
FIRST BOUNDARY VALUE PROBLEM FOR ELLIPTIC 

EQUATIONS ON RECTANGLTLAR REGIONS 

A. Azzam 

Department of Mathematics, University of Windsor, Windsor, Ontario, Canada 

:~~I 

1$# ~..ul Q i$~1 J~' ~ , ~'~~1 ~~.)~ (I ~;!.) )) ;tiL. J# ~, 1.lIb fr. 
.O<cx< 1 :Cz+iQ) ~)I.y ~I ~ ~tS:'J\ ,1,J.rJ1 ~ . ~lS") ~ o.)J..b-

ABSTRACT 

This paper is concerned with solutions of the Dirichlet problem for linear elliptic 
equations in sectionally smooth plane domains. Conditions sufficient for the so
lutions to be of class C Z + a up to the boundary are given. 
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FIRST BOUNDARY VALUE PROBLEM FOR ELLIPTIC 
EQUATIONS ON RECTANGULAR REGIONS 

1. INTRODUCTION 

We consider here the first boundary value problem 
for linear second order elliptic differential equations 
in a plane domain 0 with corners on its boundary. 
In [2,3] it was shown that small angles on the bound
ary correspond to better differentiability properties 
of the solutions. In [6] the following result was 
obtained 

Theorem 1. Let 0 be a rectangle and consider the 
Dirichlet problem 

1\U=fin 0, U=1jJ on 00. 

Assume that fECa(O) and that IjJ is continuous on 00 
and belongs to C2 +a on the open sides of the rectangle. 
If the compatibility conditions at the four corners are 
satisfied, then UE C2 +a(O). 

In the present paper we extend this result to the case 
of second order linear elliptic equations. In Section 2 
we state the problem and the main result. Section 3 
contains a study of the problem in a circular sector. 
The proof of the general case follows from this special 
one. In Section 4 we state a theorem concerning 
domains with more than one corner. We introduce 
here some symbols used in the paper. Cm +a(O) (m ~ 0 
an integer, 0< a < 1) is the space of functions having in 
0, mcontinuous partial derivatives and the derivatives 
of order m satisfy in 0 a Holder condition with 
exponent a. 

DkW is any kth partial derivative of W H~(DkW) is 
the Holder coefficient of DkW in O. 

IIWII~=maxIW(x)1 

2 

IIWII~+I1= I IIDkWII~+H~(D2W) 
k=O 

2. THE PROBLEM: MAIN RESULT 

Let OcR2 be a simply connected domain whose 
boundary r is of class C2 +a' 0 < a < 1, except at a point 
PE r where r has a corner. In 0 we consider the 
Dirichlet problem 

Lu = aij(x)uij + ai(x)ui + a(x)u =f(x) (1) 

ulf= 1jJ, (2) 

where x = (Xl' X2), Ui OU/OXi' Uij 02U/OXiOXj, i, 1,2 
and we use the summation convention. We assume 
that (l) is uniformly elliptic and that the functions aij' 
ai' a, and f belong to Ca(O) in (1) and IjJE Co(r)n 
C2 + a(r\{ P}) in (2), Under these assumptions it is known 
that UEC2 -1;a(01)nCO(0), where 0 1 is any compact 
subregion of 0 with positive distance from the corner 
(cf [1]). To investigate the behavior of the solutions 
near the corner point we proceed as follows. Without 
loss of generality, assume that the corner point is at 
the origin and that the two curves bounding the corner 
are represented by Xl =gz(x2) and X2 =gl(XI ) where 
gl(0)=g2(0)=g'l(0)=0 and g;(O)=cot y. We transfer 
the equation 

aiiO, 0) uij = 0 

to canonical form by applying the transformation 

1 
Yl 	 A / [a 12(X l -g2(x2»+a ll (X2 -gl(X1»]

Uyall 

1 
Y2 =;--(x1-g2(X2», 

yall 

all = all (0,0) - 2g~(0)a12(0, 0) +g; 2(0)a22 (0, 0), 

a22 = a22 (0, 0) 

a12 	 a22(0,0)g~(0)-a12(0,0), 

1 

1\ [all (0, 0)a22 (0, 0) - ai 2(0,0)]'2. 

