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ABSTRACT 

The probability generating function derived by Bhalerao and Gurland [3] has 
been rewritten in terms of confluent hypergeometric series functions and generalized 
to four- and five-parameter families. The generalized family of distributions is 
different from the Katz [8] and Kemp [9] families. The moment method has been 
employed to obtain an estimation of the parameters. An example is given to 
illustrate the method. 

*This paper was presented at the American Statistical Association Meeting, 1980 at Houston, Texas, 
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1. INTRODUCTION 

Bhalerao and Gurland [3] introduced the prob
ability generating function (p.g.f.) 

g(z)=exp {-{{ 1-1 ~ (1)P(z -1)} 'IP -1 ]}. 

where ). > 0, a > 0, and fJ < 1. When fJ < 0, - aI fJ is a 
positive number. The function (1) is the p.g.f. of a 
three-parameter family of generalized Poisson distri
butions and was named Poisson V POLPAB, as it was 
a mixture of Poisson, Logarithmic, Pascal, and 
Binomial distributions. This family will be referred to 
as the B-G family. 

In this paper, a generalization of the B-G family is 
given. In addition, explicit formulae for the density 
function, moment generating function, and moments 
are presented, and parameters are estimated using the 
first two moments and the frequency at zero. 

2. GENERALIZATION OF 8-G FAMILY 

The three-parameter p.g.f. (1) can be rewritten in 
terms of confluent hypergeometric function as 

g(z) (2) 

where 

and 

(r)l1=r(r+l) ... (r+n-l), r>O. 

This has motivated the generalization to a four- or 
five-parameter family of discrete distributions. This is 
done by introducing two more parameters in the 
arguments of the confluent hypergeometric function. 
The new p.gJ. will, therefore, be given by 

(3) 

where k=(IFl [a;O;)']) 1 and a>O, ),>0, and 0>0. 
The function g*(z ) is evidently a p.g.f., for g* (z ) 
converges absolutely at least for Hr' ~I ~ 1, since f(I1)(Z) 
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constitutes a bounded sequence of real numbers and 
g*(l)=l. 

The probability function as the coefficient of ZX in 
the expansion of g*(z) is 

IX) ( ) )." 

Pf(x)::=k L ~ -(I-fJtrt 
/ 

11=0 (0)11 n! 

x = 0, 1, 2, 3, . .. (4) 

If a 0 1, f(x) in (4) is the B-G probability func
tion. If fJE(O,I), then f(x) in (4) is the Poisson-Pascal 
distribution, and if {3 < 0, then f(x) is a Poisson
binomial type. If alfJ is an integer, thenf(x) reduces to 
a Poisson-binomial distribution. Other special and 
limiting cases are discussed by Badahdah [1]. The 
moment generating function for (4) is 

(5) 

The moments from (5) can easily be obtained using the 
following property of the confluent hypergeometric 
function [4, p.283], 

IX) (a)n(x _l)n).n 

IF I(a; 0; ).x) = n.f=o (O)nn! IF I(a +n, 0 + n, 0). 


In the derivation of moments, the following identity, 
proof of which is simple, is also used 

(n). j!).j
L, (O)J ).11=-(O)l F I[j+l;O+j;).]. 
I1=J 11 J 

Alternatively, the moments of the distribution (4) 
can be expressed as a linear combination of moments 
of the negative binomial probability distribution. The 
moment generating function, M (t) is defined as 

IX) P)Xx L (-N)( -~ etX, (6) 
X'=O x Q 

where P=fJ/(I-fJ), Q=I/(l-fJ), and N=nalfJ. The 
rth moment about the origin is the coefficient of t r Ir! 
in the expansion (6) and is given by 

Jl~=k I (a)I1).~ I xr(l_P/Q)N(N+X-l)(~)X 
11=0 (0)11 n. x = 0 N -1 Q 

00 

I CI1 Jl ~(N, P), r 1, 2, 3, ... , 
11=0 

22 



where en [(a)n/(8)nJ),n/n! and /1~(N,P) is the rth mo
ment about the origin of the negative binomial pro
bability function with parameters Nand P. 

If a = 1, the first four moments are 

, krx). ~ 
/11=1_/3 (jl Fd 2;8;).), (7) 

2rxA ] (7a)(8+1)F(3)+(I+rx) ,[ 

6rx2),2 6Arx(rx+l) 3 
+1)zF(4)+ (8+1) F() 

+(a2 +3a+p+ I)} (8) 

and 

, 2 
2 I, 

+ 36rx (rx + 1) (8 + 1)2 F (4) 

A 
+2(7rx 3 +18rx 2 +4rx/3+7Ct) 8+1 F(3) 

+(~3 +6ot2 + 7ot+4,P +p2 +4P+ 1)1 	 (9) 

where F (r) = 1F 1 [r; 8 + r - 1; I, J-7- 1F1 [2; 0; ),J , 
r=3, 4,5. 

3. ESTIMATION WHEN a 1 

Using a sample moment method, we obtain the 
moment estimators of the parameters. With 0 and }, 
known, the moment estimators of rx and /3 can be 
o btain,ed as 

a=0(1-p)m'1/[kAF(2)J, (10) 

P 1_~,!!'I_ 	 (11) 
;,km~ -a(A,O)' 

where a(i.,O)~em'12(1+2~:(:») and m; is 	 the ith 

sample moment about zero. 

