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ABSTRACT 

Automated Theorem Provers are computer programs written to prove, or help in prov
ing, mathematical and non-mathematical theorems. Automated Theorem Proving (ATP) 
is a rapidly advancing field and contains many potential research areas. This paper is an 
overview of this important field. It starts by giving the needed mathematical background 
followed by an overview. The overview includes historical background, basic terminol
ogy and notations and a description of the major components of a typical theorem prover. 
The paper also outlines the current state of research in ATP and a brief description ofsome 
of the existing theorem provers. 
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AUTOMATED THEOREM PROVING: AN OVERVIEW 


1. INTRODUCTION 

Automated theorem provers are computer programs written to prove, or help in proving, mathematical 
and non-mathematical theorems. Automated Theorem Proving (ATP) first emerged in the late 1950s, when 
mathematicians became interested in automating mathematical proving techniques. Since that time ATP has 
evolved rapidly and many changes have taken place. Currently, ATP is considered to be a fast growing field 
of computer science. It has many application areas such as program verification, program synthesis, hardware 
verification, and mathematics. Many general and special-purpose theorem provers have been developed in the 
last few years, and many more are expected to be developed in the near future. In this paper we present an 
overview of this important field and try to enlighten the reader about its history and future. Section 2 gives some 
mathematical background which mainly concentrates on First Order Logic (FOL) since it is the basic foundation 
of ATP. Section 3 summarizes the history of ATP and gives basic terminology and notations. It also describes 
the major components of a typical theorem prover. Section 4 outlines the current status of the field and its 
research areas. It also describes some of the well-known theorem provers. Finally, Section 5 provides an example 
of a problem from the field of mathematics that is solved using the OTTER theorem prover. 

2. MATHEMATICAL BACKGROUND 

In this section we give a brief introduction to FOL, which is the basic foundation for automated theorem 
proving. First we define what logic is, and then we describe the basic elements of FOL. 

2.1. Deductive Systems 

A logic (or a deductive system) consists of a language, a proof theory, and a model theory. The language 
consists of: a countable set S of symbols called the alphabet, and a set of well-formed formulas (wffs) , which 
are finite sequences of symbols that are constructed from S using well-defined rules called formation rules. The 
collection of all wffs that can be constructed from S using the formation rules is called a language on S, and 
is denoted by Ls. The proof theory of a logic defines the expressions that are. derivable (or provable) in the 
logic. It consists of: a subset of wffs called axioms, and a finite set of relations nl! n2 ••. ,nn on wffs, called 
inference rules. An inference rule R; maps a non-empty set of wffs, called the premises of Ri, to a single wff, 
called the conclusion of R;. A proof is a sequence of wffs AI, A2 ... ,Am such that each Ai is either an axiom or 
a consequence of some of the preceding wffs by virtue of one of the inference rules. A theorem is a wff A such 
that there is a proof, the last wff of which is A. Such a proof is called a proof of A. The meta symbol f- is used 
to represent provability, i. e. f- A states that A is a theorem. r f- A represents the derivation (or deduction) of 
the wff A from the set of wffs r, which is called the assumptions of A. In the model theory of a logic, meanings 
are assigned to the expressions of the logic and then the expressions are checked to see if they are true or false. 
Interpretations give meaning to all symbols and, subsequently, to all wffs in the language of the logic. Based 
on the values assigned by an interpretation to the variables of a wff, the wff is said to be true or false. A wff 
that is true in all interpretations is called logically valid while a wff that is false in all interpretations is called 
unsatisfiable. The meta symbol 1= is used to represent validity, i. e. 1= A states that A is logically valid. The 
logic is said to be sound if every theorem in it can be shown to be logically valid, while it is said to be complete 
if every logically valid wff in it can be derived as a theorem. The logic is said to be consistent if either f- A or 
f- ...,A (that is, not A) but not both, i.e. you cannot prove both a wff and its negation. More details on deductive 
systems can be found in [1]. 
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2.2. First Order Logic (FOL) 

First-Order Logic is the most familiar logic to mathematicians. By embedding proper axioms, which are 
axioms that are defined on a specific domain, in FOL, we obtain other first-order theories such as number theory 
and group theory. As stated in the previous section, FOL has both proof and model theories. However, since 
ATP is concerned only with proofs, and hence the proof theory, we will only describe the proof theory of FOL. 

