
AUTOMATED THEOREM PROVING: AN OVERVIEW

Talal H. Maghrabi*

Information and Computer Science Department

King Fahd University ofPetroleum and Minerals

Dhahran 31261, Saudi Arabia

" - J.
• ~ I1!. ~'I . ta...:.:.l..J ItI ~l..J ",!. ~t\ ~~I ' .J o,lC.U\ ,.J WI ~l..J 11!.~tl ~~\ - \:.~ .l.i.l...U~~J .. u ~ ''''-r '-r" ~ ·"r-r

. ~f~~I ~~Hm.ul\ ~\~~\ ~'i~~.~Ula.:il\J r.li:il\ ~jWI~..J

~j~\ ~\v1\ ~\~~~ , ,...t\ J~I '41 ~\.t!a ~I.)~ ~I \~ r.li:
~\ ~..J • J~II1\ ~~~\.)~ J=..\). ~...)b L...)'=- r~ t..s: , t~).1 rti.l
J ~ <.fill ~L.':il ~\Wl~J r~..J ' ~. \;j ..,11 j.JAYIJ ~L.':il ~\,\t,. ot I ~j

J~ ,.J ~ W\ tJWI ~ -- .1\ ,.~ ~\~\ 1..:.. • ~l..J .,!. !1\ ~~I - \:.~ ,.J ,&
• '-r:U'" ~. .. .~..J ~ ." r-'-r....,J.,JJJ

• ~6. o.;ifol~' ~~~J~~~~~i ~\:a.;Jriall\ ~~j

ABSTRACT

Automated Theorem Provers are computer programs written to prove, or help in prov
ing, mathematical and non-mathematical theorems. Automated Theorem Proving (ATP)
is a rapidly advancing field and contains many potential research areas. This paper is an
overview of this important field. It starts by giving the needed mathematical background
followed by an overview. The overview includes historical background, basic terminol
ogy and notations and a description of the major components of a typical theorem prover.
The paper also outlines the current state of research in ATP and a brief description ofsome
of the existing theorem provers.

*Address for correspondence:
KFUPM Box 806
King Fahd University of Petroleum & Minerals
Dhahran 31261
Saudi Arabia

October J997 The Arabian Journal for Science and Engineering. Volume 22, Number 2B. 245

Talal H. Maghrabi

AUTOMATED THEOREM PROVING: AN OVERVIEW

1. INTRODUCTION

Automated theorem provers are computer programs written to prove, or help in proving, mathematical
and non-mathematical theorems. Automated Theorem Proving (ATP) first emerged in the late 1950s, when
mathematicians became interested in automating mathematical proving techniques. Since that time ATP has
evolved rapidly and many changes have taken place. Currently, ATP is considered to be a fast growing field
of computer science. It has many application areas such as program verification, program synthesis, hardware
verification, and mathematics. Many general and special-purpose theorem provers have been developed in the
last few years, and many more are expected to be developed in the near future. In this paper we present an
overview of this important field and try to enlighten the reader about its history and future. Section 2 gives some
mathematical background which mainly concentrates on First Order Logic (FOL) since it is the basic foundation
of ATP. Section 3 summarizes the history of ATP and gives basic terminology and notations. It also describes
the major components of a typical theorem prover. Section 4 outlines the current status of the field and its
research areas. It also describes some of the well-known theorem provers. Finally, Section 5 provides an example
of a problem from the field of mathematics that is solved using the OTTER theorem prover.

2. MATHEMATICAL BACKGROUND

In this section we give a brief introduction to FOL, which is the basic foundation for automated theorem
proving. First we define what logic is, and then we describe the basic elements of FOL.

2.1. Deductive Systems

A logic (or a deductive system) consists of a language, a proof theory, and a model theory. The language
consists of: a countable set S of symbols called the alphabet, and a set of well-formed formulas (wffs) , which
are finite sequences of symbols that are constructed from S using well-defined rules called formation rules. The
collection of all wffs that can be constructed from S using the formation rules is called a language on S, and
is denoted by Ls. The proof theory of a logic defines the expressions that are. derivable (or provable) in the
logic. It consists of: a subset of wffs called axioms, and a finite set of relations nl! n2 ••. ,nn on wffs, called
inference rules. An inference rule R; maps a non-empty set of wffs, called the premises of Ri, to a single wff,
called the conclusion of R;. A proof is a sequence of wffs AI, A2 ... ,Am such that each Ai is either an axiom or
a consequence of some of the preceding wffs by virtue of one of the inference rules. A theorem is a wff A such
that there is a proof, the last wff of which is A. Such a proof is called a proof of A. The meta symbol f- is used
to represent provability, i. e. f- A states that A is a theorem. r f- A represents the derivation (or deduction) of
the wff A from the set of wffs r, which is called the assumptions of A. In the model theory of a logic, meanings
are assigned to the expressions of the logic and then the expressions are checked to see if they are true or false.
Interpretations give meaning to all symbols and, subsequently, to all wffs in the language of the logic. Based
on the values assigned by an interpretation to the variables of a wff, the wff is said to be true or false. A wff
that is true in all interpretations is called logically valid while a wff that is false in all interpretations is called
unsatisfiable. The meta symbol 1= is used to represent validity, i. e. 1= A states that A is logically valid. The
logic is said to be sound if every theorem in it can be shown to be logically valid, while it is said to be complete
if every logically valid wff in it can be derived as a theorem. The logic is said to be consistent if either f- A or
f- ...,A (that is, not A) but not both, i.e. you cannot prove both a wff and its negation. More details on deductive
systems can be found in [1].

