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ABSTRACT 

A digital computer algorithm is developed for real-time failure state detection in 
aircraft engine output sensors. The technique employs the Bayesian approach for 
hypothesis testing in failure detection. A set of hypothesis-conditioned Kalman 
filters is used to estimate the outputs corresponding to the failed sensors and to 
determine the associated error covariance matrices. Real-time processing which 
incorporates the current sensor readings is employed in the implementation of the 
algorithm for sensor failure detection. A decision logic that overcomes the analytical 
difficulties resulting from inherent nonlinearities of aircraft engines is proposed. As a 
numerical example, the technique developed is applied to a realistic single-spool 
turbojet engine model undergoing simulated output sensor failures. 
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REAL-TIME FAILURE DETECTION OF AIRCRAFT 

ENGINE OUTPUT SENSORS 


INTRODUCTION 

High reliability of engine output sensors is essential 
for proper operation of automated landing and take­
off systems in future generations of aircraft. Not only is 
the possibility of instrument failure inevitable, it is 
often true that by observing instrument readings alone 
one cannot judge whether failure has actually occur­
red. Recent work in the area of aircraft failure detec­
tion during automatic landing [IJ had addressed 
the problem of modeling the human pilot as a monitor 
of instrument failures. The implementation of that 
procedure is dependent to a large extent on the pre­
sence of an on-board digital computer for full au­
thority control. An alternative procedure for real-time 
detection of the failure state of aircraft engine output 
sensors is to use the actual instrument readings and 
engine inputs in a digital computer-based decision 
logic that incorporates dynamic models for the engine 
and output sensors. An algorithm based on the second 
approach is developed in the present paper. 

This method is not a scheme merely to detect whe­
ther a sensor failure has occurred. The failure de­
tection will be done in real time, and an estimate for 
the correct reading will be determined. This infor­
mation can be employed in the flight control until 
corrective action is taken. The method developed can 
be used in manual as well as automated flight control 
as a backup system for emergency flight control. 

ENGINE MODEL 

In conventional turbojet analysis and control, fuel 
flow and altitude are considered as the independent 
input variables. The intake air temperature and pres­
sure are assumed to be fixed by the altitude. These 
inputs determine the engine speed and thrust, and the 
aircraft cruising speed. When a simplified model in­
corporating these assumptions is used, the turbojet 
control principally consists of a 'chart look up' pro­
cedure and corresponding open-loop scheduling of the 
fuel flow. 

Under unsteady atmospheric conditions, however, 
altitude alone may not determine the intake air tem­
perature and pressure. In addition to burner fuel flow, 
after burner fuel flow, and exhaust nozzle area can be 
used as independent input variables. This necessitates 
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a more complex multivariable feedback control st­
rategy. State space techniques are particularly suitable 
for multiinput--multioutput systems. Using these tech­
niques, superior control systems can be implemented 
for modern aircraft engines. This potential is discussed 
in the literature [2,3]. Output variables that can be 
utilized in such control systems include engine rotor 
speed, compressor discharge pressure, nozzle inlet tem­
perature, nozzle inlet pressure, turbine inlet tempera­
ture, turbine inlet pressure, and engine thrust. 

The turbojet engine dynamics can be modeled as a 
set of first-order non linear ordinary differential equa­
tions given by 

z=f(z,p) (1) 

and 

(2) 

in which z is the state vector, p is the input vector, and 
; is the output sensor reading vector. Linearization 
about the steady state values Zs' Ps' and ;s' results in 

x= Ax+Bu (3) 

and 

Y= Cx (4) 

in which 

x= Z-Zs' u=P-Ps,Y=;-;s' 

A=of/oz(zs, Ps), 

B = of/op(zs, Ps), 


and 

For digital computer simulation it is desirable to 
represent the continuous-time system model (3)-(4) by 
the corresponding discrete model 

x(k+l)= <l>x(k)+ru (k)+rw(k) (5) 

and 

y(k+l)= Cx (k+l)+v (k+l), (6) 

which includes random sensor noise v and random 
input disturbances w. The state transition matrix is 
given by 

<I> =<I>(k + 1, k)=exp (A1) 

and the input transition matrix by 
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T 

r= r(k + 1, k)= fexp (At)Bdt 

o 

in which T is the sampling interval. 

