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ABSTRACT

Let D be a bounded domain in the complex plane, H*(D) the algebra of bounded
analytic functions on D and M(D) its maximal ideal space, let R(D) be the algebra of
all continuous functions on D which can be approximated uniformly on D by
rational functions with poles off D. In this paper we prove a theorem similar to
Bishop’s Splitting Lemma for H*(D) provided that every xeD has a dominant
representing measure and R(D) is boundedly pointwise dense in H*(D).
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DECOMPOSITION OF MEASURES
ORTHOGONAL TO H®(D)

INTRODUCTION:

Let D be a bounded domain in the complex plane
and let H*(D) denote the Banach algebra of bounded
analytic functions on D and M(D) its maximal ideal
space. R(D) will denote the algebra of all functions in
C(D) which can be approximated uniformly on D by
rational functions with poles off D. Bishop’s Splitting
Lemma [7] states that if u is a Borel measure on D
which is orthogonal to R(D) and U, U,, ..., U, form
an open cover for D then there exist measures u,, p,,
...» i, On D such that each p, is orthogonal to R(D),
supp ;& U, and p=X7_, p,. In this paper we prove a
similar result for measures on M(D) orthogonal to
H*(D). But D will not be an arbitrary domain; it will
be a domain such that every zeD has a dominant
representing measure and R(D) is boundedly pointwise
dense in H®(D). At first glance this might seem a
strong restriction, but in fact it is not and to the
contrary these domains cover the ones needed for the
Corona problem [5], because any A-domain [3] satis-
fies both of these conditions and [1] proving the
Corona problem for A-domains is equivalent to pro-
ving it for general domains see [1] and [6] for details).

NOTATIONS, DEFINITIONS, AND
SOME PRELIMINARIES

Throughout this paper D will denote a bounded
domain in the complex plane, H*(D) the Banach
algebra of founded analytic functions of D, and M(D)
its maximal ideal space. R(D) will denote the algebra of
all continuous functions on D which can be approxi-
mated uniformly on D by rational functions with poles
off D. All measures considered in this paper are regular
Borel measures.

If A is a function algebra and M(A) its maximal
ideal space, then the pseudo-hyperbolic distance be-
tween two points ¢y and ¢ in M(A) is defined by p(y,
p)=sup{Y(f):feA, [IflISL; ¢(f)=0}. The relation
p(Y, d)<1 is an equivalence relation and the equival-
ence classes are the Gleason parts of M(A) [11].

A measure m on ¢D is called a representing measure
for ze D with respect to R(D) if f(z)=|fdm, ¥ feR(D).
It is called a dominant representing measure if when-
ever m’ is another representing measure for z then
m' << m (m’ is absolutely continuous with respect to m).
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If m, p are two measures such that m<<u and p<<m
we will write m~ p.

The closed support of a measure u will be denoted
by suppl u.

By A, we will denote the harmonic measure on 0D,
for all ze D. We will say R(D) is boundedly pointwise
dense in H*(D) if Vfe H*(D) there exists a sequence
{f,} < R(D) such that f (z)—f(z), VzeD, and ||f||SM
for all n, and for some positive real number M.

For a function fe H*(D), f will denote its Gelfand
transform ie. f is defined on M(D) by f(¢p)=¢(f). In
[5] it was proved that if Z is defined on D by Z{(J)= 4
then Z(M(D))=D, and Z is a homeomorphism on D.

If 4 is a measure orthogonal to R(D) (to H*(D)) we
will write L R(D) (u.l H*(D)).

If u is a measure on M(D), p will be the measure
defined on D by u(E)=u(Z ~Y(E)) [2].

If A is a function algebra on X, pe X is called a peak
point if there exists feA such that f(p)=1 while

If(y<l, YyeX, y#p.

By the point mass measure for xe X we mean the
measure 6, defined by

1if xeE

O (E)= 1
S(E) |0 if x¢ E

Lemma 1. If z,e D has a dominant representing mea-

sure m, with respect to R(D), then every point ze D

has a dominant representing measure m, and m,~m, .

Proof. Let zeD. D is contained in a single Gleason
part [4], so z and z, are in the same Gleason part. By
[11] there exists a representing measure m, for z with
respect to R(D) such that m, <m,. Similarly there
exists a representing measure p. for z, such that
m,<p,, but p, <m, since m, isa dominant repre-
senting measure, so m, <y, hence m,~m, .

Let v, be any representing measure for z. By the
same theorem in [11], there exists v, , a representing
measure for z,, such that v, <v_, but v, <m, <m,
so v, < m, which implies that m, is a dominant repre-
senting measure.

