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Azzedine Zerguine and Maamar Bettayeb 

ABSTRACT 

Adaptive filtering techniques have been successfully implemented in various important 
applications such as echo cancellation. equalization, noise cancellation. and others. 

The rapid growth of computer technology made the on line implementation of adaptive 
filters possible and raised the interest of researchers in the development of new adaptive 
filtering algorithms for more challenging situations such as strong fading and large signal 
and noise distortions. 

In this paper, the authors present the state of the art of adaptive filtering algorithms. 
Both LMS and RLS families of algorithms are detailed. However, emphasis is also given 
to recently proposed least mean fourth (LMF) and mixed nonn criteria based adaptive 
filtering algorithms. The strengths and drawbacks of the above algorithms are also 
discussed. Simulation results are given for some popular algorithms. 
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ALGORITHMS AND STRUCTURES OF ADAPTIVE FILTERING: A REVIEW 

1. INTRODUCTION 

Adaptive systems are playing a vital role in the development of modern telecommunications. Also, adaptive 
systems proved to be extremely effective in achieving high efficiency, high quality, and high reliability of around­
the-world ubiquitous telecommunication services. 

The role of adaptive systems is widespread covering almost all aspects of telecommunication engineering, 
but perhaps most notable in the context [1] of ensuring high-quality signal transmission over unknown and time 
varying channels. 

Interest in adaptive filters continues to grow as they find practical real-time applications in areas such as echo 
cancellation [2], channel equalization [3], noise cancellation [4, 5], and many other adaptive signal processing 
applications. This is due mainly to the recent advances in very large-scale integration (VLSI) technology. 

The key to successful adaptive signal processing is understanding the fundamental properties of adaptation 
algorithms. These properties are stability, speed of convergence, misadjustement errors, robustness to both 
additive noise and signal conditioning (spectral coloration), numerical complexity, and round-off error analysis 
of adaptive filtering algorithms. However, some of these properties are often in direct conflict with each other, 
since consistently fast converging algorithms tend to be in general more complex and numerically sensitive. Also, 
the performance of any algorithm with respect to any of these criteria is entirely dependent on the choice of 
the adaptation update function, that is t.he cost function used in the minimization process. A compromise must 
be then reached among these conflicting factors to come up with the appropriate algorithm for the concerned 
application. 

After presenting, in Section 2, the common adaptive system configurations using adaptive filters, Section 3 
will deal with a more explicit development of adaptive filters. Performance evaluation of the resulting algorithms 
using the properties of the finite-duration impulse response (FIR) adaptive filter are also mentioned. 

Section 4 reviews the theory of adaptive filtering algorithms used with these filters, including the least mean 
squares (LMS), the least mean fourth (LMF), the mixed-norm (MN), and the recursive least squares (RLS) 
algorithms. Also, the shortcomings of these algorithms are discussed. 

In Section 5, the above algorithms are evaluated and compared. Areas of future research are discussed in 
Section 6. Finally, a summary is given in Section 7. 

2. APPLICATIONS OF ADAPTIVE FILTERS 

Adaptive filtering has been successfully applied in such diverse fields as communications, radar, sonar, and 
biomedical engineering. Although these applications are indeed quite different in nature, nevertheless, they have 
one basic common feature: an input signal and a desired response are used to compute the error, which is in 
turn used to control the values of a set of adjustable filter coefficients. However, the main difference among the 
various applications of adaptive filtering arises in the manner in which the desired response is extracted. 

In this context, we may classify an adaptive filter into one of the four following categories: 

2.1. System Identification 

In this first application, depicted in Figure 1, the adaptive filter is used to provide a linear model that represents 
the best fit to the unknown system. Both the hdaptive filter and the unknown system are driven by the same 
input. The error estimate is used to update the filter coefficients of the adaptive filter. After convergence, the 
adaptive filter output will approximate the output of the unknown system in an optimum sense. Provided that 

October 1998 The Arabian Journalfor Science and Engineering, Volume 23, Number 2B. 267 



Azzedine Zerguine and Maamar Bettayeb 

the order of the adaptive filter matches that of the unknown system and the input, x(n), is broad band (flat 
spectrum) this will be achieved by convergence of adaptive filter coefficients to the same values as the unknown 
system. 