The Alphabet of FOL 

1. 	 A set of constant symbols such as a, b, c, ... (may be followed by subscripts). Constant symbols can also 

be from some domains such as integers or strings, e.g. 0, 1, 'smith', 'dog', etc. 


2. 	 A set of variable symbols X, Y, Z, ... (may be followed by subscripts). Variable symbols can also be from 

other domains, e.g., 'book', etc. 


3. 	 A set of function symbols f(x), g(y, z), . .. (may be followed by subscripts). Function symbols can also be 

from other domains, e.g., successor(5), father(jim). 


4. 	 A set of predicate symbols P, Q, R, ... (may be followed by subscripts). Predicate symbols can also be 

from other domains, e.g., equal(3,1+2), office (jim,243). 


5. 	 A set of logical connectives: A (and), V (or), (not), and - (imply).I 

6. 	 A set of punctuation symbols: '(" ')', and ','. 

7. 	The quantifier symbols V (for all) and 3 (there exists). 

The number of arguments of a function or a predicate symbol is called its arity. i.e., f(X, Y) has an arity 2 
while P(X, Y, a) has an arity 3. 

The Formation Rules of FOL 

The smallest expression in FOL is the term. A term is a constant symbol, a variable symbol, or a function 
symbol of arity n applied to n terms. An atomic formula is a term or a predicate symbol of arity n applied to n 
terms. The set of well-formed formulas (wffs) of FOL is inductively defined as follows: 

1. 	 Every atomic formula is a wff. 

2. 	 If A and 8 are wffs then so are: 

(,A), (A A 8), (A V 8), (A - 8), (VxA), and (3xA). 

Given a wff VxA (or 3xA), A is called the scope of the quantifier Vx (or 3x). An occurrence of a variable x is 
bound in a wff A if it is either the occurrence of x in a quantifier Vx (or 3x) in A, or it lies within the scope of a 
quantifier Vx (or 3x). A variable is said to be free if it is not bound. If A is a wff and t is a term of FOL then t 
is free for Xi in A if Xi does not occur free in A within the scope of a quantification Vxj 8, (or 3xj8), where Xj 
is any variable occurring in t. 

The Axioms of FOL 

For any wffs A, 8, and e in FOL, the following are the (logica~ axioms of FOL [1]: 

1. 	A-(8-A). 

2. 	 (A - (8 - e)) - «A - 8) - (A - e)). 

3. 	 (18 - ..,A) - «..,8 - A) - 8). 
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4. 	 'v'xiA(Xi) ~ A(t) if A(Xi) is a wff with free variable Xi, and t is a term which is free for Xi in A(Xi), t can 
be identical to Xi. 

5. 	'v'xi(A ~ B) ~ (A ~ 'v'xi,B) if A does not contain any free occurrence of Xi. 

The Inference Rules for FOL 

1. 	 From A ~ B and A conclude B. "Modus Ponens, or MP' 

2. 	 From A conclude 'v'xiA. "Generalization, or GEN'. 

An Example of A First Order Theory 

Group theory is an example of a first-order theory. This theory has one constant symbol 1, one function 
symbol product(t, s) (this function notation will be written as t*s) where t and s are terms, and one predicate 
symbol equal(t, s) (this predicate notation will be written as t =s). In addition to the FOL logical axioms this 
theory has the following proper axioms: 

Ax.1) 'v'X 1'v'X 2'v'X3(XI * (X2 * X3) =(Xl * X2) * X3) (Associativity) 


Ax.2) 'v'XI (1 *Xl =xt) (Identity) 


Ax.3) 'v'XI3x2(X2 *Xl =1) (Inverse) 


Ax.4 ) 'v'XI ( XI = XI ) (Reflexivity of =) 

Ax.5) 'v'X I 'v'X2(XI =X2) ~ (X2 =xt) (Symmetry of =) 


Ax.6) 'v'XI 'v'X2'v'X3( (Xl =X2 /\ X2 =X3) ~ Xl =X3) (Transitivity of =) 


Ax.7) 'v'X I'v'X 2'v'X3(X2 =X3) ~ Xl *X2 =Xl *X3/\ X2 *Xl =X3 *Xl) (Substitutivity of =) 


From the above axioms we can derive the following proof of the theorem: 

(1 ) Xl * Xl = 1 	 (Assumption) 