FAILURE DETECTION ALGORITHM 

The general statistical decision problem constitutes 
making a decision which is best in a certain sense, 
dependent on some past observations in a stochastic 
environment. It is convenient to restate this problem 
in terms of hypothesis testing [4]. It is assumed that 
the system can takd M disjoint states HI' H 2' • •. ,H M 

having a priori probabilities PHI' P H2' .. . , P HM 
respectively. H j are termed hypotheses. The hypothesis 
testing decision problem now becomes that of selecting 
the most likely hypothesis, depending on the sensor 
readings y and based upon a suitable test. There are a 
number of tests that can be used for this purpose. The 
most common two are Bayes test (of which the like­
lihood ratio test is a special case) and the minimax 
test. These two approaches to the multiple hypothesis 
decision problem have been proven successful in var­
ious studies including failure detection both in the 
shuttle orbiter reaction control system [5J and in 
gyro-accelerometer systems [6J. For the purpose of the 
present development, the Bayes test is chosen and 
described in the following. 

Definition 1: Cost Function 

The cost function C(H, H) specifies the penalty or 
loss or cost of making an incorrect decision. H de­
notes the hypothesis set (HI' H 2, .. . , H MJ. In 
particular, Cij=cost of accepting H j when H j is true. 

Definition 2: Simple Cost Function 

If the cost of a particular event does not depend on 
the probability of that event, the corresponding cost 
function is a simple cost function. In the present work 
only the simple cost functions are considered. 

Definition 3: Risk Function 

The risk function B is the expected value of the cost 
function . Therefore 

M M 

B= I I Cij P(Hj , H j ), (7) 

j = 1 j= l 

in which P(H j , H j ) is the joint probability that H j is 
accepted and H j is true. 

Multiple (M-ary) hypothesis testing requires the 
partitioning of the entire observation space Z into M 
disjoint subspaces 

Zi ' i=l , 2, ... , M, 

where 

so that if the observation (sensor reading) vector 

YEZI 

the hypothesis HI is accepted. The appropriate Zi are 

determined by minimizing B, the risk of incorrect 

decisions. 


Using the standard results for joint probability, 

P(H i , Hj)=P(HJ Hj)P Hj 

and the conditional probability of accepting Hi given 

H j is true, 


P(HJH) = f!'/H (y /H) dy, 

Zj 

in which 

!Y/H(y/Hj)=conditional probability density of the sen­

sor reading random vector, given that H j is true, the 

risk function (7) may be expressed as 


B = i: i: Cij PHj f! .,H(Y' H) dy (8) 

i= 1 j= 1 Zi 

It should be noted that for i # j , the conditional pro­

bability P(H;!H j ) is not necessarily zero, for the de­

cision of selecting Hi' which is based on testing 

whether y lies in Zj, may have a nonzero probability even 

when it is given that H j is true. 


By straightforward mathematical manipulation, (8) 

can be reduced to 


B= I 
M 

PHj Cjj + I 
M 

f[ i: P'jJ dv, (9) 

j = l i= 1 j = 1 
Z; jf< i 

in which 

{3ij=P Hj (Cij-Cjj)!Y/H(y/Hj ). (10) 

For a given problem, the first term in (9) is a constant. 

