FACTORIZATION OF A POLYNOMIAL MATRIX WITH RESPECT TO THE UNIT CIRCLE

Fikret A. Aliev
Institute of Applied Mathematics
Baku State University
M. Rasulzadeh Z. Khalilov Str. 23, Baku 370148, Azerbaijan
Vladimir B. Larin
Institute of Mechanics, Academy of Science
Nesterov Str. 3, Kiev 25057, Ukraine
and
Davut Kavranoğlu*
Department of Electrical Engineering
California Institute of Technology
Pasadena, CA 91125, USA

1. INTRODUCTION

Matrix factorization problems appear in many Systems and Control theory problems. For example, in linear optimal control an $m \times m$ matrix:

$$
\begin{equation*}
B(z)=B_{0} z^{n}+B_{1} z^{n-1}+\cdots+B_{n-1} z+B_{n}+B_{n-1}^{T} z^{-1}+\cdots+B_{0}^{T} z^{-n} \tag{1}
\end{equation*}
$$

needs to be factorized such that:

$$
\begin{equation*}
B(z)=H^{*}(z) H(z) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
H(z)=H_{0}+H_{1} z+\cdots+H_{n} z^{n} \tag{3}
\end{equation*}
$$

with $H^{-1}(z)$ having no poles inside the unit circle [1]. In the above expressions, ${ }^{T}$ stands for the operation of transposition, index * corresponds to the operation of transposition and change of argument from z to z^{-1} (for example in (3), $\left.H^{*}(z)=H_{0}^{T}+H_{1}^{T} z^{-1}+\cdots+H_{n}^{T} z^{-n}\right)$. We sometimes omit the argument z for brevity. There are several numerical algorithms for finding the polynomial $H(z)$ (see, for example, $[1-4]$). In Game Theory and H_{∞} optimal control problems (see [5-7]) the so called J-spectral factorization problem is obtained, which is given as:

$$
\begin{equation*}
B(z)=H^{*}(z) T H(z) \tag{4}
\end{equation*}
$$

where the symmetrical matrix T may have eigenvalues of different signs.
In this paper a new computationally reliable algorithm for J-spectral factorization is presented.

[^0]
2. MAIN RESULT: A NEW ALGORITHM FOR
 FACTORIZATION OF POLYNOMIAL MATRICES

In this section we give a new algorithm for factorization of polynomial matrices. The following theorem gives the main result of the paper.

Theorem 1 The polynomial matrix given by (1) can be factorized as:

$$
\begin{equation*}
B(z)=\left[D^{*}+N^{*} \psi^{T} S \Gamma\left[B_{\phi}+\Gamma^{T} S \Gamma\right]^{-1}\right]\left[B_{\phi}+\Gamma^{T} S \Gamma\right]\left[D+\left[B_{\phi}+\Gamma^{T} S \Gamma\right]^{-1} \Gamma^{T} S \psi N\right], \tag{5}
\end{equation*}
$$

where:

$$
\begin{gather*}
D=I+z^{n} B_{\phi}^{-1} B_{0}, \quad N^{T}=\left[I z, I z^{2}, \cdots, I z^{n}\right] \tag{6}\\
B_{\phi}=B(1)=B_{0}+B_{1}+\cdots+B_{n}+\cdots+B_{1}^{T}+B_{0}^{T} \tag{7}\\
\psi=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & -B_{\phi}^{-1} B_{0} \\
I & 0 & 0 & \cdots & \cdot \\
0 & I & 0 & \cdots & . \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & I & \cdots & 0
\end{array}\right), \quad \Gamma^{T}=[I 0, \ldots, 0] \tag{8}
\end{gather*}
$$

where each block of Ψ has dimension $m \times m$, I is the identity matrix with appropriate dimension. The $m n \times m n$ matrix S is the stabilizing solution of discrete algebraic Riccati equation (ARE):

$$
\begin{equation*}
S=\psi^{T} S \psi-\psi^{T} S \Gamma\left(B_{\phi}+\Gamma^{T} S \Gamma\right)^{-1} \Gamma^{T} S \psi+R \tag{9}
\end{equation*}
$$

where

$$
R=\left(\begin{array}{cccc}
\bar{B} & B_{n-1} & \cdots & B_{1} \tag{10}\\
B_{n-1}^{T} & \bar{B} 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
B_{1}^{T} & 0 & \cdots & 0 \bar{B}
\end{array}\right), \bar{B}=\frac{1}{n}\left(B_{n}-B_{\phi}-B_{0}^{T} B_{\phi}^{-1} B_{0}\right),
$$

such that:

$$
\begin{equation*}
\left(I-\Gamma\left(B_{\phi}+\Gamma^{T} S \Gamma\right)^{-1} \Gamma^{T} S\right) \psi \tag{11}
\end{equation*}
$$

has all of its eigenvalues inside the unit circle. Comparing (4) and (5) we get:

$$
\begin{align*}
H(z) & =D+\left(B_{\phi}+\Gamma^{T} S \Gamma\right)^{-1} \Gamma^{T} S \psi N \tag{12}\\
T & =B_{\psi}+\Gamma^{T} S \Gamma \tag{13}
\end{align*}
$$