Lemma 2. Let y be a measure on D. Assume for
some z,eD there exists a dominant representing mea-
sure m, . Then there exists a measure u* with




supp p* €0D such that p* <« m, and

Jf dﬂ=LDf du* V feR(D)

Proof. We use the sweeping method [10], ie. for
any Borel set EcdD, we define p*(E)=[A,(E)dpu(z),
where A, is the harmonic measure on JD for zeD.
Sop*(E)=,, Xpdp*=[,([,XdA,)du(z) where X is
the characteristic function on E.

Now for any feC(D) we have

Jf du* = L( J‘A’Df (w)d2 (w))dpu(z).

If feR(D) then [,,f(w)dA (w)=f(z) because i, is a
representing measure with respect to R(D) for z (see
[7], p. 226]). Hence for such f we have:

~

[rae= [ ([ somn.onauor= | ram

and p* <A, <m, <m, .

Lemma 3. Assume there exists ze D with dominant
representing measure m with respect to R(D). If
uLR(D) then 3he L(m) such that py=hm.

Proof. Since ulR(D), u=Zhm; where h;eL(m,)
and each m, is a representing measure for some point
z,e D such that suppl m;<éD and hm, LR(D). In fact
we also have ||ul||=Z|lhm]]. (See [10] for a proof.)
Write p=h,m, +X, h;m;, where z, is any point in the
Gleason part which contains D, and J={j:z; is not in
the Gleason part which contains D}, because p.L R(D).
So v.LR(D) and applying Lemma 3 to v we get v=h,m
where h; is in L!(m). But since p* <<m then 3h,eL(m)
such that uf=hm so p =v—pu¥=hm-h,m=
(h1' —h1%m=hm and he L(m).

From this we get y=hm+y,.

We are in a position now to prove the main
theorem.

Theorem. Let D be a domain which satisfies the
following:

(1) there exists ze D with dominant representing mea-
sure m; (2) R(D) is boundedly pointwise dense in
H*(D).

Let U,,U,,..., U, be an open cover for D, and let u
be a measure on M(D}) such that u | H*(D). Then there
exist measures i, i,, ..., 4,,0 on M(D) such that:

() u=3 p+o
i=1
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(2) p, LH*(D) for each i=1,2, ..., n;
(3) 3=0; and (4) supp u,=Z (U)).

Then by [8] for all jeJ, z; is a peak point and hence
the only representing measures for z; are the point
mass measures.

Now m, <« because m is a dominant representing
measure hence there exists g,eL(m) such that m, =
g;m. Then u=h,gm+2%ho; where 9, is the point
mass measure for z;.

Since plR(D), yl{zj}_LR(E) [7]; so h;=0, for every
jeJ, hence p=h,g,m=nhm. Clearly he L(m).

Lemma 4. Assume yu is a measure on D, u L R(D). If
there exists a dominant representing measure m for
some ze D with respect to R(D) then y=hm+ pu, where
he L'(m) and supp u, < D.

Proof. Write p=yu, +pu, where y,=ul,, and p,=
ulp- Then by Lemma 2 there exists a measure pf such
that supp p¥<dD, pf<m, [fdu,=|fdu} V¥ feR(D).
Let v=p,+us then supp vedD and Y feR(D) we
gave [fdv={fdp,+[fdut=[fdp, +[fdu,=[fdu=

Proof. Since ul M*(D) we have [2] that pLR(D).
By Bishop’s Splitting Lemma [7] there exists measures
Vi Vs .., v, o0 D such that v, L R(D), supp v, U, and
B=ZXi_v;

By Lemma 4 there exists h,e L'(m) and a measure 7,
on D such that v,=hm+r1, for every i=1,2, ...,n.

By theorem 11.1 in [7] or [9:8.1], we have H*(D) is
isometrically isomorphic to H®(m), so there exists a
canonical lift of m to M(D), denote it by m, see [5].
Also if {f,}=R(D) and f, converges to feH>(D)
pointwise boundedly then [, f,d,~[fdu for any
u<m. Now since Z is a homeomorphism over D, 1,
has a natural lift 7, to M(D).

Let p,=hpi+1, so ji,=v, where h, is the Gelfand
transform of h, to M(L®(m)). Clearly supp u,=Z '(U)
which proves (4). To prove (2): let fe H*(D). Then
there exists a bounded sequence { f,} < R(D) such that
S (2)—=f(2) for all zeD. So
j fdp,=lim | fhdm+lim | f4%

M(D)

M{(Dj M(D)

=1imj £, hdr+1lim Jf,,dt,.
M. D

D)

=lim anhidm%-lim jf"dri
b D
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=lim J f,dit,=lim J £,dv,=0.
D D

To prove (1) and (3): Let o=p—2}., 4;. Then for
any E< D we have

n

d(E)=0(Z YE)=(u— Y uNZ *(E)

i=1

=wZ UE)- Y, m(ZNE))
i=1

—(E) - Y v(E)=0
i=1

So u=2Z¢_,p;+0o and 6=0.
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