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INTRODUCTION

Most designers design a single column spread foot-
ing following the guidelines of a building code such as,
for example, ACI[1] and the procedure similar to that
prescribed in Reference [2]. For the case of a concen-
trically loaded column footing, the optimum footing
size is a square. For such footings, Furlong [3] has
proposed design aids that include the thickness of the
footing slab necessary to avoid shear reinforcement.
For the design of rectangular footings, Henye [4] has
produced nomographs. A computer program for the
optimum design of a concrete spread footing has been
presented by Kohli [5].

For a column footing loaded eccentrically about an
axis or a column footing subjected to an axial load
and a moment, the determination of an optimum
footing is relatively difficult, and most designers use
trial and error procedures. Davis and Mayfield [6]
have prepared design charts to aid designers to select
readily the plan dimensions of a footing subjected to
an axial load and a moment. It should be noted that
such plan dimensions may not lead to an optimum
footing size from the viewpoint of minimum concrete
volume.

In this technical note, a procedure is outlined to
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determine the optimum footing size for a single col-
umn subjected to an axial load and biaxial bending
moments. The problem has been dealt with in two
parts. In the first part, only the optimum plan dimen-
sions on the basis of the minimum plan area are
considered. In the second case, the optimum footing
size is determined considering the minimum concrete
volume as the optimality criterion and satisfying the
assumed constraint that no shear reinforcement would
be necessary in accordance with the . ACI[1]. In the
absence of accurate cost data, it is simpler and more
appropriate to consider the minimum concrete volume
rather than the total cost of the footing as the objec-
tive function, as the latter case would include the cost
of the reinforcing steel and the form work. Linear
distribution of soil pressure is assumed throughout
with no uplift of the footing.

THEORETICAL CONSIDERATIONS

Optimum Plan Dimensions

Figure 1 shows a footing of size BxH (B> H)
subjected to an axial load P and moments M, and M,
(M,=M,). Assuming linear distribution of soil pres-
sure, the following conditions can be stipulated to
satisfy the upper and lower bounds of soil pressure:

P( e, 6
—(1 +ﬁ‘.+—“’¥)sq0, (1)
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Figure 1. A Typical Footing under Eccentric Load
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in which A=BH; q,=permissible soil pressure under
service loads, e,=M, /P, and e,=M /P. Setting
60=B/H(6=1), the aspect ratio of the footing,
Equations (1) and (2) can be rearranged as

and

P 6(e . +de))
> —x ¥ 3
A 40|:1+ oH :|’ ¥
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Substituting §=A4/H? in Equation (3), a quadratic
equation in 4 and a cubic equation in H can be
obtained for the minimum values of 4 and H:

and

spo_ Py _blectde) P

=0. 6
do o 9o )

Differentiating the value of 4 from Equation (5) with
respect to H, it can be shown that for the minimum
value of 4

d=e,/e,. (7)

Thus, for given values of e, and e/, the minimum
area corresponds to the case when the aspect ratio § is
equal to the ratio of the eccentricities, e, /e,. This
shows that for small e, the long and narrow footing
would yield theoretical minimum area, a solution that
would obviously be unacceptable in most cases from a
practical and economic viewpoint.

Using the relationship in Equation (7), the optimum
value of H can then be obtained from Equation (6) by
taking the lowest real root of H. However, the chosen
value of H must not be less than 12¢ (H =12¢)) to
satisfy the constraint in Equation (4).

It should be recognized that, for a design, a ma-
ximum value of §(6 = 1) should be established to avoid
a long length which would increase the cost of rein-
forcing steel. To indicate the variation in the footing
area and its sensitivity with o, Figure 2 is plotted with
P=100kips  (445kN), g,=3k/ft?>(143.6 kN/m?),
e,=0.5ft (0.152m), and e,=0.3ft (0.091 m). The mi-
nimum area corresponds to the value of ¢ as being the
ratio of e /e,, which is 1.67. As the area is not very
sensitive, and a lesser value of & would be more
practical and desirable, an acceptable range of 6 in this
case can be taken as 1.2 to 1.3. It should be noted that
the optimum plan dimensions may not lead to the
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Figure 2. Area of Footing versus 8
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OPTIMUM FOOTING