Note that in the case of $S>0$, the sign of matrix $B_{\phi}+\Gamma^{T} S \Gamma$ is the same as the sign of the matrix $B_{\phi}[6]$.

3. PROOF OF THE MAIN THEOREM

The proof that relation (5) gives the desired factorization consists of two steps:

1. The formal verification of the equivalency of (1) and (5).
2. Localization of the spectrum of the polynomial $H(z)$ defined by (12).

The proof of Step 1 is obtained by direct verification. From (9) we have:

$$
\psi^{T} S \Gamma\left[B_{\phi}+\Gamma^{T} S \Gamma\right]^{-1} \Gamma^{T} S \psi=R-S+\psi^{T} S \psi,
$$

and

$$
\psi N+\Gamma D=z^{-1} N
$$

Substituting these relations in (5) we obtain the polynomial:

$$
B(z)=D^{*} B_{\phi} D+N^{*} R N=B_{0} z^{n}+B_{1} z^{n-1}+\cdots+B_{n-1} z+B_{n}+B_{n-1}^{T} z^{-1}+\cdots+B_{0}^{T} z^{-n}
$$

which establishes the equality of (5) and (1).
To prove the second step, we show that the determinant of polynomial $H(z)$ has no zeros inside the unit circle. Let $\left[S_{1}, \cdots, S_{n}\right]=\Gamma^{T} S$, where blocks $S_{i}, \quad i=1,2, \cdots, n$ have dimensions $m \times m$. From (12), we have:

$$
\begin{equation*}
H(z)=I+H_{n} z^{n}+\cdots+H_{1} z, \tag{14}
\end{equation*}
$$

where:

$$
\begin{gather*}
H_{i}=T^{-1} S_{i+1}, \quad i=1,2, \cdots, n-1 \tag{15}\\
\quad H_{n}=B_{\phi}^{-1} B_{0}-T^{-1} S_{1} B_{\phi}^{-1} B_{0} \tag{16}
\end{gather*}
$$

where the matrix T is defined by Equation (13). Rewrite (14) in the following form:

$$
\begin{equation*}
H(z)=z^{n} \bar{H}(s), \quad \bar{H}(z)=I s^{n}+H_{1} s^{n-1}+\cdots+H_{n}, \tag{17}
\end{equation*}
$$

with $s=z^{-1}$. From [8] (Lemma 6.3-20), the matrix Ω, which is the linearization of the polynomial $\bar{H}(s)$, is given as:

$$
\Omega=\left(\begin{array}{cccc}
-H_{1} & -H_{2} & \cdots & -H_{n} \tag{18}\\
I & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & I & 0
\end{array}\right)
$$

which is equal to (11). Eigenvalues of matrix given by (11) lie inside the unit circle since the zeros of the determinant of polynomial $\bar{H}(s)$ also lie inside the unit circle. Therefore, the matrix $H^{-1}(z)$ has no poles inside the unit circle.

4. EXAMPLES

In this section we give two examples to illustrate the results. In Section 4.1 an example from [1] is studied. In Section 4.2, a modification of Example 1 is studied to illustrate J-Spectral factorization.

4.1. Example 1

Consider the example reported in [1]. The polynomial $B(z)$ is given as:

$$
B(z)=\left[\begin{array}{cc}
0 & 0 \tag{19}\\
1 & -1
\end{array}\right] z+\left[\begin{array}{cc}
1 & -1 \\
-1 & 5
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] z^{-1} .
$$

Following (9) and (12) we have:

$$
\begin{gather*}
S=\left[\begin{array}{cc}
-0.25 & -0.75 \\
-0.75 & 1.75
\end{array}\right], \quad T=\left[\begin{array}{cc}
0.75 & -0.75 \\
-0.75 & 4.75
\end{array}\right] \tag{20}\\
H(z)=\frac{1}{4}\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right] z+\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] . \tag{21}
\end{gather*}
$$

In this case there is a factorization of the form given by (2). Since the matrix T is positive definite, using Cholesky decomposition, we have:

$$
T=L^{T} L=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \tag{22}\\
0 & 2
\end{array}\right]
$$

Finally:

$$
\begin{equation*}
B(s)=\tau^{*}(z) \tau(z) \tag{23}
\end{equation*}
$$

where

$$
\tau(z)=L H(z)=\left[\begin{array}{cc}
0 & 0 \\
1 / 2 & -1 / 2
\end{array}\right] z+\left[\begin{array}{cc}
\sqrt{3} / 2 & -\sqrt{3} / 2 \\
0 & 2
\end{array}\right]
$$

This result is the same as the one reported in [1].

