DECOMPOSITION OF MEASURES ORTHOGONAL TO $H^{\infty}(D)$

Waleed M. Deeb

Department of Mathematics, University of Jordan, Amman, Jordan

الخلاصة :

نفرض أن D هو نطاق محدد في المسنوي المركب ، أن (D) طو النظام الجبري للدوال التحليلية المحددة والمعرفة على D وأن (M(D) هو فراغ 'Maximal Ideal' لـ (D[∞](D) ونفرض أن (R(Dَ) هو النظام المجبري للدوال المتصلة والمعرفة على D والتي يمكن تقريبها بدوال قياسية أقطابها خارج D . نبرهن في نذا البحث نظرية مشابهة 'Bishop's Splitting Lemma' لـ (D[∞](D) شرط أن يوجد لكل C=D H[∞](D) في 'boundedly pointwise dense' R(D) في 'boundedly pointwise dense' (D)

ABSTRACT

Let D be a bounded domain in the complex plane, $H^{\infty}(D)$ the algebra of bounded analytic functions on D and M(D) its maximal ideal space, let $R(\overline{D})$ be the algebra of all continuous functions on \overline{D} which can be approximated uniformly on \overline{D} by rational functions with poles off \overline{D} . In this paper we prove a theorem similar to Bishop's Splitting Lemma for $H^{\infty}(D)$ provided that every $x \in D$ has a dominant representing measure and $R(\overline{D})$ is boundedly pointwise dense in $H^{\infty}(D)$.

DECOMPOSITION OF MEASURES ORTHOGONAL TO $H^{\infty}(D)$

INTRODUCTION:

Let D be a bounded domain in the complex plane and let $H^{\infty}(D)$ denote the Banach algebra of bounded analytic functions on D and M(D) its maximal ideal space. $R(\overline{D})$ will denote the algebra of all functions in $C(\overline{D})$ which can be approximated uniformly on \overline{D} by rational functions with poles off \overline{D} . Bishop's Splitting Lemma [7] states that if μ is a Borel measure on \overline{D} which is orthogonal to $R(\overline{D})$ and U_1, U_2, \ldots, U_n form an open cover for \overline{D} then there exist measures μ_1, μ_2 , ..., μ_n on \overline{D} such that each μ_1 is orthogonal to $R(\overline{D})$, supp $\mu_i \subseteq U_i$, and $\mu = \sum_{i=1}^n \mu_i$. In this paper we prove a similar result for measures on M(D) orthogonal to $H^{\infty}(D)$. But D will not be an arbitrary domain; it will be a domain such that every $z \in D$ has a dominant representing measure and $R(\overline{D})$ is boundedly pointwise dense in $H^{\infty}(D)$. At first glance this might seem a strong restriction, but in fact it is not and to the contrary these domains cover the ones needed for the Corona problem [5], because any Δ -domain [3] satisfies both of these conditions and [1] proving the Corona problem for Δ -domains is equivalent to proving it for general domains see [1] and [6] for details).

NOTATIONS, DEFINITIONS, AND SOME PRELIMINARIES

Throughout this paper D will denote a bounded domain in the complex plane, $H^{\infty}(D)$ the Banach algebra of founded analytic functions of D, and M(D)its maximal ideal space. $R(\overline{D})$ will denote the algebra of all continuous functions on \overline{D} which can be approximated uniformly on \overline{D} by rational functions with poles off \overline{D} . All measures considered in this paper are regular Borel measures.

If A is a function algebra and M(A) its maximal ideal space, then the pseudo-hyperbolic distance between two points ψ and ϕ in M(A) is defined by $\rho(\psi, \phi) = \sup\{\psi(f): f \in A, ||f|| \le 1; \phi(f) = 0\}$. The relation $\rho(\psi, \phi) < 1$ is an equivalence relation and the equivalence classes are the Gleason parts of M(A) [11].

A measure *m* on ∂D is called a representing measure for $z \in \overline{D}$ with respect to $R(\overline{D})$ if $f(z) = \int f dm$, $\forall f \in R(\overline{D})$. It is called a dominant representing measure if whenever *m'* is another representing measure for *z* then $m' \ll m$ (*m'* is absolutely continuous with respect to *m*). If m, μ are two measures such that $m \ll \mu$ and $\mu \ll m$ we will write $m \sim \mu$.

The closed support of a measure μ will be denoted by suppl μ .