246 The Arabian Journalfor Science and Engineering. Volume 22. Number 2B. October 1997

Talal H. Maghrabi

2.2. First Order Logic (FOL)

First-Order Logic is the most familiar logic to mathematicians. By embedding proper axioms, which are
axioms that are defined on a specific domain, in FOL, we obtain other first-order theories such as number theory
and group theory. As stated in the previous section, FOL has both proof and model theories. However, since
ATP is concerned only with proofs, and hence the proof theory, we will only describe the proof theory of FOL.

The Alphabet of FOL

1. 	 A set of constant symbols such as a, b, c, ... (may be followed by subscripts). Constant symbols can also

be from some domains such as integers or strings, e.g. 0, 1, 'smith', 'dog', etc.

2. 	 A set of variable symbols X, Y, Z, ... (may be followed by subscripts). Variable symbols can also be from

other domains, e.g., 'book', etc.

3. 	 A set of function symbols f(x), g(y, z), . .. (may be followed by subscripts). Function symbols can also be

from other domains, e.g., successor(5), father(jim).

4. 	 A set of predicate symbols P, Q, R, ... (may be followed by subscripts). Predicate symbols can also be

from other domains, e.g., equal(3,1+2), office (jim,243).

5. 	 A set of logical connectives: A (and), V (or), (not), and - (imply).I

6. 	 A set of punctuation symbols: '(" ')', and ','.

7. 	The quantifier symbols V (for all) and 3 (there exists).

The number of arguments of a function or a predicate symbol is called its arity. i.e., f(X, Y) has an arity 2
while P(X, Y, a) has an arity 3.

The Formation Rules of FOL

The smallest expression in FOL is the term. A term is a constant symbol, a variable symbol, or a function
symbol of arity n applied to n terms. An atomic formula is a term or a predicate symbol of arity n applied to n
terms. The set of well-formed formulas (wffs) of FOL is inductively defined as follows:

1. 	 Every atomic formula is a wff.

2. 	 If A and 8 are wffs then so are:

(,A), (A A 8), (A V 8), (A - 8), (VxA), and (3xA).

Given a wff VxA (or 3xA), A is called the scope of the quantifier Vx (or 3x). An occurrence of a variable x is
bound in a wff A if it is either the occurrence of x in a quantifier Vx (or 3x) in A, or it lies within the scope of a
quantifier Vx (or 3x). A variable is said to be free if it is not bound. If A is a wff and t is a term of FOL then t
is free for Xi in A if Xi does not occur free in A within the scope of a quantification Vxj 8, (or 3xj8), where Xj
is any variable occurring in t.

The Axioms of FOL

For any wffs A, 8, and e in FOL, the following are the (logica~ axioms of FOL [1]:

1. 	A-(8-A).

2. 	 (A - (8 - e)) - «A - 8) - (A - e)).

3. 	 (18 - ..,A) - «..,8 - A) - 8).

October 1997 	 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 247

Talal H. Maghrabi

4. 	 'v'xiA(Xi) ~ A(t) if A(Xi) is a wff with free variable Xi, and t is a term which is free for Xi in A(Xi), t can
be identical to Xi.

5. 	'v'xi(A ~ B) ~ (A ~ 'v'xi,B) if A does not contain any free occurrence of Xi.

The Inference Rules for FOL

1. 	 From A ~ B and A conclude B. "Modus Ponens, or MP'

2. 	 From A conclude 'v'xiA. "Generalization, or GEN'.

An Example of A First Order Theory

Group theory is an example of a first-order theory. This theory has one constant symbol 1, one function
symbol product(t, s) (this function notation will be written as t*s) where t and s are terms, and one predicate
symbol equal(t, s) (this predicate notation will be written as t =s). In addition to the FOL logical axioms this
theory has the following proper axioms:

Ax.1) 'v'X 1'v'X 2'v'X3(XI * (X2 * X3) =(Xl * X2) * X3) (Associativity)

Ax.2) 'v'XI (1 *Xl =xt) (Identity)

Ax.3) 'v'XI3x2(X2 *Xl =1) (Inverse)

Ax.4) 'v'XI (XI = XI) (Reflexivity of =)

Ax.5) 'v'X I 'v'X2(XI =X2) ~ (X2 =xt) (Symmetry of =)