Consequently, an equivalent formulation is to select Zj 
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such that the risk given by 

B*= I f (f fJ,)dy (11) 

i= 1 j= I 

is a mlmmum. Then, for a particular observation 
sample y, if the minimum of 

j=l 
j¥.i 

corresponds to i = I, the hypothesis HI is accepted. 
Then and only then will each integral in the sum­
mation over i be at its minimum, resulting in the 
minimum of B *. This results in the following algor­
ithm for the general hypothesis testing problem: 

(i) 	 Using (10) compute the M(M -1) unknown terms 
in the matrix {J1ij} where {J1ij} is known to 
have zero diagonal terms. 

(ii) 	 Compute the M sums 

j=l 
j# i 

(iii) 	 Identify the mlllimum Sj corresponding to the 
most likely hypothesis. In other words: 

accept HI if SI ~ Si for all i # I 

GAUSSIAN PROBLEM 

A common assumption is that the noise vectors w(k) 
and v(k) in the state space model (5) and (6) are 
independent, zero-mean, Gaussian white noise with 
covariance matrices given by [7J 

E[w(j) wT(k)] = c)jkQ (k) (12) 

E[v(j) vT (k)J =c)jkR (k). (13) 

In addition, the system initial states are assumed 
Gaussian. Consequently, the conditional probability 
density function of the random processes Y, given Hi' 
is normal, i.e. 

!v/H(y /H i ) 	 exp
(2rrt/2 IQil 
xexp[ -1/2(y-YdTQj-l(y-yJJ (14) 

in which Yi is the expected value of the measurement 
vector conditioned on Hi and r is the dimension of y. 
The hypothesis-conditioned measurement error y - Yi 
and its covariance matrix Qi that are required for the 
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decision process may be conveniently obtained by 
using a set of M Kalman filters [7J each conditioned 
on one of the hypotheses. This concept of using a bank 
of Kalman filters in the parameter estimation of dy­
namic systems is fairly old [8,9]. The corresponding 
recursive relations are 

Vi (k + l / k) = <l>V j (k) <I> T + rQrT 


Qi (k+l) =CiVj (k+l /k) C/+Rj 


Kj (k+l) =Vj (k+l /k) CjT Q j-l (k+l) 


Yj (k+ 1) =y(k+ 1)-CJ<I>xj(k)+ru(k)J (15) 


Xi (k+l) =<I>xi(k)+ru(k)+Ki (k+l) Yi (k+l) 


Yi (k + 1) = CjXj (k + 1) 


Vi (k+l) =[I-Kj (k+l)CJVj (k+l /k) 


Matrix C j is obtained from C by setting to zero the 
rows corresponding to the failed sensors in hypothesis 
H j • The assumption made here is that a failed sensor 
produces zero output 'in the mean'. However, in the 
general case, random measurement noise Vi having 
nonzero mean values corresponding to the failed 
sensors have to be incorporated in the filter equations. 
A priori sensor noise covariances Ri conditioned on 
Hi' are assumed to be known. 

In order to initialize the algorithm (15), the esti­
mated initial state vector xj(O) and the estimated 
error covariance matrix Vi (0) have to be known. If the 
initial state is known with probability 1, these para­
meters become 

Xi (0) = x(O) and Vi (0) = 0, 

Once the most likely hypothesis HI is determined using 
the decision logic developed in the previous section, an 
optimal estimate for the true output variables is ob­
tained using 

Y (k+ 1)=CxI (k+ 1). (16) 

The complete algorithm may be implemented in 
real time using a digital computer. A block diagram 
for the principal steps involved is shown in Figure 1. It 
is noted that real-time processing is necessary for the 
implementation of the algorithm, because both the 
instantaneous sensor readings and the engine input 
variables are used in making the decision at a partic­
ular instant. This real-time failure detection and real­
time output estimation feature makes the present 
method quite superior to a simple off-line failure 
detection scheme. 
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Kolman Kolman 
Filter 

o Conditioned 
ForHN 

Sensor Foiure 

Detection Logic 

Estimated 

Output 

Random Noise 

Figure J. Block Diagram for the Real-TIme Sensor Failure 
Detection Process 

SIMPLIFIED ALGORITHM SYSTEM NONLINEARITIES 

A simple decision strategy may be obtained using 
the assumptions 

and 

for i = jCij{ = 0 

= C>O for i=f.j. 