By λ_z we will denote the harmonic measure on ∂D , for all $z \in D$. We will say $R(\overline{D})$ is boundedly pointwise dense in $H^{\infty}(D)$ if $\forall f \in H^{\infty}(D)$ there exists a sequence $\{f_n\} \subseteq R(\overline{D})$ such that $f_n(z) \rightarrow f(z)$, $\forall z \in D$, and $||f|| \leq M$ for all *n*, and for some positive real number *M*.

For a function $f \in H^{\infty}(D)$, \hat{f} will denote its Gelfand transform i.e. \hat{f} is defined on M(D) by $\hat{f}(\phi) = \phi(f)$. In [5] it was proved that if Z is defined on D by $Z(\lambda) = \lambda$ then $\hat{Z}(M(D)) = \overline{D}$, and \hat{Z} is a homeomorphism on D.

If μ is a measure orthogonal to $R(\overline{D})$ (to $H^{\infty}(D)$) we will write $\mu \perp R(D) (\mu \perp H^{\infty}(D))$.

If μ is a measure on M(D), $\bar{\mu}$ will be the measure defined on \bar{D} by $\bar{\mu}(E) = \mu(\hat{Z}^{-1}(E))$ [2].

If A is a function algebra on X, $p \in X$ is called a peak point if there exists $f \in A$ such that f(p)=1 while $|f(y)| < 1, \forall y \in X, y \neq p$.

By the point mass measure for $x \in X$ we mean the measure δ_x defined by

$$\delta_x(E) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

Lemma 1. If $z_0 \in D$ has a dominant representing measure m_{z_0} with respect to $R(\overline{D})$, then every point $z \in D$ has a dominant representing measure m_z and $m_z \sim m_{z_0}$.

Proof. Let $z \in D$. *D* is contained in a single Gleason part [4], so *z* and z_0 are in the same Gleason part. By [11] there exists a representing measure m_z for *z* with respect to $R(\overline{D})$ such that $m_{z_0} \ll m_z$. Similarly there exists a representing measure μ_{z_0} for z_0 such that $m_z \ll \mu_{z_0}$, but $\mu_{z_0} \ll m_{z_0}$ since m_{z_0} is a dominant representing measure, so $m_z \ll \mu_{z_0}$ hence $m_z \sim m_{z_0}$.

Let v_z be any representing measure for z. By the same theorem in [11], there exists v_{z_0} , a representing measure for z_0 , such that $v_z \ll v_{z_0}$, but $v_{z_0} \ll m_{z_0} \ll m_z$ so $v_z \ll m_z$ which implies that m_z is a dominant representing measure.

Lemma 2. Let μ be a measure on *D*. Assume for some $z_0 \in D$ there exists a dominant representing measure m_{z_0} . Then there exists a measure μ^* with

supp $\mu^* \subseteq \partial D$ such that $\mu^* \ll m_{z_0}$ and

$$\int_{D} f d\mu = \int_{\partial D} f d\mu^* \qquad \forall f \in R(D)$$

Proof. We use the sweeping method [10], i.e. for any Borel set $E \subseteq \partial D$, we define $\mu^*(E) = \int \lambda_z(E) d\mu(z)$, where λ_z is the harmonic measure on ∂D for $z \in D$. So $\mu^*(E) = \int_{\partial D} X_E d\mu^* = \int_{\partial D} (\int_D X_E d\lambda_z) d\mu(z)$ where X_E is the characteristic function on E.

Now for any $f \in C(\overline{D})$ we have

$$\int f d\mu^* = \int_D (\int_{\partial D} f(w) d\lambda_z(w)) d\mu(z).$$

If $f \in R(\overline{D})$ then $\int_{\partial D} f(w) d\lambda_z(w) = f(z)$ because λ_z is a representing measure with respect to $R(\overline{D})$ for z (see [7], p. 226]). Hence for such f we have:

$$\int f d\mu^* = \int_D \left(\int_{\partial D} f(w) d\lambda_z(w) \right) d\mu(z) = \int_D f d\mu,$$

and $\mu^* \ll \lambda_z \ll m_z \ll m_{z_0}$.

Lemma 3. Assume there exists $z \in D$ with dominant representing measure *m* with respect to $R(\overline{D})$. If $\mu \perp R(\overline{D})$ then $\exists h \in L'(m)$ such that $\mu = hm$.