(2) X2 * X2 = 1 	 (Assumption) 

(3) (Xl * X2) * (Xl * X2) =1 	 (Assumption) 

(4) Xl * (Xl * X2) * (Xl * X2)) Xl * 1 (From Ax.7 and 3) 

(5) Xl * ((Xl *X2) * (Xl *X2)) =Xl 	 (From Ax.2 and 4) 

(6) (Xl * (Xl * X2)) * (Xl * X2) = Xl 	 (From Ax.1 and 5) 

(7) ((Xl *xt) * X2) * (Xl * X2) = Xl 	 (From Ax.1 and 6) 

(8) (1 *X2) * (Xl * X2) =Xl 	 (From 1 and 7) 

(9) X2 * (Xl * X2) =Xl 	 (From Ax.2 and 8) 

(10) (X2 * (Xl * X2)) * X2 Xl *X2 	 (From Ax.7 and 9) 

(11) X2 * «Xl *X2) * X2) =Xl *X2 	 (From Ax.1 and 10) 

(12) X2 * (Xl * (X2 *X2)) = Xl * X2 	 (From Ax.1 and 11) 

(13) X2*(XI*1)=Xl*X2 	 (From 2 and 12) 

(14) X2 *Xl = Xl * X2 	 (From Ax.2 and 13) 
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3. INTRODUCTION TO AUTOMATED THEOREM PROVING 

As shown in the previous section a wff A can be proved to be a theorem in some logic L if it can be derived 
from the axioms (and theorems) of L using its inference rules. If the proving process can be done mechanically 
using a computer program then that program is called an automated theorem prover. A more suitable definition 
of ATP is given in [2]: 

"Automated Theorem Proving (ATP) is concerned with the task of mechanizing mathematical (or 
logical) reasoning. Proofs of mathematical theorems are performed by a computer, analogously to 
the way arithmetical problems are solved by a calculator" . 

In this section we present an overview of ATP. We begin with a historical background of the evolution of the 
field. We then include the basic terminology and notation used in ATP, followed by a description of the major 
elements of a typical theorem prover. 

3.1. Historical Background 

Mechanical theorem proving developed as a spin-off from the study of formal languages, such as First 
Order Logic (FOL). These languages were used by researchers to state rigorously a wide range of problems in 
an unambiguous way [3, 4]. Later, logicians formulated inference rules that enabled them to draw sound and 
correct conclusions from given statements. These new conclusions were called theorems, and the sequence of 
steps followed to draw a theorem was called a proof When digital computers were invented, logicians became 
interested in using them to prove theorems automatically; i.e., by giving the theorem to the computer and 
waiting until the computer proved the theorem without intervention from the user. These were called stand
alone provers. Some of the provers developed at that time were the Logic Machine by Newell, Simon, and Shaw 
[5], and the Geometry Machine by Hao Wang and Gelerntner [6]. The way a theorem was proved was actually 
by applying inference rules to axioms to generate theorems, which were also used in generating new theorems 
and so on until, eventually, the desired theorem was derived. The collection of all generated theorems was called 
the search-space. Since a search-space was always large it was required to develop some mechanisms to control 
it. These were known as control strategies. In the late 1950s and early 1960s, the concentration was based on 
using FOL as the main methodology of research. The development of resolution (an inference rule) in 1964 [7] 
was a major change in the field. In the late 1960s and early 1970s, researchers advanced the field by defining 
more inference rules, developing some search-space control strategies, and extending the applications to fields 
other than Mathematics [4, 8, 9]. Interactive provers followed, which initially produced part of the required 
proof, then returned the partial information to the user who then could direct/redirect the proof [10-12]. A 
great deal of success has been achieved recently. Several theorem provers are available today. Some of these 
provers are general, others are designed for specific applications, such as electronic circuit design, expert systems, 
program verification, and formal logic [13, 14]. There is, however, much more research to be done. Controlling 
the search-space is still a major problem. The development of theorem provers that are general and effective 
has not yet been accomplished. Effective provers cannot prove all theorems, and general provers are inefficient, 
consuming vast amounts of space and time [8, 15]. 