The major practical use of this structure in telecommunications is for echo cancellation [2, 6, 7]. Typically, 
the input signal x( n) will be either speech or data. 

2.2. Inverse Modeling 

In this second class of applications, the function of the adaptive filter is to provide an inverse model that 
represents the best fit to the unknown system. Thus, at convergence, the adaptive filter transfer function 
approximates the inverse of the transfer function of the unknown system. In practice, a delay may have to be 
introduced into the desired response path as shown in Figure 2, so as to ensure that the input to the adaptive 
filter is minimum phase and suitable for equalization by a linear structure. 

x(n) 

Unknown 
system 

I------­__--......ij~ den) 

Adaptive 
filter yen) 

Figure 1. Direct System Modeling Configuration ofan Adaptive Filter. 

e(n) 

x(n) Unknown 
system 

Adaptive 
filter 

y(n) 

d(n) 

Figure 2. Inverse SYltem Modeling Configuration ofan Adaptive Filter. 
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The primary use of inverse system modeling is for reducing the effects of intersymbol interference (lSI) in 
digital receivers. This is achieved through the use of channel equalization for digital communications [3], [8-12] 
allowing faster data rates with an acceptably low probability of error. 

2.3. 	Prediction 

In this structure, the function of the adaptive filter is to provide the best prediction of the present value of 
the input signal from its previous values. The configuration shown in Figure 3 is used for this purpose, where 
the desired signal, d(n), is the instantaneous value and the input to the adaptive filter is a delayed version of the 
same signal. 

This application is widely used in linear predictive coding (LPC) of speech [13, 14] and in adaptive differential 
pulse-code modulation (DPCM) [15]. Another approach to prediction is given in [16]. 

2.4. Noise Cancellation 

In this final class of applications, the adaptive filter is used to cancel unknown interference contained in a 
primary signal, as Figure 4 depicts it. The primary signal serves as the desired response of the adaptive filter. 

x(n) Adaptive 
filter 

y(n) 

+ d(n) 

Figure 3. Configuration ofan Adaptive Filter as a Predictor. 

Primary signal 

+ d(n) 

x(n) Adaptive 
filter 

y(n) 

Figure 4. Configuration ofan Adaptive Filter as a Noise Canceller. 
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function, and therefore has only one local minimum which is, of course, the global minimum. Hence, the use of 
a gradient based adaptation scheme for the convergence to the minimum can be applied. 

Many other adaptive filtering algorithms based upon non-mean-square-error cost functions can be also defined 
to improve the adaptation performance in specific statistical environments [33, 36]. Approaches in [33-39] show 
that the use of the adaptive filtering algorithm based on a cost function with the error to the power lower than 
quadratic can be advantageous. They are defined by the following cost function 

J(n) = E[le(n)IP]; 1 < p < 2. (8) 

The above cost function can be shown to be a convex function [40], that is every minimum of the performance 
function is a global minimum. 

Finally, before stating the possible linear structures used in implementing adaptive filters, it is worth men­
tioning the properties of the cost functions. All the functions presented in this section and others not mentioned 
in this work should be positive and monotonically increasing [41] for their corresponding algorithms to perform 
correctly. 

3.2. Structures 

A number of different structures for adaptive systems have been proposed. These may be divided into 
linear and non-linear structures. Linear digital filters may be further subdivided into finite and infinite-duration 
impulse structures. However, the implementation of the adaptive infinite-duration impulse response (IIR) filters 
is not straightforward as the poles of the filter can wonder onto or outside the unit circle of the z-plane and, 
in such a situation, instability can occur. The difficulty is that the adaptation algorithm will choose a set of 
coefficients which may place poles outside the unit circle in the z-plane and so provoke an unstable response. 
These difficulties, hence, make the IIR structure less attractive than the well established FIR one. Examples 
of the FIR filter are the linear transversal filter [42-44] and the lattice filter [45-47] depicted in Figure 6 and 
Figure 7, respectively. The structure of the IIR filter [6, 48-50] is shown in Figure 8. 