Ax.6) 'v'XI 'v'X2'v'X3((Xl =X2 /\ X2 =X3) ~ Xl =X3) (Transitivity of =)

Ax.7) 'v'X I'v'X 2'v'X3(X2 =X3) ~ Xl *X2 =Xl *X3/\ X2 *Xl =X3 *Xl) (Substitutivity of =)

From the above axioms we can derive the following proof of the theorem:

(1) Xl * Xl = 1 	 (Assumption)

(2) X2 * X2 = 1 	 (Assumption)

(3) (Xl * X2) * (Xl * X2) =1 	 (Assumption)

(4) Xl * (Xl * X2) * (Xl * X2)) Xl * 1 (From Ax.7 and 3)

(5) Xl * ((Xl *X2) * (Xl *X2)) =Xl 	 (From Ax.2 and 4)

(6) (Xl * (Xl * X2)) * (Xl * X2) = Xl 	 (From Ax.1 and 5)

(7) ((Xl *xt) * X2) * (Xl * X2) = Xl 	 (From Ax.1 and 6)

(8) (1 *X2) * (Xl * X2) =Xl 	 (From 1 and 7)

(9) X2 * (Xl * X2) =Xl 	 (From Ax.2 and 8)

(10) (X2 * (Xl * X2)) * X2 Xl *X2 	 (From Ax.7 and 9)

(11) X2 * «Xl *X2) * X2) =Xl *X2 	 (From Ax.1 and 10)

(12) X2 * (Xl * (X2 *X2)) = Xl * X2 	 (From Ax.1 and 11)

(13) X2*(XI*1)=Xl*X2 	 (From 2 and 12)

(14) X2 *Xl = Xl * X2 	 (From Ax.2 and 13)

248 The Arabian Journal/or Science and Engineering, Volume 22, Number 28. 	 October 1997

Talal H. Maghrabi

3. INTRODUCTION TO AUTOMATED THEOREM PROVING

As shown in the previous section a wff A can be proved to be a theorem in some logic L if it can be derived
from the axioms (and theorems) of L using its inference rules. If the proving process can be done mechanically
using a computer program then that program is called an automated theorem prover. A more suitable definition
of ATP is given in [2]:

"Automated Theorem Proving (ATP) is concerned with the task of mechanizing mathematical (or
logical) reasoning. Proofs of mathematical theorems are performed by a computer, analogously to
the way arithmetical problems are solved by a calculator" .

In this section we present an overview of ATP. We begin with a historical background of the evolution of the
field. We then include the basic terminology and notation used in ATP, followed by a description of the major
elements of a typical theorem prover.

3.1. Historical Background

Mechanical theorem proving developed as a spin-off from the study of formal languages, such as First
Order Logic (FOL). These languages were used by researchers to state rigorously a wide range of problems in
an unambiguous way [3, 4]. Later, logicians formulated inference rules that enabled them to draw sound and
correct conclusions from given statements. These new conclusions were called theorems, and the sequence of
steps followed to draw a theorem was called a proof When digital computers were invented, logicians became
interested in using them to prove theorems automatically; i.e., by giving the theorem to the computer and
waiting until the computer proved the theorem without intervention from the user. These were called stand
alone provers. Some of the provers developed at that time were the Logic Machine by Newell, Simon, and Shaw
[5], and the Geometry Machine by Hao Wang and Gelerntner [6]. The way a theorem was proved was actually
by applying inference rules to axioms to generate theorems, which were also used in generating new theorems
and so on until, eventually, the desired theorem was derived. The collection of all generated theorems was called
the search-space. Since a search-space was always large it was required to develop some mechanisms to control
it. These were known as control strategies. In the late 1950s and early 1960s, the concentration was based on
using FOL as the main methodology of research. The development of resolution (an inference rule) in 1964 [7]
was a major change in the field. In the late 1960s and early 1970s, researchers advanced the field by defining
more inference rules, developing some search-space control strategies, and extending the applications to fields
other than Mathematics [4, 8, 9]. Interactive provers followed, which initially produced part of the required
proof, then returned the partial information to the user who then could direct/redirect the proof [10-12]. A
great deal of success has been achieved recently. Several theorem provers are available today. Some of these
provers are general, others are designed for specific applications, such as electronic circuit design, expert systems,
program verification, and formal logic [13, 14]. There is, however, much more research to be done. Controlling
the search-space is still a major problem. The development of theorem provers that are general and effective
has not yet been accomplished. Effective provers cannot prove all theorems, and general provers are inefficient,
consuming vast amounts of space and time [8, 15].