3.2. Terminology and Notations 

Now we will define some ATP notations and terminology, some of which are derived from FOL while the 
others are specific to ATP. As previously defined in Section 2.2, a term is a constant symbol, a variable symbol, 
or a function symbol of arity n applied to n terms. An atomic formula is a term or a predicate symbol of arity 
n applied to n terms. A literal is an atomic formula (or the negation of an atomic formula), and it is called a 
positive (or a negative) literal. A clause is the disjunction (V) of a (finite) set of literals with no literal appearing 
twice. A clause with no literals is called the empty clause and is denoted by D. A Horn clause is a clause that 
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has at most one positive literal. If all the literals in a clause are positive (negative) then the clause is called a 
positive (negative) clause. A clause with both positive and negative literals is called a mixed clause. A clause 
that has a single literal is called a unit clause. A clause with more than one literal is called a non-unit clause. A 
wff in a clausal form has the form: 

where each Ci is a clause, and Xl, X2, ... Xn are all the distinct variables occurring in Cj's. A substitution 0 (of 
terms for variables) is a set {t 1 ~ Xl, t2, ~ X2 ... ,tn ~ xn} where each Xi is a distinct variable and each tt, 

is a term which is not identical to the corresponding Xi. If I is a literal then 10 is the result of applying the 
substitution 0 on the variables of I. A substitution q is a unifier for the literals h,/2 ... In if 110 =120 =.. .lnO, 
and the literals 11,/21 " .In are called unifiable. Resolution, sometimes called binary resolution, is an inference 
rule applied to two clauses. Resolution selects unifiable literals in the two clauses of the same predicate but of 
an opposite sign and yields a clause, called the resolvent. For example, if we have the following clauses: 

C1: P(x) V Q(x, a) V R(x, y) and 

C2: -,P(a) V R(y, z) 

then applying resolution on them yields the following resolvent clause after eliminating P(x) and -,P(a) and 
substituting a for x: 

C3: Q(a, a) V R(a, y) V R(y, z). 

More details can be found in [1, 2]. 

3.3. Major Elements of a Theorem Prover 

Although theorem provers may vary in their components, most of them share the following major elements: 

1. Information Representation Language: 

The automated theorem prover must have a language that is capable of representing the information 
relating to the problem at hand. This language should be able to represent the required facts, relationships 
and concepts in a clear and unambiguous manner. Some of the existing languages are: the Clause language 
in which FOL wffs are converted to clauses [9], Matrix representation in which wffs are represented in a 
special tabular form [16, 17], Non-Clausal representation [18], and Natural Deduction representation [10, 
12] in which wffs are treated in their original form. 

2. Inference Rules: 

The prover also needs some inference rules which enable it to draw conclusions. A single inference rule, 
at least in practice, will not suit all kinds of applications. ",An example is resolution which can be applied 
to any problem if that problem can be represented as a set of clauses. However, it has the disadvantage 
that its deduction steps are too small, i.e., it can process only two clauses at a time. Hyperresoiution and 
UR-resolution [15] rules are similar to resolution except that they may work with two or more clauses at 
the same time. There are also some modified versions of resolution which are applied to statements not in a 
clause form, such as the Non-Clause resolution [18]. Natural deduction theorem provers use inference rules 
that manipulate the wffs by introducing and/or eliminating their connectives and/or quantifiers [10, 12]. 
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3. Control Strategies: 

For a theorem prover to be effective, it should have some strategies to direct the application of inference 
rules towards an appropriate direction, and some strategies which restrict their applications to the problem 
domain. This is necessary since applying the inference rules without control may generate a lot of irrelevant 
information which may cause problems in terms of time or space limitation [9]. Some of these strategies 
are: 

(a) 	 The weighting strategy. In this strategy, the user provides the program with some values or weights 
for the concepts or symbols of the problem at hand. The program uses these weights to determine 
which part of the problem to consider next. This makes the program reach the solution of the problem 
in a more efficient way, provided that the given weights are correct. 

(b) 	The set of support strategy. In this strategy, the user provides the program with a particular set of 
the input parameters, called the set of support for the problem at hand. When the program starts its 
deduction process it considers these parameters as the base of the search for the needed answer. The 
remaining input parameters are used only if they are needed to complete a deduction step. 