The optimum footing is determined by minimizing
the concrete volume and assuming that no shear rein-
forcement will be required for the footing. The ul-
timate shear strength of a single footing as prescribed
in Reference [1] is based on the two criteria: (a) two-
way slab action and (b) beam action. Considering the
former case and referring to Figure 3, it can be shown
that to avoid shear reinforcement, the effective depth
of the footing slab, d, for a column of axb can be

. v s |
' -
Figure 3. Critical Sections for Two-way Slab Action

determined from

P, N2 P, ,
<5H2+16d>\/fc>d +(a+b)<5H2+8¢\/fc)d

ab
+P,— P

spz D=0 (8)

where P, =ultimate axial load on column, f/=ultimate
compressive strength of concrete in pounds per square
inch, and ¢ =strength reduction factor. Equation (8) is
formulated by equating the total shear on the area of
[BH—(a+d)(b+d)] to the shear strength of the slab,
computed using a permissible stress of 4\/ fo for
B/H <2 as prescribed in the ACI and an effective area
of 2(a+b+2d)d.

For the beam action, two critical sections must be
considered, as both the footing and the column are
assumed to be rectangular. Considering a distance d
from the shorter face of the column (Figure 4), it can
be shown that the value of d should satisfy the follow-
ing equation to avoid any shear reinforcement:

—K;+./(K}+4K,K, L)
2K, ’

d= 9
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where
3bM,, 3M, P,
Ri=%m* torms ton (10a)
6M,,
K2=W, (10b)
and
Ky;=2¢./f—K,L+K,. (10c)

For the beam action, the permissible shear stress in the
footing without shear reinforcement is taken as 2./f.
Likewise, for the critical section at a distance d from
the longer face of the column (Figure 4), the value of d
can be calculated from

_ —=C4+,/(C3+4C,C,N)

d 11
2C, , (11)
in which
3aM, 3M, P,
Cio=%ge torns Ten (122)
6M,
C2=537H’;, (12b)
and
C3=2¢/f—C,N+C,. (12c)

Thus, the required effective depth is the maximum
value of d obtained from Equations (9)-(11). The total
depth of the footing, D, is the effective depth plus the
effective cover to the reinforcement.
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Figure 4. Critical Sections for Beam Actions
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SEARCH PROCEDURE

For given input data, the optimum column footing
can be determined by a simple search technique which
can easily be programmed in a small computer. The
procedure starts with the initial value of §=1.0 (square
footing). The value of H for this assumed value of § is
calculated from Equation (6) and satisfying the con-
straint of Equation (4). Using Equations (9)—(11), the
maximum value of d is determined to avoid shear
reinforcement. Adding effective cover to d, the depth of
the slab, D, and hence the volume of the footing are
evaluated.

The value of § is then increased by a small step and
the new volume is calculated and compared with the
previous value. The procedure is repeated with new
increased values of § until and unless the optimum
value of ¢ is reached at which the volume is a mi-
nimum. The dimensions of the footing, B, H, and D,
represent the optimum footing on the basis of the
minimum concrete volume.

Example

Determine the optimum footing for a column of
12inx 18 in (305 x 457 mm) using the following data:

P=100kips (445kN), P,=170kips (756 kN),
M, =50ft-K (67.8 kN.m), M,=30ft-K (40.7 kN.m),
M, =85ft-K (115.3kN.m), M,, =50 ft-K (67.8 kN.m),
go =3k /ft? (143.6 kn/m?), f'.=3000 psi (20.7 MPa),

and effective cover=3 in (75 mm).

The variation in the volume of the footing with
various values of § up to 2.0 is depicted in Figure 5.
The minimum volume is 53.1ft> (1.504 m®) and the
corresponding optimum footing dimensions are
B=1773ft (235 m), H=702ft (2.140m), and
D=098ft (0.299m). The value of 6 at which the
optimum volume is obtained is 1.1.

CONCLUSIONS

A simple procedure has been prescribed to aid
designers in determining the optimum footing for a
single column subjected to biaxial bending. It has been
shown that the optimum plan dimensions on the basis
of minimum footing area are obtained when the ratio
of the length to width of the footing equals the ratio of
the eccentricities of the applied load with respect to the
two principal axes. However, for all practical purposes,
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Figure 5. Volume of Footing versus o for Example Footing

the value of ¢ should not be too large for an economi-
cal design. The prescribed procedure for seeking the
optimum footing dimensions that do not require any
shear reinforcement can be programmed easily in a
small computer to obtain the footing size convenient-

ly.
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