ON COMPLETE BOOLEAN ALGEBRA OF PROJECTIONS

Adnan A. S. Jibril

Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, Saudi Arabia

The aim of this note is to prove that a bounded Boolean algebra of projections on a weakly complete Banach space X can be embedded in a σ -complete Boolean algebra of projections on X.

1. NOTATIONS

Throughout this note, X will be a complex Banach space with a dual space X^* . The value of the functional x^* in X^* at x in X will be denoted by $\langle x, x^* \rangle$. We use L(X) to denote the algebra of all linear bounded operators on X. The zero and identity operators in L(X) will be denoted by 0 and I, respectively. C(X) will be the algebra of all continuous, complexvalued functions on X. If A is a subset of X then clm(A) is the closed linear manifold spanned by A. The field of complex numbers will be denoted by C.

2. PRELIMINARIES

2.1. Definition

A Boolean algebra of projections on X is a commutative subset, **B**, of L(X) such that

0377-9211/84/010051-03\$01.00

© 1984 by the University of Petroleum and Minerals

- (1) $E^2 = E$ for each $E \in \mathbf{B}$;
- (2) 0∈**B**;
- (3) If $E \in \mathbf{B}$ then $I E \in \mathbf{B}$;
- (4) If E, $F \in \mathbf{B}$ then $E \vee F = E + F EF$ and $E \wedge F = EF$ are in **B**.

A Boolean algebra of projections, **B**, on X is said to be bounded if $||E|| \le M$ for every E in **B**, where M is a real number.

2.2. Definition

A Boolean algebra **B** of projections on X is complete (σ -complete) if for every subset (sequence) $\{E_i\}$ in **B**, the greatest lower bound $\wedge E_i$ and the least upper bound $\vee E_i$ of $\{E_i\}$ exist in **B** and $(\vee E_i)X = \operatorname{clm}\{E_iX\}$, $(\wedge E_i)X = \cap E_iX$.

2.3. Theorem

Let **B** be a σ -complete Boolean algebra of projections on X. Then the following statements are equivalent:

- (1) **B** is complete.
- (2) **B** is strongly closed.
- (3) **B** is weakly closed.

Proof

 $(1) \rightarrow (2)$: see Reference [4] (Corollary 7, p. 2201).

(2) \rightarrow (3): Since **B** is strongly closed, $\mathbf{B} = \mathbf{B}^s$ (the strong closure of **B**). Since **B** is σ -complete then by Reference [4] (Theorem 27, p. 2218), $\mathbf{B}^s \supseteq \mathbf{B}^w$ (the weak closure of **B**). Since always $\mathbf{B}^s \subseteq \mathbf{B}^w$, it follows that $\mathbf{B} = \mathbf{B}^s = \mathbf{B}^w$. Hence **B** is weakly closed.

(3) \rightarrow (2): Since **B** is σ -complete, $\mathbf{B}^s = \mathbf{B}^w$. Since **B** is weakly closed, it follows that $\mathbf{B} = \mathbf{B}^w = \mathbf{B}^s$ which means that **B** is strongly closed.

(2) \rightarrow (1): Since **B** is σ -complete, then by Reference [1] (Theorem 2.7, p. 350), **B**^s is complete. Since **B** is strongly closed, **B**=**B**^s which implies that **B** is complete.

2.4. Let B be a complete Boolean algebra of projections on X and let Ω be its Stone representation space [4], Theorem 1.12.1, p. 41). Then by Reference [4](Exercise 16, p. 2225), Ω is extremely disconnected in the sense that the closure of every open subset is open. If Σ_{Ω} denotes the Borel field of Ω , then to each Borel set e_0 in Σ_{Ω} , corresponds a unique open-and-closed set esuch that $(e_0 \setminus e) \cup (e \setminus e_0)$ is a set of the first category. Moreover, each Borel function differs from a unique continuous function, on a Borel set of the first category. Now if e is an open-and-closed subset of Ω , we denote by E(e) the element of **B** corresponding to e. This mapping is extended to the Borel field Σ_{Ω} by setting $E(e_0) = E(e)$ for each Borel set e_0 , where e is the open-and-closed subset of Ω which differs from e_0 by a set of the first category, in the above sense. It follows from the definition of completeness and Reference [4] (lemma 4, pp. 2197-2198) that the vector and scalar-valued measures $E(\cdot)x$ and $\langle E(\cdot)x, x^* \rangle$ associated with $x \in X$ and $x^* \in X^*$, respectively, are countably additive on Σ_{Ω} . By Theorem 2.2 of Reference [1], **B** is uniformly bounded. Comparison of the above with the definition of a spectral measure ([3], p. 119) shows that we may regard a complete Boolean algebra of projections as a spectral measure defined on the Borel field of the Stone representation space.