In addition to the above elements, some of the existing theorem provers may have the following elements 
[9, 14]: 

1. Demodulation Procedures: 

These procedures rewrite some of the information into a canonical form before using them in the reasoning 
process. For example, if the system has the modulator equal(prod(1,X),X), and the program generates the 
clause gt(prod(1, Y),Z), then the program automatically rewrites it as gt(Y,Z) before considering it in any 
further reasoning 

2. Subsumption Procedures: 

These procedures eliminate any information that can be captured by other existing information. For 
example, if the program has the clause equal(prod(X, 1),X) and if the clause equal(prod(5, 1), 5) is generated 
later during the reasoning process, then the system will discard the new clause, since it is already subsumed 
by the first clause. 

4. THE CURRENT STATUS OF ATP 

4.1. Types of Proving Methodologies 

Automated theorem provers can determine if a wff A is a theorem, in some logic, using one of the following 
approaches: 

1. The Refutation Approach: 

This approach is based on the following concept: A wff A is a theorem if and only if it is logically valid; 
A is logically valid if and only if..,A is unsatisfiable. Instead of showing that A is a theorem we may show 
that ..,A is unsatisfiable. This can be done by refutation. Refutation is a process in which the wff ..,A is 
added to the axioms of the theory, and then inference rules are applied to derive some contradiction. This 
contradiction indicates that ..,A is unsatisfiable, which proves that A is a theorem. Many theorem provers 
use refutation as their proving approach. They use various versions of resolution as their inference rules. 
An example of these provers is OTTER [9]. Prolog is also considered as a refutation theorem prover [19]. 
OTTER will be described in more detail in Section 4.4. 
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2. The Direct Proving Approach: 

In this approach A is proven as a theorem by deriving it from the axioms with the application of inference 
rules. These proofs can be done by forward or backward chaining. In forward chaining, inference rules are 
applied to the axioms to derive new theorems. These new theorems are used to derive additional theorems. 
This process continues until either A is derived (in which case it is a theorem), or until the time (or space) 
limit is exceeded. In backward chaining, the wff A is reduced to simpler wffs. These wffs are then reduced 
further and further. This process continues until all the new wffs are reduced to axioms (in which case A 
is a theorem), or until the time (or space) limit is exceeded. Some of the provers that use this approach 
are: the Boyer-Moore prover [13], IMPLY [10], and LCF [11, 12]. These provers will lie described in detail 
in Section 4.4. 

4.2. Application Fields of ATP 

ATP is a rapidly growing field in computer science. There are many research areas that are currently under 
investigation [15]. These areas vary between improving the current status of the field, e.g. enhancing some of the 
existing inference rules, and/or developing new techniques that will produce better results. Another aspect of 
current research is completeness versus effectiveness. Completeness refers to the process of developing theorem 
provers which can solve problems from different areas, i.e., general, although inefficiently, while effectiveness 
refers to the process of developing theorem provers which can solve specific problems, i.e., special-purpose, but 
efficiently. There are several areas for which theorem provers have proved to be good and productive tools, but 
due to space limitation we will only outline some of the major application areas and the reader can refer to [2, 
8, 9] for more details. 

1. Program Synthesis: 

Program synthesis is the process of constructing programs directly from specification without using the 
classical approach of design, implementation and testing. One of the major approaches of program synthesis 
is based on theorem proving. In this approach the specification of the desired program is given as a 
mathematical formula. A theorem prover is used to prove that there is a program that satisfies that 
specification. The program itself is constructed as a side-effect of the proof. 

Manna and Waldinger have been working in this area since the early 70's [20]. Most of their work is based 
on resolution based theorem proving. A natural deduction-based approach is developed in [21]. Interested 
readers can find more details in [8, 22-24]. 

2. Hardware Verification: 

Hardware verification, in its simplest meaning, is the process of checking and verifying that a given hardware 
circuit is actually performing the functions for which it was implemented. This verification varies from a 
simple circuit to a more complicated one. 

This research area has gained more attention recently due to the fact that verifying complex hardware 
circuits by traditional methods is becoming more difficult and more expensive. Some of the existing 
systems that are mainly used in hardware verification are LCF-LSM [25] and HOL [26]. Some of the 
recent application of theorem provers in hardware verification is discussed in [27]. Wos et al. in [9] show 
many examples of how the OTTER system (described in Section 4.4) is used in logic circuit design and 
verification. 