Consequently, 

M 

Si= CP H L !Y/H (y/H). 
j=i 
j#i 

It is noted that the minimum Si is obtained if and only 
if the maximum !Y/H (y/ H j) term is eliminated from the 
sum. This results in the decision strategy: 

accept HI if 

!Y/H(y/Ha~!Y/H(y/Hi)' foraB i=f.l. (17) 

In view of the Gaussian assumption (14) and noting 
that the logarithm is a monotonically increasing func­
tion, the following equivalent decision strategy is 
obtained: 

accept HI if 

in which 

Aircraft engines are highly nonlinear systems. The 
mathematical model linearized about an operating 
point therefore cannot be used over a large range of 
output values. During engine accelerations and de­
celerations, the variations in outputs can be quite 
large. This will impose serious restrictions on the use 
of the proposed technique, which may be overcome as 
follows. 

A set of linear engine models is identified with 
respect to an output parameter, for example the engine 
speed. This information can be interpolated and stored 
in the computer data base as a set of curves. During 
the decision process the correct engine model para­
meters are chosen depending on the value of the 
current output parameter. This adaptive model selec­
tion technique is possible because of the presence of 
the on-board digital computer. A block diagram of the 
complete decision process is given in Figure 1. It is the 
estimated output that is used in the model selection 
logic. The engine models will be identical if the non­
linearities are neglected. In the presence of non­
linearities, different models will result in different 
output estimates. The level of deviation will depend 
on the degree of nonlinearity. Except for the right model 
for a given range of engine outputs, the estimated out­
puts from a particular engine model will be outside 
that range of outputs. 
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NUMERICAL EXAMPLE 

In order to apply the present technique to the 
turbojet engine sensor failure detection problem, 
engine dynamics have to be expressed in state space 
form. Merrill [3J has derived a linear state model 
using the Tse-Weinert identification technique, and 
realistic single-spool turbojet engine output data gene­
rated by a digital computer dynamic simulation. The 
model is second order and has been shown to be quite 
adequate. The engine rotor speed has been employed 
as the model linearization parameter. The output vari­
ables are: 

y =[engine rotational speed (rev /min)J 
engine thrust (Ibf) 

and the input is: 

u = [fuel flow (lb/s)]. 

Four linear models given in Table 1 have been de­
termined for the speed ranges indicated therein. The 
sampling interval T= 0.1 s. 

In the present simulation the following three failure 
states are considered: 

HI: speed sensor fails, 


H 2: thrust sensor fails, 


H 3: no sensor failure. 


The Q matrix which is a scalar in the present 
example, has to be selected so as to reflect the variance 
of the disturbances in the fuel flow. Ri matrices give 
the sensor noise co variances under various failure 
states Hi' They are selected such that there is a higher 
noise covariance associated with a failed sensor. 
Actual values of Q and Ri depend on the type of 
sensors used and will vary from system to system. 
Besides, a single hypothesis is often associated with a 
group of sensors. For instance, the thrust sensor in the 
present example represents more than one sensor out­
put employed to compute the engine thrust. The fail­

ure in anyone of these sensors is equivalent to the 
thrust sensor failure. 