2.5. Theorem

A bounded Boolean algebra **B** of projections on a weakly complete Banach space X can be embedded in a σ -complete Boolean algebra of projections on X.

Proof. Let Ω be the Stone representation space of **B**. Let $K(\Omega)$ be the set of all characteristic functions of open-and-closed subsets of Ω , and let $\psi: K(\Omega) \rightarrow \mathbf{B}$ such that $\psi(K_e) = \mathbf{B}(e)$ be the representation isomorphism for **B**. Let $K^1(\Omega)$ be the algebra of all finite sums $\Sigma c_j K_{ej}$ ($c \in \mathbf{C}$, e_j is open and closed in Ω), and let \mathbf{B}^1 be the corresponding algebra of sums $\Sigma c_j \mathbf{B}(e_j)$. Then ψ extends to an algebra isomorphism $\psi^{1:}K^1(\Omega) \rightarrow \mathbf{B}^1$ such that $\psi^1(\Sigma c_j K_{ej}) = \Sigma c_j \mathbf{B}(e_j)$ and ψ^1 is an isometry ([2], Theorem 2.1). Since Ω is totally disconnected, $K^1(\Omega)$ is norm dense in $C(\Omega)$. Hence ψ^1 can be extended to an isometric isomorphism (also denoted by ψ^1) $\psi^1: C(\Omega) \rightarrow L(X)$ and by Reference [4] (Theorem 4, p. 2184),

$$\psi^1(f)^* = \int_{\Omega} f(\lambda) E(\mathrm{d}\lambda), \quad (f \in C(\Omega))$$

where E is a spectral measure in X^* defined on the Borel sets in Ω . Let Σ be the algebra of Borel sets in Ω and let Σ_0 be the class of sets in Σ such that there is a spectral measure F defined by $F(e)^* = E(e)$ for every e in Σ_0 . Then it is easy to show that Σ_0 is a field (or a Boolean algebra of sets).

Let $\{e_n\}$ be a sequence of sets in Σ_0 then

$$\langle x, E\left(\bigcup_{n=1}^{m} e_{n}\right)y \rangle = \langle x, F\left(\bigcup_{n=1}^{m} e_{n}\right)^{*}y \rangle$$
$$= \langle F\left(\bigcup_{n=1}^{m} e_{n}\right)x, y \rangle \text{ for } x \in X, y \in X^{*}.$$

Since $\langle x, E(\bigcup_{n=1}^{m} e_n) y \rangle$ is a Cauchy sequence, $\langle F(\bigcup_{n=1}^{m} e_n)x, y \rangle$ is a Cauchy sequence. Hence $F(\bigcup_{n=1}^{m} e_n)x$ is a weak Cauchy sequence. Since X is weakly complete, $F(\bigcup_{n=1}^{m} e_n)x$ is weakly convergent for each $x \in X$. Since $F(\bigcup_{n=1}^{m} e_n)$ is naturally ordered and uniformly bounded, then, by Reference [3] (Theorem 6.4, pp. 159–160), the sequence $\{F(\bigcup_{n=1}^{m} e_i)\}$ is convergent in the strong operator topology. Hence, by Reference [4] (Lemma 4, pp. 2197–2198), $\{F(e):e\in\Sigma_0\}$ is a σ -complete Boolean algebra of projections in L(X) and **B** is embedded in it.

ACKNOWLEDGMENT

I wish to express my thanks to the referee who remarked to me that Theorem 2.5 follows as a particular case of Reference [5] (Theorem 1, p. 73).

REFERENCES

- [1] W. G. Bade, 'On Boolean Algebras of Projections and Algebras of Operators', *Transactions of the American Mathematical Society*, **80** (1955), pp. 345–360.
- [2] E. Berkson, 'Some Characterization of C*-algebras', Illinois Journal of Mathematics, 10 (1966), pp. 1-8.
- [3] H. R. Dowson, Spectral Theory of Linear Operators, London: Academic Press, 1978.
- [4] N. Dunford and J. T. Schwartz, *Linear Operators*, Part I, 1958; Part II, 1963; Part III, 1971. Wiley-Interscience.
- [5] T. A. Gillespie, 'Strongly Closed Bounded Boolean Algebras of Projections', *Glasgow Mathematics Journal*, 22 (1981), pp. 73–75.

Paper Received 14 November 1982; Revised 23 February 1983; 16 April 1983