The angle at the corner after transformation is given 
by 

1 
OJ arctan {[a ll (0)a22(0)-ai2(0)]'2/ 

[a2 2(0) cot y-a12 (0)]} (3) 

where y is the angle at the corner ofr. Note that OJ = Yif the 
leading part of (1) is the Laplacian. In [2] it was proved 
that if OJ < n then UE Cv(O) where 1< v< 2. As was 
mentioned before, in the case of C2 + a-boundaries with 
IjJE C2 +a(r) we have UE C2 +a(O). In [3] we have proved 
that if OJ < n/(2 +a) then also in this case UE C2 +a(O). We 
now generalize Theorem 1 as follows. 

Theorem 2. Let 0 R2 be a simply-connected 
bounded domain whose boundary r is of class C2 +a' 

except at a point PE r where r has a corner with angle 
y, 0 < y < 2n. Assume that (1) is uniformly elliptic and 
that aij, ai' a, and f belong to Ca(O) in (1) and 
IjJ(S)E CO(r)nC2 +a(r\{p}) in (2). IfOJ = n/2 in (3), then any 

The Arabian Journal for Science and Engineering, Volume 6, Number 1. 54 



A. Azzam 

solution u of (1), (2) in n satisfies ue C 2 + cx(Q), provided 
that the compatibility conditions at the corner point are 
satisfied. 

This theorem is the main result of the paper. As was 
mentioned before, the solution of the given problem 
belongs to C2 + cx(Q\n1), where is any smalln 1 

neighborhood of the corner. Thus to prove Theorem 2 
it is sufficient to show that ue C 2 + cx(Q1)' As shown in 
[2], for this purpose, it is sufficient to consider (1), (2) 
in a circular sector with angle w at 0 where aiiO) = (jij 
in (1). This will be done in the following section. 

3. THE PROBLEM IN THE SECTOR 
CASE 

We follow here the notations of [2, Section 4] with 
w = n/2. Let nO' be the sector 

nO' = {(r, 0)10 <r< a, f3 < 0<n/2 + f3} 

where a < 1, (r,O) are the polar coordinates of the point 
(X 1,X2) and f3>0 satisfies f3<n/4. We now state the 
main result of this section. 

Theorem 3. Let w be a bounded solution of (1), (2) 
in nu , where Lin (1) is uniformly elliptic and aij(O)= 
(jij' Let aij, ai' a, and f belong to Ccx(Qu) and l/I(r,O) is 
continuous at the corner of the sector and belongs to 

on the lines 0=f3 and 0=n/2+f3. Iff(O) =0 thenC2 + cx 

weC2 +iQr) where 2ro<a. 
o 

We prove this theorem using Theorem 1 and some 
results of [2]. We note that f (0) = 0 is the only 
compatibility condition needed. In [2, Theorem 4] it 
was proved that under the assumptions of Theorem 3 
we have weCv(Qr ), where 1 < v < n/(w +2f3) <2. In our o 
case w n12. Thus for any arbitrarily small e> 0 we 
can take v 2 - e by choosing f3 < en/4(2 - e). Without 
loss of generality we may assume that 

1/1(0, f3) = ~~ (0, f3) dl/l (0, n/2 + f3) = 0 (4) 

cf [2, Section 4]. Under the assumptions of Theorem 3 
with (4) being satisfied, it was proved in [2] that in 
Q2ro we have 

10k w(x)I~Mk r 2
-
k- e

, k=O, 1,2. (5) 

It was also proved in [2] that the second derivatives of 
w may have 'pole-like' singularities at the corner point, 
nevertheless by multiplying these derivatives by 
,\O<r< 1, we get Holder-continuous functions. We 
now extend this result by replacing rT with any O(rT)
function. 

Lemma 1. Let v(x) be a solution of (1), (2) in nu' 
Assume that all the assumptions of Theorem 3 are 
satisfied and that in nu we have 10kv(x)1 ~N k r2 - k- 'I, 
k=0,1,2 where O~~<l. If h(x)eC.(Qu), ~~r<1 
and h(O) =0, then h(x)02v(x)eCllQro)' where 
11 = min(ct, r - ~). 

