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Matrix factorization problems appear in many Systems and Control theory problems. For example, in linear 
optimal control an m x m matrix: 

(1) 

needs to be factorized such that: 

B(z) = H*(z)H(z) , (2) 

where 

(3) 

with H-1(z) having no poles inside the unit circle [1]. In the above expressions, T stands for the operation of 
transposition, index * corresponds to the operation of transposition and change of argument from z to Z-l (for 
example in (3), H* (z) = H{; + Hi z-l + ... + H;: z-n). We sometimes omit the argument z for brevity. There 
are several numerical algorithms for finding the polynomial H(z) (see, for example, [1-4]). In Game Theory 
and Hoo optimal control problems (see [5-7]) the so called J-spectral factorization problem is obtained, which is 
given as: 

B(z) = H*(z)TH(z) , 

where the symmetrical matrix T may have eigenvalues of different signs. 

In this paper a new computationally reliable algorithm for J-spectral factorization is presented. 
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(4) 
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2. MAIN RESULT: A NEW ALGORITHM FOR 
FACTORIZATION OF POLYNOMIAL MATRICES 

In this section we give a new algorithm for factorization of polynomial matrices. The following theorem gives 
the main result of the paper. 

Theorem 1 The polynomial matrix given by (1) can be factorized as: 

where: 

000 

100 

010 

o 1 

rT = [1 0, ... ,0] ; 

o 

(6) 

(7) 

(8) 

where each block of W has dimension m x m, 1 is the identity matrix with appropriate dimension. The mn x mn 
matrix S is the stabilizing solution of discrete algebraic Riccati equation (ARE): 

(9) 

where 

B Bn- 1 Bl 

B'!:-l BO 0 
- 1 ( Bt; B;l Bo) , R , B =;;, Bn - Btj; 

0 0 0 
(10) 

BT 0 OB 
such that: 

(I - r(Btj; + rTSr)-lrTS)~ (ll) 

has all of its eigenvalues inside the unit circle. Comparing (4) and (5) we get: 

(12) 

(13) 

Note that in the case of S > 0, the sign of matrix Btj; + r T sr is the same as the sign of the matrix Btj; [6]. 
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3. PROOF OF THE MAIN THEOREM 

The proof that relation (5) gives the desired factorization consists of two steps: 

1. The formal verification of the equivalency of (1) and (5). 

2. Localization of the spectrum of the polynomial H(z) defined by (12). 

The proof of Step 1 is obtained by direct verification. From (9) we have: 

and 

Substituting these relations in (5) we obtain the polynomial: 

B(z) = D* B¢D + N* RN Bozn + B 1zn- 1 + ... + Bn-IZ + Bn + B~_IZ-1 + ... + Br z-n , 

which establishes the equality of (5) and (1). 

To prove the second step, we show that the determinant of polynomial H(z) has no zeros inside the unit 
circle. Let [SI)" " Sn] = rT S, where blocks Si, i 1,2" ", n have dimensions m x m. From (12), we have: 

H(z) I+Hn zn +···+H1z, (14) 

where: 

(15) 

(16) 

where the matrix T is defined by Equation (13). Rewrite (14) in the following form: 

with s = 
given as: 

(17) 

. From (8] (Lemma 6.3-20), the matrix 0, which is the linearization of the polynomial H(s), is 

I 0 0 
0= (18) 

o I o 

which is equal to (11). Eigenvalues of matrix given by (11) lie inside the unit circle since the zeros of the 
determinant of polynomial H(s) also lie inside the unit circle. Therefore, the matrix H-1(z) has no poles inside 
the unit circle. 
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4. EXAMPLES 

In this section we give two examples to illustrate the results. In Section 4.1 an example from [1] is studied. 
In Section 4.2, a modification of Example 1 is studied to illustrate J-Spectral factorization. 

4.1. Example 1 

Consider the example reported in [1]. The polynomial B(z) is given as: 

B(z) [~ ~l] z + [~l ~l] + [~ ~l] Z-l, (19) 

Following (9) and (12) we have: 

s [-0.25 -0.75], T = [0.75 -0.75] 
-0.75 1.75 -0.75 4.75 

(20) 

1 [1 -1] z + [1 0] . H(z) = -4 1 
-1 0 1 

(21) 

In this case there is a factorization of the form given by (2). Since the matrix T is positive definite, using 
Cholesky decomposition, we have: 

-y'] ] 2 . 

2 
(22) 

Finally: 

B(s) r*(z)r(z) , (23) 

where 

r(z) = LH(z) [ 0 0] z + [J3/2 -J3/2] . 
1/2 -1/2 0 2 

This result is the same as the one reported in [1]. 

4.2. Example 2 

We modify Example 1 for the purpose of illustration of the entire procedure of J-spectral factorization. 
Consider the case where the matrix T has eigenvalues of different signs. Let the polynomial (1) have the 
following form: 

B(z) = r(z)Jr*(z) , (24) 

where J = diag(I, -1) and the polynomial r(z) is as defined above. We have: 

B(z) = z + + z-l. [00] [0 J3] [00] 
1 1 J3 -4 0 1 

(25) 
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Using (9) and (12), we get: 

s = [~ ~2] T = [~ ~] 

H (z) = [~ V~3] z + [~ ~] . 

(26) 

(27) 

In this example the matrix T has eigenvalues of different signs and hence may be represented in the form: 

T = LT JL, L = )"U, ).. = diag(0.8036, 2.1555) (28) 

u=[ 0.937 0.3493 ] 

-0.3493 0.937 ' [ 
0.753 0.2807] 

L=)..U= . 
-0.753 2.0196 

(29) 

Finally, J-spectral factorization of the polynomial B(z) is obtained as B(z) [LH(z)]* J LH(z). 

5. CONCLUSION 

A new algorithm for the J-spectral factorization of polynomial matrices with respect to the unit circle is 
presented. The algorithm is based on construction of a stabilizing solution for the algebraic Riccati equation. 
Two examples are given to illustrate the results. 
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