Various non-linear digital filter structures have been suggested for adaptive filtering applications including a 
range of artificial neural networks [51-55], which model the filter on a simplified brain-like structure. An example 

Input _.....,...~ - .......~D 

Filter 

Output 

Figure 6. Structure ofa Linear Transversal FIR Filter. 
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of a neural network is shown in Figure 9. While adaptive neural networks are an area of very active research 
[56-59], the theoretical aspects of non-linear structures are not nearly as well understood as the linear structures. 

In all the above mentioned structures the tap spacing is equal to the reciprocal of the symbol rate and the 
corresponding structure is said to be synchronous. On the other hand, for example in a fractionally spaced 
equalizer (FSE) [60-63], the equalizer taps are spaced closer than the reciprocal of the symbol rate. Advantages 
of these structures are numerous [3] and among them the great capability of compensating for delay distortion 
much more effectively than the synchronous equalizer at the expense of relatively higher computations. 

The work in this review is concentrated with the linear transversal filter structure and emphasis is made on 
using this well understood and often used structure for the study of the subsequent algorithms. 

Input Output 

Figure 7. Structure ofa FIR Lattice Filter. 

Input -__._--IIJloI 

Coefficients 

Feedback 
Coefficients 

---....... D 

Output 

Figure 8. Structure ofa Recursive llR Filter. 
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3.3. The FIR Adaptive Filter 
Assuming that the input sequence {x(n)} and the desired sequence {d(n)} are wide-sense stationary, the mean­

square-error function, Equation (6), can be more conveniently expressed in terms of the input autocorrelation 
matrix, R, and the crosscorrelation vector, p, between the desired response and the input components, as follows: 

(9) 

where 
R = E[x(n)xT(n)], (10) 

and 
p = E[x(n)d(n)]. (11) 

Hidden Layer 1 

Input 

Layer 


utput 

Input 

Connection of a number of processing elements to form a neural network 

Inputs 
from 
previous 
layer 

A single neural processing element 

Figur.e 9. Structure ofthe Multi-Layer Perceptron which is One Class ofNeural Network. 
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It is clear from expression (9) that the MSE is precisely a quadratic function of the components of the tap 
coefficients. Thus, the shape associated with this MSE is hyperboloid. 

In general, for the linear transversal structure, the surface will be quadratic, when the MSE is used, with a 
single global minimum. The goal of an adaptive filtering algorithm is to set the filter coefficients so as to obtain 
an operating point at this minimum, where the filter gives optimum performance. 

The point at the bottom of the performance surface corresponds to the optimal tap coefficients, Copt, or 
minimum MSE. The gradient method is used to cause the tap coefficients vector to seek the minimum of the 
performance surface. It is defined as 

8J(n) 
8c(n) 

8J(n) 8J(n) 8J(n)]T 
[8co(n) 8cl(n) .. , 8cN-dn) 

-2E[e(n)x(n)] 

2Rc(n) 2p. (12) 

To obtain the minimum MSE, the tap-coefficients vector c(n) is set to its optimal value, copt! where the 
gradient is zero, that is, 

Vi' E[e2 (n)] = RCopt - P = o. (13) 

Under this condition, the optimum value is given by: 

(14) 

where this is obtained under the assumption that the autocorrelation matrix R of the input signal is positive 
definite and hence nonsingular. Properties of the autocorrelation matrix R of the input signal can be found in 
[25]. The minimum MSE, Jmin, is hence obtained by substitution of (14) in (9), that is, 

(15) 

The solution for Copt involves inverting the input autocorrelation matrix R, hence, requiring precise knowl­
edge of the second order statistics of the data, i.e., the autocorrelation matrix and the crosscorrelation vector. 
Unfortunately, it is the data sequences rather than their second order statistics that are available in practice. 
Alternatively, an iterative procedure may be used to determine Copt. This is the function of an adaptive FIR 
filter algorithm which has to find the optimum filter from available data rather than from the second statistics 
of the data [64]. Thus, an adaptive FIR filter can be defined as an algorithm which operates on the sequences 
{x(n)} and {d(n)} to form a time-varying impulse response c(n) which converges in the mean [65] to Copt as the 
number of iterations becomes very large, that is: 

lim E[c(n)] Copt. (16) 
n-oo 

4. ADAPTIVE FILTERING ALGORITHMS 

In the previous section it was shown that the optimum tap coefficient vector for the adaptive FIR filter could 
be defined by the statistical properties of the input and desired signals. This implies that if these properties were 
known then the optimum tap coefficients could be obtained directly. However, it is unlikely to have an accurate 
measurement, they may be varying with time and the matrix inversion would require considerable amount of 

