 is a field (or a Boolean algebra of sets).

Let ${e_n}$ be a sequence of sets in Σ_0 then

$$
\langle x, E\left(\bigcup_{n=1}^{m} e_n\right) y \rangle = \langle x, F\left(\bigcup_{n=1}^{m} e_n\right)^* y \rangle
$$

= $\langle F\left(\bigcup_{n=1}^{m} e_n\right) x, y \rangle$ for $x \in X, y \in X^*$.

Since $\langle x, E(\bigcup_{n=1}^m e_n)y\rangle$ is a Cauchy sequence, $\langle F(\cup_{n=1}^m e_n)x, y\rangle$ is a Cauchy sequence. Hence $F(\bigcup_{n=1}^m e_n)x$ is a weak Cauchy sequence. Since X is weakly complete, $F(\bigcup_{n=1}^m e_n)x$ is weakly convergent for each $x \in X$. Since $F(\bigcup_{n=1}^m e_n)$ is naturally ordered and uniformly bounded, then, by Reference [3J (Theorem 6.4, pp. 159-160), the sequence ${F(\bigcup_{n=1}^m e_i)}$ is convergent in the strong operator topology. Hence, by Reference [4J (Lemma 4, pp. 2197-2198), ${F(e):e \in \Sigma_0}$ is a σ -complete Boolean algebra of projections in $L(X)$ and **B** is embedded in it.

ACKNOWLEDGMENT

I wish to express my thanks to the referee who remarked to me that Theorem 2.5 follows as a particular case of Reference [5] (Theorem 1, p. 73).

-
-
- [3] H. R. Dowson, *Spectral Theory of Linear Operators*, **Paper Rece**
London: Academic Press, 1978. **April 1983** London: Academic Press, 1978.
- REFERENCES [4] N. Dunford and J. T. Schwartz, *Linear Operators*, Part [1] W. G. Dads 'On Declare Algebra: of Declinians and [4] H. 1958; Part II, 1963; Part III, 1971. Wiley-Inter-
- V. G. Bade, 'On Boolean Algebras of Projections and

Algebras of Operators', Transactions of the American

Mathematical Society, 80 (1955), pp. 345–360.

[23] E. Berkson, 'Some Characterization of C*-algebras',

Illinois J