The variables are scaled to improve the compu­
tational accuracy. The scaled-to-unity noise co­
variance matrices used in the present example are 

[0.10 o.ooJ 
Rl = 0.00 0.09 

[0.10 o'OOJ
R2 = 0.00 0.11 

[0.10 o'OOJ
R3= 0.00 0.10 

rQ T=[O.100 O.oo5J 
r 0.005 0.200 

A set of simulated sensor readings may be obtained 
by first computing the engine outputs using the ma­
thematical model in the absence of noise for certain 
time periods, taking the outputs to be zero for the 
remaining time periods (these correspond to the failed 
sensors) and finally adding Gaussian noise to the 
resulting data samples for the entire duration. The 
following failure modes are simulated using this 
procedure: 

(i) During 0.0-0.5 s there is no sensor failure (H 3)' 
(ii) During 5.1-10.0 s only the speed sensor failed 

(Hd· 
(iii) During 10.1-15.0 s only the thrust sensor failed 

(H 2 )· 

(iv) During 15.1-20.0s there is no sensor failure (H3)' 
(v) During 20.1-30.0 s only the speed sensor failed 

(H 1)' 
(vi) During 30.1-40.0 s there is no sensor failure (H 3)' 

An indicator function Iris defined as follows: 

I r= 1.0 when H3 is true 
0.5 when H 2 is true I 
0.0 when HI is true. I 

Table 1. Numerical Values for Engine Model Parameters 

Matrix 

<I> 
0.000 

-0.354 

80% 

1.0000 
1.2330 

Percentage of nominal ~peed 
90~;;; 100% 

36,960 rev/min 

0.000 1.0000 0.000 1.0000 
-0.340 1.1830 -0.258 1.0600 

104.5% 

0.000 1.0000 
-0.318 1.1190 

t 
t 
~ 

! 
1~ 

r 
48004.70 
27815.90 

43653.50 
24165.80 

45947.60 
19977.63 

40617.60 
19662.80 

C 
1.000 0.0000 
0.018 -0.0012 

1.000 0.0000 
0.023 - 0.0023 

1.000 0.0000 
0.026 - 0.0034 

1.000 0.0000 
0.0028 -0.0044 

The Arabian J ournalfor Science and Engineering , Volume 7, Number 1. 50 

1 

http:15.1-20.0s


c. W de Silva 

Table 2. Engine Model Selection Logic 

For Speed Variations (rev/min) Switch to 

About the 100% speed: the model 


2494.8 to 831.6 104.5% 
831.6 to -1848.0 100% 


-1848.0 to -5544.0 90% 

-5544.0 to -9240.0 80% 


z 
-'0(f) La 

,~") 

">0 
to..;

7 a::
f- o a ~~~ => u.J ~oc::: ~.0... ::::> We:.z_ 
-'-' ~~-;-
~o ~___________________________________ 

E:(f) 

w' 
=> 

z 
-'0 
LO
;:0 
W 
0:: 

a 
~ o~ 
a:::: i.l.Jo 

~ ~"7 
~ L'1 

u'. OO 3'. (00 IS . OC 2400 
TIME SEC. 

a Figure 3. Failure Detection for a Bang-Bang Input 
0::0 
o 
~ 

a:­
U 

0'.00 3'.00 d;.oo 24.00 32.00 

TIME SEC. 


Figure 2. Failure Detection for a Step Input 

The medel selection logic given in Table 2 is in­
corporated within the original process. Variations 
about a nominal 100% speed are considered. Estimated 
speed is used in the engine model selection logic. 

Figure 2 gives the results obtained using the present 
algorithm for a step input. The results for a bang-bang 
input are shown in Figure 3. It is seen that in both 
cases the algorithm has correctly determined the fail­
ure states of the sensors. Figures 4 and 5 show the 
optimal estimates for the output variables. These are 
adequate to control the engine during emergency ma­
neuvering in the event of a sensor failure. They are 
also used in selecting the proper engine model. 

a'. 00 15.00 24.00 
TIME SEC. 

, 
40.00 

Figure 4. Estimated Outputs for a Step Input 
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z:. 

0', (10 a',oo 1's. 00 24 00 

TIME SEC . 