October 1998 The Arabian Journalfor Science and Engineering, Volume 23, Number 2B. 275 



Azzedine Zerguine and Maamar Bettayeb 

computations, specifically if there were a large number of coefficients. Practical adaptation algorithms usually 
involve iterative techniques. The following gives the two most widely used adaptive filtering algorithms suitable 
for practical real time applications. These are the least mean-squares (LMS) algorithm and the recursive least­
squares (RLS) algorithm. The least mean fourth (LMF) algorithm is also highlighted. 

4.1. The LMS Algorithm 
Probably the simplest iterative procedure is the method of steepest descent defined according to the following 

relation [25] 

c(n + 1) = c(n) (17) 

where J.L is a positive number chosen small enough to insure convergence of the iterative procedure. 

Given that the gradient vector, \7E[e2 (n)], depends on both the input autocorrelation matrix, R, and the 
vector p of cross correlations, this makes the steepest descent difficult for determining the optimum tap coef­
ficients. Instead, estimates of the gradient vector may be used. That is, the LMS algorithm for recursively 
adjusting the tap coefficients of the adaptive filter is expressed in the form 

c(n + 1) c(n) + J.Le(n)x(n). (18) 

The convergence behavior of the LMS algorithm given in Equation (18) is governed by the step size parameter 
J.L. For a larger value of J.L, the convergence becomes faster, but it results in a larger residual error and is more 
prone to instability. Consequently, the tap coefficients will converge to their optimum values if J.L satisfies the 
inequality [30], [66] 

2 
O<J.L<-\-, (19) 

"'max 

where Amax is the largest eigenvalue of R. The convergence condition, (19), can be derived in the following 
manner. Subtracting Copt from both sides of (18) and then taking the expected value of the result, gives 

E[c(n + 1)] [I J.LR]E[c(n)], (20) 

where this is obtained under the assumption that the vectors x(n) and the coefficient error vector c(n), defined 
as 

c(n) = c(n) - Copt, (21) 

are independent [25, 67]. 

Equation (20) reveals that the algorithm will converge to the optimal value if all the eigenvalues of the matrix 
(I - J.LR) are less than unity, that is 

11 - IIA -I < 1 i = 0 1 ... N - 1 (22)r t , '" 

where it is assumed that the autocorrelation matrix, R, is positive definite with eigenvalues, Ai, hence, it can be 
factorized as 

(23) 

where A is the diagonal matrix of eigenvalues 

(24) 

and Q is the orthonormal matrix whose i th column is the eigenvector of R associated with the ith eigenvalue. 
The convergence of the algorithm is then obtained, which is basically (19), and the time constant, 'Ti, associated 
with the eigenvalue, Ai, can be derived to give the approximated value: 

1 , i = 0,1" . " N - 1. (25) 
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Hence the longest time constant, Tmax , is associated with the smallest eigenvalue, Aminl of the autocorrelation 
matrix R, that is 

1 
Tmax = -A--' (26) 

• J-l min 

Equations (19) and (26) can be combined to give the following result in terms of the eigenvalue spread (condition 
number), ~,

;'\m1n 

Amax 
Tmax> -2'.. (27) 

Amtn 

Hence, from the point of view of convergence speed, the ideal value of the condition number is unity; the larger 
the value, the slower will be the convergence of the LMS algorithm. It can be shown [25] that the eigenvalues of 
the autocorrelation matrix are bounded by the maximum and minimum values of the power spectral density of 
the input. Furthermore, as the order of the matrix N approaches infinity, 

Amin --7 min[S(w)] (28) 

and 

Amax --7 max[S(w)], (29) 

where S(w) is the power spectral density of the input. 

It is therefore concluded that the optimum signal for fastest convergence of the LMS algorithm is white noise, 
and that any form of coloring in the signal will increase the convergence time. 