3.2. Terminology and Notations

Now we will define some ATP notations and terminology, some of which are derived from FOL while the
others are specific to ATP. As previously defined in Section 2.2, a term is a constant symbol, a variable symbol,
or a function symbol of arity n applied to n terms. An atomic formula is a term or a predicate symbol of arity
n applied to n terms. A literal is an atomic formula (or the negation of an atomic formula), and it is called a
positive (or a negative) literal. A clause is the disjunction (V) of a (finite) set of literals with no literal appearing
twice. A clause with no literals is called the empty clause and is denoted by D. A Horn clause is a clause that

October 1997 The Arabian Journalfor Science and Engineering, Volume 22, Number 2B. 249

Talal H. Maghrabi

has at most one positive literal. If all the literals in a clause are positive (negative) then the clause is called a
positive (negative) clause. A clause with both positive and negative literals is called a mixed clause. A clause
that has a single literal is called a unit clause. A clause with more than one literal is called a non-unit clause. A
wff in a clausal form has the form:

where each Ci is a clause, and Xl, X2, ... Xn are all the distinct variables occurring in Cj's. A substitution 0 (of
terms for variables) is a set {t 1 ~ Xl, t2, ~ X2 ... ,tn ~ xn} where each Xi is a distinct variable and each tt,

is a term which is not identical to the corresponding Xi. If I is a literal then 10 is the result of applying the
substitution 0 on the variables of I. A substitution q is a unifier for the literals h,/2 ... In if 110 =120 =.. .lnO,
and the literals 11,/21 " .In are called unifiable. Resolution, sometimes called binary resolution, is an inference
rule applied to two clauses. Resolution selects unifiable literals in the two clauses of the same predicate but of
an opposite sign and yields a clause, called the resolvent. For example, if we have the following clauses:

C1: P(x) V Q(x, a) V R(x, y) and

C2: -,P(a) V R(y, z)

then applying resolution on them yields the following resolvent clause after eliminating P(x) and -,P(a) and
substituting a for x:

C3: Q(a, a) V R(a, y) V R(y, z).

More details can be found in [1, 2].

3.3. Major Elements of a Theorem Prover

Although theorem provers may vary in their components, most of them share the following major elements:

1. Information Representation Language:

The automated theorem prover must have a language that is capable of representing the information
relating to the problem at hand. This language should be able to represent the required facts, relationships
and concepts in a clear and unambiguous manner. Some of the existing languages are: the Clause language
in which FOL wffs are converted to clauses [9], Matrix representation in which wffs are represented in a
special tabular form [16, 17], Non-Clausal representation [18], and Natural Deduction representation [10,
12] in which wffs are treated in their original form.

2. Inference Rules:

The prover also needs some inference rules which enable it to draw conclusions. A single inference rule,
at least in practice, will not suit all kinds of applications. ",An example is resolution which can be applied
to any problem if that problem can be represented as a set of clauses. However, it has the disadvantage
that its deduction steps are too small, i.e., it can process only two clauses at a time. Hyperresoiution and
UR-resolution [15] rules are similar to resolution except that they may work with two or more clauses at
the same time. There are also some modified versions of resolution which are applied to statements not in a
clause form, such as the Non-Clause resolution [18]. Natural deduction theorem provers use inference rules
that manipulate the wffs by introducing and/or eliminating their connectives and/or quantifiers [10, 12].

250 The Arabian Journal for Science and Engineering, Volume 22, Number 2B. October 1997

Talal H. Maghrabi

3. Control Strategies:

For a theorem prover to be effective, it should have some strategies to direct the application of inference
rules towards an appropriate direction, and some strategies which restrict their applications to the problem
domain. This is necessary since applying the inference rules without control may generate a lot of irrelevant
information which may cause problems in terms of time or space limitation [9]. Some of these strategies
are:

(a) 	 The weighting strategy. In this strategy, the user provides the program with some values or weights
for the concepts or symbols of the problem at hand. The program uses these weights to determine
which part of the problem to consider next. This makes the program reach the solution of the problem
in a more efficient way, provided that the given weights are correct.

(b) 	The set of support strategy. In this strategy, the user provides the program with a particular set of
the input parameters, called the set of support for the problem at hand. When the program starts its
deduction process it considers these parameters as the base of the search for the needed answer. The
remaining input parameters are used only if they are needed to complete a deduction step.

In addition to the above elements, some of the existing theorem provers may have the following elements
[9, 14]:

1. Demodulation Procedures:

These procedures rewrite some of the information into a canonical form before using them in the reasoning
process. For example, if the system has the modulator equal(prod(1,X),X), and the program generates the
clause gt(prod(1, Y),Z), then the program automatically rewrites it as gt(Y,Z) before considering it in any
further reasoning

2. Subsumption Procedures:

These procedures eliminate any information that can be captured by other existing information. For
example, if the program has the clause equal(prod(X, 1),X) and if the clause equal(prod(5, 1), 5) is generated
later during the reasoning process, then the system will discard the new clause, since it is already subsumed
by the first clause.