As the use of the third moment reduces the efficiency 
of an estimator, we may use zero frequency and the 
first two sample moments to estimate rx, /3, and I"~ 

when 0 = 1. Hinz and Gurland [7J observed that the 
estimators based on zero frequency and low-order 
sample moments attain high asymptotic efficiency. The 
estimators of Ct, /3, and I, using the frequency at zero 
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and the first two sample moments are 

l+a m,/ 
(12)a m2 

_ aX 
/3=1--, 	 (13) 

m'l 

and 

m'
and e 1where M 

m2 

The M-function in (14) involves rx only. The value of rx 
is estimated when c and M are known. If e < 1, then 
M> 1, and the M -function is a monotonically decreas
ing function of rx with MIas an asymptote. If e 1 
then M 1 for all rx. The M-function is a monotoni
cally increasing function of rx for e> 1 with M = 1 as 
the asymptote. It can easily be shown that 
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Figure 1. Graphs of the M-function 
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lim [c(l +a)y/{I-c(I H)}=O. When C-HIJ, M ~O for all a. 
iX->X 

Graphs of the M-function are drawn (see Figure 1) for 
different values of a and c. For given values of M and 
c, a value of a can be interpolated. A table of M
functions for various values of a and C has also been 
constructed for computational purposes (see Table 2). 

4. EXAMPLE 

Williford and Price [10J examined three distinct 
categories of physical situaticns. They have fitted 
modified compound distributions to various types ofdata 
using the method of modified minimum chi-square 
estimation. They found that some of the modified 
distributions would provide a better fit than either the 
Poisson, binomial, or negative binomial distributions. 

We consider the data on the frequency of days with 
X thunderstorm outcomes. The three-parameter gener
alized compound distribution is fitted to the data 
using frequency at zero and first two sample moments. 
Table 1 contains estimates of the three parameters, 
and observed and expected frequencies. For compara
tive purposes, the negative binomial distribution is 
included. The moment estimation method (MM) is 
less efficient than the rr.aximum likelihood (ML) esti
matien method, though some of their asymptotic pro
perties are roughly the same. The fit seems better th·an 
the negative binomial distribution using the maximum 
likelihood method. In the example, the negative value 
of f3 suggests that the data follow Poisson-binomial 
type distribution. 

Table 1. Frequency of Days with X Thunderstorm 
Outcomes 

Expected frequency 

No. of days Observed Negative Generalized 
(x) frequency binomial compound 

(ML) (MM) 

0 511 496.33 511.0 
1 216 239.21 201.8 
2 96 105.90 112.2 
3 65 45.50 54.2 
4 24 19.25 30.0 
5 or more 8 13.81 10.8 

920 920.0 920.0 

x=0.79, S2 = 1.21 X2 12.00 7.6 

/0=0.5654 (1 = 1.674 df=3 2 

c=0.6529 /I=0.8239 0/ 
/0 0.993 0.97 

k = 1.14003 
"'Jr 

It -0.7459 

Table 2. Table of M-functioDS 

c 

ex 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 


0.1 2.416 1.941 1.678 1.500 1.368 1.265 1.182 1.112 1.052 
0.5 2.017 1.730 1.548 1.416 1.313 1.229 1.158 1.098 1.046 
1.0 1.733 1.566 1.442 1.345 1.264* 1.196 1.138 1.086 1.041 
1.5 1.563 1.458 1.370 1.295* 1.230 1.173 1.122 1.077 1.037 
2.0 1.452 1.383 1.318 1.258 1.204 1.155 1.111 1.071 1.034 
2.5 1.375 1.328 1.278 1.229 1.183 1.141 1.101 1.065 1.031 
3.0 1.320 1.286 1.247 1.206 1.167 1.129 1.094 1.060 1.029 
3.5 1.278 1.254 1.222 1.187 1.153 1.119 1.087 1.056 1.027 
4.0 1.245 1.227* 1.201 1.172 1.141 1.111 1.082 1.053 1.026 

*Values are computed on the basis of a +0.0005. 

c 

ex 1.1 1.2 1.3 1.4 1.5 2 2.5 3 4 
0.1 0.955 0.914 0.878 0.845 0.816 0.700 0.618 0.556 0.469 
0.5 0.959 0.922 0.889 0.857 0.831 0.072 0.641 0.580 0.492 
1.0 0.963 0.930 0.899 0.871 0.845 0.740 0.663 0.602 0.514 
1.5 0.966 0.936 0.907 0.881 0.856 0.755 0.679 0.620 0.531 
2.0 0.969 0.940 0.913 0.888 0.865 0.767 0.693 0.634 0.545 
2.5 0.971 0.944 0.918 0.895 0.872 0.778 0.705 0.646 0.557 
3.0 0.973 0.947 0.923 0.900 0.878 0.786 0.714 0.656 0.568 
3.5 0.974 0.950 0.926 0.904 0.884 0.794 0.723 0.665 0.577 
4.0 0.975 0.952 0.930 0.908 0.888 0.801 0.731 0.673 0.585 
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