A . useful measure for the cost of adaptability is provided by the misadjustment factor M, defined as the 
ratio of the excess mean-squared error, Jex = J(oo) - Jmin, to the minimum mean-squared error Jmin , that 
is M = In view of the fact that, in steady-state, the weight error vectors are uncorrelated [30, 68], the 
misadjustment factor for the LMS algorithm can be expressed by [4]: 

N-l 

MLMS J-l L Ai. (30) 
i=O 

The relationship between the step size and the misadjustment is clearly observed in the above expression. Since 
speed of convergence and misadjustment lead to conflicting requirements on the step size a compromise must 
then be reached. In general, to ensure convergence of the iterative procedure and produce less misadjustment 
error a small step size is chosen. Finally, substituting (25) in (30) yields another form of the misadjustment 
factor: 

N-l 1 
MLMS= L-' (31) 

i=O Ti 

Other developed adaptive schemes as well, all of which are LMS variants, e.g., the sign LMS [6], the normalized 
LMS (NLMS) [69], the leaky LMS [70], the variable step (VS) size algorithm [71] and the fuzzy step-size (FSS) 
algorithm [72], the block LMS (BLMS) [73], and many others, have been studied to enhance more the performance 
of the LMS algorithm for the desired application. Table 1 lists the LMS algorithm and some of its derivatives. 

Recently, a series of LMS-Newton adaptive filtering [74-77] with variable step size were developed and shown 
to have attractive convergence speed in nonstationary environments. Application of these algorithms to adaptive 
filtering in subbands is demonstrated. 

The LMS algorithm can be regarded as being obtained from the general expression, (7), when the value k = 1. 
However, the least mean-fourth (LMF) algorithm [32], which is another modification to the general expression, 
is obtained when k 2. This algorithm is presented next. 

October 1998 The Arabian Journal for Science and Engineering. Volume 23. Number 2B. 277 



Azzedine Zerguine and Maamar Bettayeb 

The algorithm for adjusting the tap coefficients, c(n), is given by the following recursion: 

c(n + 1) = c(n) + Jl{, + 2(1 - ,)e2 (n)}e(n)x(n), (40) 

w here the step size Jl can be shown to be [81]: 

2 
O<Jl< , (41)Nb + 6(1 - ,)E[w2 (n)]]a; 

N is the length of the adaptive filter, E[w2 (n)] is the measurement noise power, and a; is the power of the input 
signal. 

Ultimately, the misadjustment factor M for the MN algorithm can in this case be shown to be expressed by 
[79]: 

(42) 

4.4. The RLS Algorithm 
The LMS algorithm is widely used due to its comparatively easy implementation, lower order of complexity 

(only N operations (additions and multiplications) are required per update), and its well-established character­
istics. However, the convergence is slow for highly correlated signals. The RLS algorithm, as it is discussed next, 
however, does not exhibit this dependence behavior. 

The RLS algorithm determines the coefficients that minimize the squared error summed over time [6, 86], 
i.e., 

n 

J(n) = L e2 (j). (43) 
j=O 

Due to the fact that the values of the filter coefficients, that minimize the above cost function, are functions of 
all past inputs, the associated adapted algorithm will have an infinite memory. A more convenient way, to limit 
this infinite memory problem, is to introduce a weighting function, ,(n), in the cost function so that recent data 
are given more weight than past data. The resulting new cost function, that will replace that of Equation (43), 
is defined as: 

n 

J(n) = L e2 (j),(n - j), (44) 
j=O 

with weighting function ,(n) taken as an example, as follows: 

,(n) = (1 - j3)n, 0 < j3 < L (45) 

The tap coefficients are adapted to minimize J (n). Taking the derivative of J (n) with respect to 
ci(n), {i = 0,1"", N - 1}, and setting it equal to zero, i.e., 

8J(n) 
0, (46)

8c(n) 

the following vector of the adaptive filter is obtained [23] 

c(n + 1) c(n) + j3R-l(n)x(n)e(n), (47) 

where R(n), the autocorrelation matrix of the input signal vector x(n), is found recursively 

R(n) = (1 - j3)R(n - 1) + j3x(n)xT (n). (48) 
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Table 2. The Computational Complexity of the Different Algorithms. 