4. THE CURRENT STATUS OF ATP

4.1. Types of Proving Methodologies

Automated theorem provers can determine if a wff A is a theorem, in some logic, using one of the following
approaches:

1. The Refutation Approach:

This approach is based on the following concept: A wff A is a theorem if and only if it is logically valid;
A is logically valid if and only if..,A is unsatisfiable. Instead of showing that A is a theorem we may show
that ..,A is unsatisfiable. This can be done by refutation. Refutation is a process in which the wff ..,A is
added to the axioms of the theory, and then inference rules are applied to derive some contradiction. This
contradiction indicates that ..,A is unsatisfiable, which proves that A is a theorem. Many theorem provers
use refutation as their proving approach. They use various versions of resolution as their inference rules.
An example of these provers is OTTER [9]. Prolog is also considered as a refutation theorem prover [19].
OTTER will be described in more detail in Section 4.4.

October 1997 	 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 251

Talal H. Maghrabi

2. The Direct Proving Approach:

In this approach A is proven as a theorem by deriving it from the axioms with the application of inference
rules. These proofs can be done by forward or backward chaining. In forward chaining, inference rules are
applied to the axioms to derive new theorems. These new theorems are used to derive additional theorems.
This process continues until either A is derived (in which case it is a theorem), or until the time (or space)
limit is exceeded. In backward chaining, the wff A is reduced to simpler wffs. These wffs are then reduced
further and further. This process continues until all the new wffs are reduced to axioms (in which case A
is a theorem), or until the time (or space) limit is exceeded. Some of the provers that use this approach
are: the Boyer-Moore prover [13], IMPLY [10], and LCF [11, 12]. These provers will lie described in detail
in Section 4.4.

4.2. Application Fields of ATP

ATP is a rapidly growing field in computer science. There are many research areas that are currently under
investigation [15]. These areas vary between improving the current status of the field, e.g. enhancing some of the
existing inference rules, and/or developing new techniques that will produce better results. Another aspect of
current research is completeness versus effectiveness. Completeness refers to the process of developing theorem
provers which can solve problems from different areas, i.e., general, although inefficiently, while effectiveness
refers to the process of developing theorem provers which can solve specific problems, i.e., special-purpose, but
efficiently. There are several areas for which theorem provers have proved to be good and productive tools, but
due to space limitation we will only outline some of the major application areas and the reader can refer to [2,
8, 9] for more details.

1. Program Synthesis:

Program synthesis is the process of constructing programs directly from specification without using the
classical approach of design, implementation and testing. One of the major approaches of program synthesis
is based on theorem proving. In this approach the specification of the desired program is given as a
mathematical formula. A theorem prover is used to prove that there is a program that satisfies that
specification. The program itself is constructed as a side-effect of the proof.

Manna and Waldinger have been working in this area since the early 70's [20]. Most of their work is based
on resolution based theorem proving. A natural deduction-based approach is developed in [21]. Interested
readers can find more details in [8, 22-24].

2. Hardware Verification:

Hardware verification, in its simplest meaning, is the process of checking and verifying that a given hardware
circuit is actually performing the functions for which it was implemented. This verification varies from a
simple circuit to a more complicated one.

This research area has gained more attention recently due to the fact that verifying complex hardware
circuits by traditional methods is becoming more difficult and more expensive. Some of the existing
systems that are mainly used in hardware verification are LCF-LSM [25] and HOL [26]. Some of the
recent application of theorem provers in hardware verification is discussed in [27]. Wos et al. in [9] show
many examples of how the OTTER system (described in Section 4.4) is used in logic circuit design and
verification.

3. Research in Mathematics:

Mathematics is the oldest research area in which theorem provers have been used. Since their early
development ATP systems have been heavily used in proving mathematical theorems. These proofs are

252 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. October 1997

Talal H. Maghrabi

either new proofs of theorems not proven manually before, or proofs of old theorems, which confirm their
old manual proofs [28]. IMPLY (described in Section 4.4) has been heavily used in proving theorems in
the set theory, and limit theory. OTTER and its predecessors AURA [29] and ITP [14] have been heavily
used in proving theorems from Group theory, Ring theory, and Ternary Boolean algebra [30].

4.3. ATP Current Research

In the previous section we discussed some of the application areas of ATP. In this section we briefly outline the
general directions of research in this field. In the early development of ATP the main direction of research was
to discover and find new techniques, inference rules, strategies, etc. that would enable theorem provers to work
better. Although this is still an active area, see [31] for example, most of the current research is concentrated
on the use of existing theorem provers in almost all different fields. For example, reference [32] describes how
an automated theorem prover is used in prediction the behavior of mechanical devices. Reference [33] describes
how to use theorem provers to search for a model of a solution for a problem. Most of the current research is
reported in specialized journals such as the Journal of Automated Reasoning, see for example [34].

4.4. Examples of Automated Theorem Provers

1. Boyer and Moore

This prover was developed by R. Boyer and J. Moore in the late 1970s to prove inductive theorems in the
standard mathematical style [2, 13]. The main motivation behind the development of the system was to
automate the proof process as far as possible. Boyer and Moore in [13] say that they were interested in
how people go about proving theorems by induction. That is why their system has many heuristics for
inventing induction, for removing undesirable elements from conjectures and for generalizing formulas.