Figure 5. Estimated Outputs for a Bang-Bang Input 

DISCUSSION AND CONCLUSIONS 

A digital computer algorithm was developed for the 
detection of failure states in real time for aircraft 
engine output sensors. The technique employed the 
Bayesian approach for the hypothesis testing as­
sociated with the failure detection. A set of hypothesis­
conditioned Kalman filters was used to estimate the 
outputs corresponding to the failed sensors and to 
determine the associated error covariance matrices. 
Real-time processing which incorporates the instan­
taneous sensor readings and the engine input values 
was necessary in the implementation of the procedure 
for sensor failure detection. The algorithm was applied 
to a realistic single-spool turbojet engine model. To 
account for the engine nonIinearities a model selection 
logic was used. In this example, the present technique 
accurately determined the sensor failure states and 
provided good estimates for the engine outputs. 

In general, the efficiency of the algorithm depends 
on factors such as the accuracy of the mathematical 
model used, proper selection of a priori covariance 
matrices Q and Ri for the input and sensor noise, and 
proper scaling of the system variables. Since the 
hypothesis-conditioned measurement error covar­
iances depend to a large extent on the sensor failure 
itself (in addition to the a priori sensor noise co­
variances), they are time-dependent quantities in gen­
eral. Consequently, time-dependent Kalman filters 
must be employed. The hypothesis-conditioned 

measurement error covariances computed in the pre­
sent example were found to deviate considerably from 
the a priori sensor noise covariances, justifying the use 
of unsteady Kalman filters. 

Various inputs including ramp, step, sine and bang­
bang were used to test the algorithm developed and 
in each case the failure states were predicted ac­
curately. Most of these results were omitted from the 
paper for brevity. 

A desirable feature of the technique is that optimal 
estimates of the outputs corresponding to failed sen­
sors are a by-product of the algorithm. However, the 
technique requires as many Kalman filters as there are 
failure states. The real-time processing assumes the 
availability of a digital computer on-board for the 
implementation of the present algorithm. 

Depending on the aircraft features and its mission, 
the method developed could be quite cost-effective in 
comparison to the classical method of adding hard­
ware redundancy. It should be noted that weight, 
space requirements, and cost should be taken into 
account when employing hardware redundancy. In 
any case, hardware redundancy does not result in a 
100% fail-safe system. On the other hand, if an on­
board digital computer is available, the addition of the 
software feature developed in this paper involves neg­
ligible increase in weight, space requirements, and 
effort. In this sense the software-oriented technique 
developed in this paper is cost-effective. However, the 
economic aspects depend on specific applications 
considered. This could be the subject of a different 
research project where comparative evaluations could 
be made. 

APPENDIX 

Notation 

A System matrix III the linear turbojet 
state model 

B Risk function 
B* Modified risk function 

B Input system matrix 
C(H,H) Cost function 

Cij Cost of accepting Hi when H j is true 
C Measurement system matrix 
Ci 	 Measurement system matrix con­

ditioned on Hi 
Conditional probability density of the 
observation vector given that H j is true 
Hypothesis i 
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H 

M 

P 


PHi 

P(Hi,H) 

T= 

u 
v 
w 
x 
X 

Set of hypotheses 
Total number of possible hypotheses 
Absolute input vector 
Probability of occurrence of Hi 
Joint probability that Hi is accepted 
and H j is true 
Conditional probability of accepting 
Hi given H j is true 
Input noise covariance matrix 
Hypothesis conditioned sensor error 
covariance matrix for Hi 
Size of the engine output vector 
Sensor noise covariance matrix 
Sensor noise covariance matrix con­
ditioned on Hi 
Sample interval for the discrete sys­
tem model 
Incremental input vector 
Sensor noise vector 
Input noise vector 
Incremental state vector 
Estimated state vector 
Incremental output vector 
Estimated output vector 
Output estimation error vector 
Absolute state vector 
Observation space 
Observation subspace corresponding 
to Hi 
Kronecker delta 
State transition matrix 
Input transition matrix 
Dummy time variable 
Absolute output vector 

()5 Steady state values 

\. \ Determinant 


[J T Matrix transposition 

E[ ] Expected value 


(") Time derivative 
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