4.2. Example 2

We modify Example 1 for the purpose of illustration of the entire procedure of J-spectral factorization. Consider the case where the matrix T has eigenvalues of different signs. Let the polynomial (1) have the following form:

$$
\begin{equation*}
B(z)=\tau(z) J \tau^{*}(z) \tag{24}
\end{equation*}
$$

where $J=\operatorname{diag}(I,-I)$ and the polynomial $\tau(z)$ is as defined above. We have:

$$
B(z)=\left[\begin{array}{ll}
0 & 0 \tag{25}\\
1 & 1
\end{array}\right] z+\left[\begin{array}{cc}
0 & \sqrt{3} \\
\sqrt{3} & -4
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] z^{-1}
$$

Using (9) and (12), we get:

$$
\begin{gather*}
S=\left[\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right] T=\left[\begin{array}{cc}
0 & \sqrt{3} \\
\sqrt{3} & -4
\end{array}\right] \tag{26}\\
H(z)=\left[\begin{array}{cc}
0 & \sqrt{3} / 3 \\
0 & 0
\end{array}\right] z+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \tag{27}
\end{gather*}
$$

In this example the matrix T has eigenvalues of different signs and hence may be represented in the form:

$$
\begin{gather*}
T=L^{T} J L, \quad L=\lambda U, \quad \lambda=\operatorname{diag}(0.8036,2.1555) \tag{28}\\
U=\left[\begin{array}{cc}
0.937 & 0.3493 \\
-0.3493 & 0.937
\end{array}\right], \quad L=\lambda U=\left[\begin{array}{cc}
0.753 & 0.2807 \\
-0.753 & 2.0196
\end{array}\right] . \tag{29}
\end{gather*}
$$

Finally, J -spectral factorization of the polynomial $B(z)$ is obtained as $B(z)=[L H(z)]^{*} J L H(z)$.

5. CONCLUSION

A new algorithm for the J-spectral factorization of polynomial matrices with respect to the unit circle is presented. The algorithm is based on construction of a stabilizing solution for the algebraic Riccati equation. Two examples are given to illustrate the results.

ACKNOWLEDGEMENT

The third author would like to acknowledge King Fahd University of Petroleum and Minerals for sponsoring his sabbatical leave at California Institute of Technology.

REFERENCES

[1] V. Kucera, Discrete Linear Control: the Polynomial Equation Approach. Praha: Academia, 1979.
[2] W.G. Tuel, "Computer Algorithm for the Spectral Factorization of Rational Matrices", IBM J. Rec. Develop., 12 (1968), p. 163.
[3] F.A. Aliev, B.A. Bordyug, and V.B. Larin, "Factorization of Polynomial Matrices and Separation of Rational Matrices", Soviet J. Comput. Systems Sci., 28(4) (1991), p. 47.
[4] F.A. Aliev, B.A. Bordyug, and V.B. Larin, "Discrete Generalized Algebraic Riccati Equations and Polynomial Matrix Factorization", Systems and Control Letters, 18 (1992), p. 49.
[5] M. Green, K. Glover, D. Limebeer, and J.C. Doyle, "A J-Spectral Factorization Approach to H_{∞} Control", SIAM J. Control and Optimization, 28(6) (1990), p. 1350.
[6] V. Ionescu and M. Weis, "Two Riccati Formulas for the Discrete Time H_{∞} Control Problem", International Journal of Control, 57(1) (1993), p. 141.
[7] H. Kwakernaak, "Robust Control and H_{∞} Optimization: a Tutorial", Automatica, 29(2) (1993), p. 255.
[8] T. Kailath, Linear Systems. New York: Prentice Hall, 1980.

Paper Received 16 October 1995; Accepted 18 October 1997.

[^0]: *Address for correspondence:
 Bulgurlu Cad. 2 Gaziler Sok. No. 1
 Küçük Çamlica
 Istanbul, Turkey