The language of the theorem prover is a version of pure Lisp, since initially the system was built with the
intention of proving theorems about recursive functions. Lisp, stands for List Processing, is a computer
language that is commonly used in Artificial Intelligence (AI) research. The system strategy is to simplify
the given conjecture to prove it. If this simplification fails then the prover will invent an induction argument
based on the axioms defining the types of objects possible (numbers, list, etc.,) and on the recursively
defined functions appearing in the conjecture.

The system and its underlying theory has been used in some applications such as program verification and
logic circuit design. More details can be found in [2]. Recently some interactive enhancement has been
added to increase the power of the system [35].

2. IMPLY

Bledsoe and his working group at the University of Texas at Austin have developed an interactive theorem
prover called UT. Although IMPLY is the central routine of this theorem prover, UT is known to many
researchers as IMPLY [10].

The prover is a natural deduction-based system that was used to prove theorems in first order logic, and
some extensions of it. Natural deduction is a proving mechanism (or system) in which wffs are proven
in their original form without being transformed to clause. It is called natural because it resembles the
natural way of theorem proving. For more details on natural deduction see [2, 12, 36].

IMPLY uses the concepts of sub-goaling, reduction (rewrite rules) procedures, controlled definition instanti
ation, controlled forward chaining, conditional rewriting and conditional procedures, algebraic specification,
and induction.

October 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 253

Talal H. Maghrabi

The prover has an interactive user interface. The user can wait for the prover to prove the given theorem
within a redefined time interval. If the prover fails then the user can interact and give it other directions.
Although IMPLY is a general theorem prover, it has been used to prove theorems in the following areas:

• set theory,

• limit theorems,

• topology, and

• program verification.

3. LCF

LCF Stands for Logic for Computable Functions. LCF is a logic developed by Dana Scott in 1969 in which
facts about recursively defined functions can be formulated and proved. The Stanford LCF theorem prover
was developed by Milner to perform proofs in this logic. The proof was done step by step, i. e., it is a proof
checker. Milner developed a meta language, ML, in which the prover can be programmed, the result was
Edinburgh LCF [11]. Cambridge LCF extended the logic of Edinburgh LCF with V, 3, ~(stands for if
and only if or -+ 1\ +-) and predicates, improved the efficiency and added several inference mechanisms
[12].

LCF uses ML as its representation language. It uses the natural deduction connectives/quantifiers intro
duction and elimination inference rules. It also uses both forward and backward approaches for proving
theorems. This theorem prover can be used in the following applications:

• Experimenting with first order proofs.

• Studying abstract constructions in domain theory.

• Comparing the denotational semantics of programming languages.

• Verifying functional programs.

LCF is currently used in many proving systems such as:

(a) LCF-LSM and HOL: which were developed for verifying hardware [25, 26].

(b) Nuprl: which supports constructive type theory and is used heavily in mathematics [37].

4. OTTER

The OTTER (Organized Techniques for Theorem-proving and Effective Research) system was developed
by W. McCune of the Mathematics and Computer Science Division at Argonne National Laboratory [9,
38]. It was developed as a result of the continuous success of the former automated theorem provers AURA
and ITP.

OTTER uses the Clause language as its representation language, in addition to FOL wffs. Its inference
rules include various versions of resolution, e.g. hyperresolution. It also uses various control strategies such
as the set-of-support, and demodulation and subsumption procedures. It has been successfully used in the
following areas:

• Logic circuit design and validation.

• Program verification.

• Formal logic

• Mathematics.

OTTER is written in C and therefore it is very portable. It is available on PC-DOS, Macintosh, and UNIX
platforms.

254 The Arabian Journalfor Science and Engineering, Volume 22, Number 2B. October 1997

Talal H. Maghrabi

5. A THEOREM PROVER IN ACTION

So far we have described some theorem provers and their application areas. The reader can find in the
corresponding references how these provers are actually used in solving problems. However, for the purpose of
completeness it is important to show an example of a problem that is solved by a theorem prover. In this section
we will outline a proof of a validation of a digital circuit that was obtained by the help of OTTER. The details
of this proof can be found in [9].

5.1. The Problem

Prove that the output of the circuit shown in Figure 1, which consists of NAND gates, is equivalent to OR(i1,i2),
i.e. an OR gate.

5.2. The Solution

We will use the clause language of OTTER to represent the problem and its solution. All clauses will be numbered
for ease of referencing. First of all we need to identify the symbols, axioms, and inference rules and demodulators
(see Section 3.3) that will be used to prove the above claim. We will use the following symbols:

• 	 the constant symbols iI, i2 to represent the input to the circuit, 01 to represent the output of the circuit,
and aI, a1 to represent the intermediate output as shown in the figure.

• 	 the variable symbols x, y to represent general variables.

• 	 the predicate P to represent the output of the circuit.