3. Research in Mathematics: 

Mathematics is the oldest research area in which theorem provers have been used. Since their early 
development ATP systems have been heavily used in proving mathematical theorems. These proofs are 
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either new proofs of theorems not proven manually before, or proofs of old theorems, which confirm their 
old manual proofs [28]. IMPLY (described in Section 4.4) has been heavily used in proving theorems in 
the set theory, and limit theory. OTTER and its predecessors AURA [29] and ITP [14] have been heavily 
used in proving theorems from Group theory, Ring theory, and Ternary Boolean algebra [30]. 

4.3. ATP Current Research 

In the previous section we discussed some of the application areas of ATP. In this section we briefly outline the 
general directions of research in this field. In the early development of ATP the main direction of research was 
to discover and find new techniques, inference rules, strategies, etc. that would enable theorem provers to work 
better. Although this is still an active area, see [31] for example, most of the current research is concentrated 
on the use of existing theorem provers in almost all different fields. For example, reference [32] describes how 
an automated theorem prover is used in prediction the behavior of mechanical devices. Reference [33] describes 
how to use theorem provers to search for a model of a solution for a problem. Most of the current research is 
reported in specialized journals such as the Journal of Automated Reasoning, see for example [34]. 

4.4. Examples of Automated Theorem Provers 

1. Boyer and Moore 

This prover was developed by R. Boyer and J. Moore in the late 1970s to prove inductive theorems in the 
standard mathematical style [2, 13]. The main motivation behind the development of the system was to 
automate the proof process as far as possible. Boyer and Moore in [13] say that they were interested in 
how people go about proving theorems by induction. That is why their system has many heuristics for 
inventing induction, for removing undesirable elements from conjectures and for generalizing formulas. 

The language of the theorem prover is a version of pure Lisp, since initially the system was built with the 
intention of proving theorems about recursive functions. Lisp, stands for List Processing, is a computer 
language that is commonly used in Artificial Intelligence (AI) research. The system strategy is to simplify 
the given conjecture to prove it. If this simplification fails then the prover will invent an induction argument 
based on the axioms defining the types of objects possible (numbers, list, etc.,) and on the recursively 
defined functions appearing in the conjecture. 

The system and its underlying theory has been used in some applications such as program verification and 
logic circuit design. More details can be found in [2]. Recently some interactive enhancement has been 
added to increase the power of the system [35]. 

2. IMPLY 

Bledsoe and his working group at the University of Texas at Austin have developed an interactive theorem 
prover called UT. Although IMPLY is the central routine of this theorem prover, UT is known to many 
researchers as IMPLY [10]. 

The prover is a natural deduction-based system that was used to prove theorems in first order logic, and 
some extensions of it. Natural deduction is a proving mechanism (or system) in which wffs are proven 
in their original form without being transformed to clause. It is called natural because it resembles the 
natural way of theorem proving. For more details on natural deduction see [2, 12, 36]. 

IMPLY uses the concepts of sub-goaling, reduction (rewrite rules) procedures, controlled definition instanti
ation, controlled forward chaining, conditional rewriting and conditional procedures, algebraic specification, 
and induction. 
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The prover has an interactive user interface. The user can wait for the prover to prove the given theorem 
within a redefined time interval. If the prover fails then the user can interact and give it other directions. 
Although IMPLY is a general theorem prover, it has been used to prove theorems in the following areas: 

• set theory, 

• limit theorems, 

• topology, and 

• program verification. 

3. LCF 

LCF Stands for Logic for Computable Functions. LCF is a logic developed by Dana Scott in 1969 in which 
facts about recursively defined functions can be formulated and proved. The Stanford LCF theorem prover 
was developed by Milner to perform proofs in this logic. The proof was done step by step, i. e., it is a proof 
checker. Milner developed a meta language, ML, in which the prover can be programmed, the result was 
Edinburgh LCF [11]. Cambridge LCF extended the logic of Edinburgh LCF with V, 3, ~(stands for if 
and only if or -+ 1\ +-) and predicates, improved the efficiency and added several inference mechanisms 
[12]. 

LCF uses ML as its representation language. It uses the natural deduction connectives/quantifiers intro
duction and elimination inference rules. It also uses both forward and backward approaches for proving 
theorems. This theorem prover can be used in the following applications: 

• Experimenting with first order proofs. 

• Studying abstract constructions in domain theory. 

• Comparing the denotational semantics of programming languages. 

• Verifying functional programs. 

LCF is currently used in many proving systems such as: 

(a) LCF-LSM and HOL: which were developed for verifying hardware [25, 26]. 