Algorithm Multiplications Additions/Subtractions Divisions 


RLS 2.5N2 +4.5N 1.5N2 + 4.5N 1 

Fast Kalman 10N+3 9N+6 2 

FAEST 7N +10 7N+8 4 

FTF 7N +14 7N+7 3 

Comparing (47) with (18) we see that the simple scalar loop gain in LMS algorithm has been replaced with 
f3 times the inverse of R(n). The normalization with R-l(n) offers more than the simple power normalization 
in LMSj it normalizes the adaptation in each eigenvector direction by the signal power in that direction. Thus 
the convergence becomes independent of both the signal type and power [87]. 

The solution to the above equations, (47) and (48), would require a large number of computations per 
update. This algorithm requires approximately 2.5N2 + 4.5N multiplications and additions per update [6], N 
being the number of tap coefficients, significantly greater than the order of N for the LMS algorithm. Thus, as 
N increases, the number of operations increases in proportion to the square of the filter order. Hence, obtaining 
the optimum coefficient value involves computation of the inverse of the autocorrelation matrix and results 
in complex implementation. However, the advantage of this algorithm is fast. convergence irrespective of the 
correlation characteristics of the input signal. 

The high complexity of the RLS algorithm may be reduced by exploiting the shifting properties of the input 
sequence with time. This has resulted in several fast RLS algorithms such as the fast Kalman [26, 88, 89], the 
fast a posteriori error sequential technique (FAEST) [27, 90, 91] and the fast transversal filters (FTF) algorithms 
[28, 92, 93], all of which are characterized by a computational complexity which is directly proportional to the 
filter length N. Table 2 lists the computational complexity of the different algorithms. 

In contrast to the good feature of fast convergence observed with the RLS based algorithms, their compu­
tational complexities are still not attractive as those of the LMS algorithm. Moreover, instability problems are 
still drawbacks for these algorithms which suffer from severe numerical instability [94] when implemented using 
either fixed or floating point digital arithmetic [95, 96]. They are highly sensitive to small numerical errors at 
each iteration and will often diverge suddenly from the correct least squares solution. 

Also, recently, other recursive algorithms based on the minimization of the least-fourth cost function gave 
rise to the recursive least fourth (RLF) algorithm [97]. 

Ultimately, Figure 11 shows a tree structure of the families of adaptive filtering algorithms which have been 
suggested for all the cost functions presented in this work. 

5. PERFORMANCE OF THE ALGORITHMS 

In this section we evaluate and compare the performance of the RLS, the LMS, the LMF, and the IvIN 
algorithms. The basic digital transmission system considered for the adaptive system identification is shown in 
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Figure 13. Effect ofNoise Distribution on the Convergence Behavior ofthe MN Algorithm. 

Recently, Sayed and Kailath [100] showed the exact relationship between the RLS algorithm and the Kalman 
filter algorithm. This relationship may be taken into advantage in the near future to exploit the well developed 
Kalman filter theory in order to improve adaptive filtering algorithms in nonstationary environments. Also, it 
is shown in [101] that the LMS algorithm is optimal under the HOO criterion. This can take a new research 
direction where the robustness properties of the LMS algorithm are derived and exploited. 

Several new developments in signal processing that emerged recently, including cyclostationarity, chaotic 
signals, wavelet representation, and fractionallower-order-moments, can be effectively used for the development 
of new adaptive filtering algorithms. 

7. SUMMARY 

In this work, we presented various common structures of FIR adaptive filters with their respective adaptive 
filtering algorithms. The issue of adaptive filtering is still and will remain a very active field of research for 
some considerable time. This is mainly due to the advances in the computing facilities that were not previously 
available and to the need for such algorithms. 

The wide spread use of the least-demanding computing algorithm, i.e., the LMS algorithm, is with no 
doubt due to its both simplicity and relative performance. The RLS algorithm, for example, gives very fast 
convergence to the algorithm at the expense of very heavy computational loads, irrespective of the input signal 
statistics. Moreover, the performance of the LMS algorithm is better or as good as that of the RLS algorithm 
in nonstationary environments [32]. 
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Finally, the difference in performance for all algorithms in general is due to the fact that they operate under 
different minimization functions. Several of these cost functions have been mentioned in this review. A novelty of 
this paper is the unified treatment of the recently emerging non-square and mixed norm algorithms, together with 
the more traditional squared norm based algorithm~. Lately other algorithms based on higher order statistics 
[102] are also emerging. 
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