1

3

2

i2

Figure 1. Nand-Or· Equivalent Diagram.

October 1997 	 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 255

Talal H. Maghrabi

From Figure 1 we can write the following demodulators:

(1) EQUAL(ol,nand(al, a2))

(2) EQUAL(al,nand(il, il))

(3) EQUAL(a2,nand(i2, i2)).

From the definition of logical circuits we can write the following demodulators:

(4) EQUAL(nand(x, y),not(and(x, y))) Relation between AND and NAND

(5) EQUAL(and(x, x),x)

(6) EQUAL(and(not(x),not(y)),not(or(x, y))) Relation between AND and OR

(7) EQUAL(not(not(x)),x).

The proof using the above demodulator is shown below:

(8) P(ol) (The starting clause)

(9) P(nand(al, a2)) (Applying 1 on 8)

(10) P(nand(al,nand(i2, i2))) (Applying 3 on 9)

(11) P(nand(al,not(and(i2, i2)))) (Applying 4 on 10)

(12) P(nand(al,not(i2))) (Applying 5 on 11)

(13) P(nand(nand(il, il),not(i2))) (Applying 2 on 12)

(14) P(nand(not(and(il, il)),not(i2))) (Applying 4 on 13)

(15) P(nand(not(il),not(i2))) (Applying 5 on 14)

(16) P(not(and(not(il),not(i2)))) (Applying 4 on 15)

(17) P(not(not(or(il,i2)))) (Applying 6 on 16)

(18) P(or(il, i2)) (Applying 7 on 17)

6. CONCLUSION

People have been, will always be, anxious to use computers in every possible way that may ease their jobs,
and mathematicians are no different. In this paper we have presented an overview of the field of automated
theorem proving and showed the current status of this important area. Researchers are becoming extremely
interested in this field. Some of them are interested in improving the tools that are used by theorem provers,
such as improving search-space controlling strategies or developing more useful inference rules. Other researchers
are interested in using these provers in different application areas such as program synthesis, verification, and
debugging. With the advances of computer technology theorem provers have become available to all different
kind of computer users. The availability of these provers on different platforms such as Personal Computers
(PCs), Macintoshes, Workstations and bigger systems encourages more and more people to use them. We expect
that all these factors will improve and advance this field rapidly and will produce different systems that will be
used in a variety of applications

256 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. October 1997

Talal H. Maghrabi

ACKNOWLEDGMENT

The author would like to thank the following KFUPM faculty members for their revision and suggestions on
this manuscript: Dr. M. Najjar (Information and Computer Science), Dr. S. Sait (Computer Engineering), and
Drs. J. Ahsan and A. Chaudhry (Mathematical Sciences). Dr. M. AI-Bar (Mathematical Sciences) has con
tributed with some mathematical proofs. A special thanks goes to Dr. L. Wos of Argonne National Laboratory,
Illinois, USA for providing some of the recent references.

REFERENCES

[1] 	 E. Mendelson, Introduction to Mathematical Logic. Belmont, CA: Wadsworth & Brooks/Cob. Advanced Book &
Software, 1987.

[2] 	 D. Duffy, Principles of Automated Theorem Proving. New York: John Wiley & Sons, 1991.

[3] 	 M. Davis, "The Pre-History and Early History of Automated Deduction", in Automation of Reasoning, Volume 1.
ed. J. Siekman and G. Wrightson. Springer-Verlag, 1983, pp. 1-27.

[4] 	 L. Wos and L. Henschen, "Automated Theorem Proving 1965-1970", in Automation of Reasoning, Volume 2.
ed. J. Siekman and G. Wrightson. Springer-Verlag, 1983, pp. 1-24.

[5] 	 A. Newell, J. C. Shaw, and H. A. Simon, "Emperical Explorations of the Logic Theory Machine: a Case Study in
Heuristics", Western Joint Computer Conference, 1956, pp. 218-239.

[6] 	 H. Gelerntner, "Realization of Geometry Theorem-Proving Machine", International Conference on Information
Processing, 1959, pp. 273-282.

[7] 	 J. Robinson, "A Machine Oriented Logic Based on the Resolution Principle", Journal of the A CM, 12(1) (1965),
pp. 23-41.

[8] 	 R. Boyer, J. Moore, W. Bledsoe, L. Henschen, B. Buchanan, G. Wrighstone, L. Wos, F. Pereira, and C. Green, "An
Overview of Automated Reasoning", Journal of Automated Reasoning, 1(1) (1985), pp. 5-48.

[9] 	 L. Wos, R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning: Introduction and Applications. Prentice-Hall,
1992.

[10] 	 W. Bledsoe, "The UT Prover", Math Department Memo ATP-17B, University of Texas at Austin, 1983.

[11] 	 A. Milner, M.J.C. Gordon, and C. Wadsworth, "Edinburgh LCF", Springer- Verlag Lecture Notes in Computer
Science, vol. 78, 1979.