(b) Nuprl: which supports constructive type theory and is used heavily in mathematics [37]. 

4. OTTER 

The OTTER (Organized Techniques for Theorem-proving and Effective Research) system was developed 
by W. McCune of the Mathematics and Computer Science Division at Argonne National Laboratory [9, 
38]. It was developed as a result of the continuous success of the former automated theorem provers AURA 
and ITP. 

OTTER uses the Clause language as its representation language, in addition to FOL wffs. Its inference 
rules include various versions of resolution, e.g. hyperresolution. It also uses various control strategies such 
as the set-of-support, and demodulation and subsumption procedures. It has been successfully used in the 
following areas: 

• Logic circuit design and validation. 

• Program verification. 

• Formal logic 

• Mathematics. 

OTTER is written in C and therefore it is very portable. It is available on PC-DOS, Macintosh, and UNIX 
platforms. 
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5. A THEOREM PROVER IN ACTION 

So far we have described some theorem provers and their application areas. The reader can find in the 
corresponding references how these provers are actually used in solving problems. However, for the purpose of 
completeness it is important to show an example of a problem that is solved by a theorem prover. In this section 
we will outline a proof of a validation of a digital circuit that was obtained by the help of OTTER. The details 
of this proof can be found in [9]. 

5.1. The Problem 

Prove that the output of the circuit shown in Figure 1, which consists of NAND gates, is equivalent to OR(i1,i2), 
i.e. an OR gate. 

5.2. The Solution 

We will use the clause language of OTTER to represent the problem and its solution. All clauses will be numbered 
for ease of referencing. First of all we need to identify the symbols, axioms, and inference rules and demodulators 
(see Section 3.3) that will be used to prove the above claim. We will use the following symbols: 

• 	 the constant symbols iI, i2 to represent the input to the circuit, 01 to represent the output of the circuit, 
and aI, a1 to represent the intermediate output as shown in the figure. 

• 	 the variable symbols x, y to represent general variables. 

• 	 the predicate P to represent the output of the circuit. 

1 

3 

2 

i2 

Figure 1. Nand-Or· Equivalent Diagram. 
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From Figure 1 we can write the following demodulators: 

(1) EQUAL(ol,nand(al, a2)) 

(2) EQUAL(al,nand(il, il)) 

(3) EQUAL(a2,nand(i2, i2)). 

From the definition of logical circuits we can write the following demodulators: 

(4) EQUAL(nand(x, y),not(and(x, y))) Relation between AND and NAND 

(5) EQUAL(and(x, x),x) 

(6) EQUAL(and(not(x),not(y)),not(or(x, y))) Relation between AND and OR 

(7) EQUAL(not(not(x)),x). 

The proof using the above demodulator is shown below: 

(8) P(ol) (The starting clause) 

(9) P(nand(al, a2)) (Applying 1 on 8) 

(10) P(nand(al,nand(i2, i2))) (Applying 3 on 9) 

(11) P(nand(al,not(and(i2, i2)))) (Applying 4 on 10) 

(12) P(nand(al,not(i2))) (Applying 5 on 11) 

(13) P(nand(nand(il, il),not(i2))) (Applying 2 on 12) 

(14) P(nand(not(and(il, il)),not(i2))) (Applying 4 on 13) 

(15) P(nand(not(il),not(i2))) (Applying 5 on 14) 

(16) P(not(and(not(il),not(i2)))) (Applying 4 on 15) 

(17) P(not(not(or(il,i2)))) (Applying 6 on 16) 

(18) P(or(il, i2)) (Applying 7 on 17) 

6. CONCLUSION 

People have been, will always be, anxious to use computers in every possible way that may ease their jobs, 
and mathematicians are no different. In this paper we have presented an overview of the field of automated 
theorem proving and showed the current status of this important area. Researchers are becoming extremely 
interested in this field. Some of them are interested in improving the tools that are used by theorem provers, 
such as improving search-space controlling strategies or developing more useful inference rules. Other researchers 
are interested in using these provers in different application areas such as program synthesis, verification, and 
debugging. With the advances of computer technology theorem provers have become available to all different 
kind of computer users. The availability of these provers on different platforms such as Personal Computers 
(PCs), Macintoshes, Workstations and bigger systems encourages more and more people to use them. We expect 
that all these factors will improve and advance this field rapidly and will produce different systems that will be 
used in a variety of applications 
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