Proof. Consider in nro any two points P(r1' 01) and 
Q(r2 , O2 ), To prove the lemma we have to show that 

Ih(P) 02v(P)-h(Q) 02v(Q)I/PQIl~H, (6) 

for some finite H> O. Let 0 ~ r2 ~ r1 ~ ro' We consider 
separately the two cases r2 ~ rtl2 and r2> r tl2. In the 
first case we have PQ ~ r tl2 and since 

(7) 

and 

(8) 

we can easily obtain (6). Consider now the case 
r2>r112. We introduce the mapping 

x ~y (9) 

where ~ = 2r l/r0' y = (y l' Y2)' This transformation takes 

no = { (r, O)lr tl2 ~ r ~ rl' f3 ~ 0 ~ n/2 + f3} 

to 

n1 ={(p, 0)lro/4~p~ro/2, f3~0~n/2+f3} 

where p = r/~. In [2, Theorem 4] it was shown that the 
transformed function VI (y) v(~y) satisfies in n1 

IIVlll~~!X~(jri-'I, (10) 

Now, for any Il~ct we have 

~2+IlH~o(02 V)=H~I(Oi vl)~(jlri-'I, (11) 

where 0 1 is the partial derivative corresponding to O. 
Thus 

(12) 

We now prove (6) in the case r2> r tl2. From (7), (8) 
and (12) we obtain 

Ih(P) 0 2 v(P)-h(Q) D2 v(Q)I/PQIl 

~lh(P)1102 v(P)-D2 v(Q)I/PQIl 

+102 v(Q)I{lh(P) - h(Q)I/PQT}Il/Tlh(P) - h(Q)1 1 -Il/T 

~ N 3rl (j2rlll- '1+ N 2r:; 'IN4{2N3rl}'I/r ~H, 

since hE CT and rtl2 < r2~ rl' This completes the proof 
of the lemma. 

We now prove Theorem 3 assuming that (4) holds. 
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Proof of Theorem 3. Under the assumptions of the 
theorem and assuming that (4) holds we have the 
estimates 

(13) 

and WEC2 _". cf. [2, Theorems 3,4]. Here C2 - E means 
C 2 -,,(Qro) and similarly we omit Qro in the present 
proof. We write equation (1) as follows 

l1W=/l =I-aw-ajwj-(aij-(jjj)wjj, (14) 

Since I, a, and aj belong to Crt and WEC 2 _ e with 
arbitrarily small £ > 0, then the first three terms on the 
right-hand-side of (14) belong to Crt' Using Lemma 1 
with h(x)=aiix)-(jjj' V=W, T=a and '1=£ we con
clude that (aij - (jjj) WjjE Crt-e' Thus 11 ECrt - e in (14). 
Theorem 1 then gives WEC 2+rt - e. To prove that 
WEC2+rt we proceed as follows. We write 

W=Wo+V, (15) 

where 

Wo(x) = w(O) + XjWj(O) + (1/2!)xjxjWjj(0). 

It is clear that VEC 2 and that Dkv(O) =0, k=0,1,2. 
Thus IDkv(x)I~Nkr2-k, k=O, 1,2. In Oro the function 
v(x) satisfies the equation 

Lv=12 =1-LwoECrt, (16) 

cf. (1), and coincides on (J = fJ and (J = nl2 + fJ with a 
function x(r) where x(O) = x'(O)=X"(O)= o. We now 
show that VEC 2+rt. We write (16) as follows 

l1v=13 =12 -av-ajVj -(ajj-(jjj)vjj (17) 

The first three terms on the right-hand-side of (17) 
belong to Crt' Applying again Lemma 1 on h(x)= 
aij(x)-(jjj and vij with T=a and '1=0 we obtain (air 
(jjj)VjjECrt. Thus/3 ECrt and using Theorem 1 we obtain 
VEC2+rt . From (15) we finally get WEC2 +rt(Or). This 
completes the proof of the theorem. 

4. THE GENERAL CASE 

As was mentioned in Section 2, Theorem 2 follows 
from Theorem 3. Using Theorem 7.3 in [1, p. 668], as well 

as [3] and Theorem 2 of the present paper we obtain the 
following theorem. 

Theorem 4. Let 0 c R2 be a bounded plane do
main whose boundary r consists of a finite number of 
curves r 1, r 2, .•• , r k, k~2 belonging to C2 +rt. 
Suppose that r i and r i + 1 intersect at OJ making an 
angle Yj, 0<Yi<2n. Assume that U satisfies (1), (2) in 0 
where I/IE C2 +rt(r\uOj)nCo(r). IfLis uniformly elliptic 
and au, ai' a, and I belong to Crt(Q), then UE C2 +rt(Ql)' 
where 0 1 is a compact subdomain of Q with positive 
distances from those corners satisfying neither Wi < 
nl(2 +a) nor Wi = n12. In the neighborhood of such a 
corner we have UEC1t / wj 

-&' £>0 is arbitrarily smalL 
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