[12] 	 L. Paulson, Logic and Computation: Interactive Proofs with Cambridge LCF. Cambridge, U.K.: Cambridge Uni
versity Press, 1987.

[13] 	 R. Boyer and J. Moore, A Computational Logic Handbook. Boston: Academic Press, 1988.

[14] 	 E. Lusk and R. Overbeek, "The Automated Reasoning System ITP", ANL-84-27. Argonne, IL: Argonne National
Laboratory, 1984.

[15] 	 L. Wos, Automated Reasoning: 33 Basic Research Problems. Englewood Cliffs, N.J.: Prentice-Hall, 1988.

[16] 	 P. Andrews, "Theorem Proving via General Matings", Journal of the ACM, 28(2) (1981), pp. 193-214.

[17] 	 W. Bibel, "On Matrix with Connections", Journal of the ACM, 28(4) (1981), pp. 633-645.

[18] 	 N. Murray, "Completely Non-Clausal Theorem Proving", Artificial Intelligence, 18(1) (1982), pp. 67-85.

[19] 	 M. Clocksin and M. Melish, Programming in Prolog. New York: Springer-Verlag, 1987.

[20] 	 Z. Manna and R. Waldinger, "A Deductive Approach to Program Synthesis", ACM Transactions on Programming
Languages and Systems, 2 (1980), pp. 90-121.

[21] 	 T. Maghrabi, "The Synthesis Tableau: A Deductive Framework for Program Synthesis Based on Sequent Calculus",
PhD Thesis, Arizona State University, Tempe, Arizona, U.S.A., August 1992.

[22] 	 N. Dershowitze, The Evolution of Programs. Cambridge: Birkhauser Boston, Inc., 1983.

[23] 	 G. Dromey, Program Derivation: The Development of Programs from Specifications. Sydney, Australia: Addison
Wesley, 1989.

October 1997 	 The Arabian Journalfor Science and Engineering, Volume 22, Number 2B. 257

Talal H. Maghrabi

[24] 	 R. Olsson, "Inductive Functional Programming Using Incremental Program Transformation", Artificial Intelligence,
74 (1995), pp. 55-81.

[25] 	 M.J.C. Gordon, "Lcf-Ism: A System for Specifying and Verifying Hardware", Report 41, Computer Laboratory,
University of Cambridge, 1983.

[26] 	 M.J.C. Gordon, "HoI: A Proof Generating System for Higher-Order Logic", Report 109, Computer Laboratory,
University of Cambridge, 1987.

[27] 	 D. Sarkar, l. Chakrabarti, and A. Majumdar, "Identification of Inductive Properties During Verification of Syn
chronous Sequential Circuits", Journal of Automated Reasoning, 14(3) (1995), pp. 427-462.

[28] 	 X. Gao, S. Chou, and J. Zhang, "Automated Generation of Readable Proofs with Geometric Invariants i and ii",
Journal of Automated Reasoning, 17(3) (1996), pp. 349-370.

[29] 	 E. Lusk, L. Wos, R. Overbeek, and J. Boyle, Automated Reasoning: Introduction and Applications. Prentice-Hall,
1984.

[30] 	 R. Padmanabhan and W. McCune, "Single Identities for Ternary Boolean Algebras", Computers and Mathematics
with Applications, 29(2) (1995), pp. 13-16.

[31] 	 R. Veroff, "Using Hints to Increase the Effectiveness of an Automated Reasoning Program: Case studies", Journal
of Automated Reasoning, 16(3) (1996), pp. 223-239.

[32] 	 A. Gelsey, "Automated Reasoning About Machines", Artificial Intelligence, 74 (1995), pp. 1-53.

[33] 	 S. Lee and D. Plaisted, "Problem Solving by Search for Models with a Theorem Prover", Artificial Intelligence, 69
(1994), pp. 205-233.

[34] 	 L. Wos, "The Power of Combining Resonance with Heat", Journal of Automated Reasoning, 17(1) (1996), pp. 23
81.

[35] 	 M. Kaufmann, R. Boyer, and J. Moore, "The Boyer-Moore Theorem Prover and its Interactive Enhancement",
Computers and Mathematics with Applications, 29(2) (1995), pp. 27-62.

[36] 	 J. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper & Row Publishers,
Inc., 1986.

[37] 	 H. Bromley, W. Cleavland, J. Cremer, R. Harper, D. Howe, T. Knoblock, N. Mandler, P. Panangaden, J. Sasaki,
R. Constable, S. Allen, and S. Smith, Implementing Mathematics with The Nuprl Proof Development System.
Prentice-Hall, 1986.

[38] 	 L. Wos, The Automation of Reasoning: An Experimenter's Notebook with OTTER Tutorial. London: Academic
Press, 1996.

Paper Received 1 October 1994; Revised 29 August 1995; Accepted 6 November 1995.

258 The Arabian Journal/or Science and Engineering, Volume 22, Number 2B. 	 October 1997