Proof. Since $\mu \perp R(\bar{D})$, $\mu = \sum h_i m_i$ where $h_i \in L^1(m_i)$ and each m_i is a representing measure for some point $z_i \in D$ such that $\overline{\operatorname{suppl} m_i} \subseteq \partial D$ and $h_i m_i \perp R(\bar{D})$. In fact we also have $||\mu|| = \sum ||h_i m_i||$. (See [10] for a proof.) Write $\mu = h_1 m_1 + \sum_j h_j m_j$, where z_1 is any point in the Gleason part which contains D, and $J = \{j: z_j \text{ is not in}$ the Gleason part which contains $D\}$, because $\mu \perp R(D)$. So $\nu \perp R(D)$ and applying Lemma 3 to ν we get $\nu = h_1 m$ where h_1 is in $L^1(m)$. But since $\mu_2^* \ll m$ then $\exists h_2 \in L'(m)$ such that $\mu_2^* = hm$ so $\mu_1 = \nu - \mu_2^* = h_1 m - h_2 m = (h1^1 - h1^2)m = hm$ and $h \in L'(m)$.

From this we get $\mu = hm + \mu_2$.

We are in a position now to prove the main theorem.

Theorem. Let D be a domain which satisfies the following:

(1) there exists $z \in D$ with dominant representing measure *m*; (2) $R(\overline{D})$ is boundedly pointwise dense in $H^{\infty}(D)$.

Let U_1, U_2, \ldots, U_n be an open cover for \overline{D} , and let μ be a measure on M(D) such that $\mu \perp H^{\infty}(D)$. Then there exist measures $\mu_1, \mu_2, \ldots, \mu_n, \sigma$ on M(D) such that:

(1)
$$\mu = \sum_{i=1}^{n} \mu_i + \sigma;$$

(2) $\mu_i \perp H^{\infty}(D)$ for each i = 1, 2, ..., n; (3) $\bar{\sigma} = 0$; and (4) supp $\mu_i \subseteq \hat{Z}^{-1}(U_i)$.

Then by [8] for all $j \in J$, z_j is a peak point and hence the only representing measures for z_j are the point mass measures.

Now $m_1 \ll$ because *m* is a dominant representing measure hence there exists $g_1 \in L'(m)$ such that $m_1 = g_1 m$. Then $\mu = h_1 g_1 m + \sum_j h_j \delta_j$ where δ_j is the point mass measure for z_j .

Since $\mu \perp R(\overline{D})$, $\mu|_{\{z_j\}} \perp R(\overline{D})$ [7]; so $h_j \delta_j = 0$, for every $j \in J$, hence $\mu = h_1 g_1 m = hm$. Clearly $h \in L'(m)$.

Lemma 4. Assume μ is a measure on \overline{D} , $\mu \perp R(\overline{D})$. If there exists a dominant representing measure *m* for some $z \in D$ with respect to $R(\overline{D})$ then $\mu = hm + \mu_2$ where $h \in L'(m)$ and supp $\mu_2 \subseteq D$.

Proof. Write $\mu = \mu_1 + \mu_2$ where $\mu_1 = \mu|_{\partial D}$ and $\mu_2 = \mu|_D$. Then by Lemma 2 there exists a measure μ_2^* such that $\overline{\operatorname{supp} \ \mu_2^*} \subseteq \partial D$, $\mu_2^* \ll m$, $\int f d\mu_2 = \int f d\mu_2^* \quad \forall f \in R(\overline{D})$. Let $v = \mu_1 + \mu_2^*$ then $\overline{\operatorname{supp} \ v} \subseteq \partial D$ and $\forall f \in R(\overline{D})$ we have $\int f dv = \int f d\mu_1 + \int f d\mu_2^* = \int f d\mu_1 + \int f d\mu_2 = \int f d\mu = 0$.

Proof. Since $\mu \perp M^{\infty}(D)$ we have [2] that $\bar{\mu} \perp R(\bar{D})$. By Bishop's Splitting Lemma [7] there exists measures v_1, v_2, \ldots, v_n on \bar{D} such that $v_i \perp R(\bar{D})$, supp $v_i \subseteq U_i$ and $\bar{\mu} = \sum_{i=1}^n v_i$.

By Lemma 4 there exists $h_i \in L'(m)$ and a measure τ_i on D such that $v_i = h_i m + \tau_i$, for every i = 1, 2, ..., n.

By theorem 11.1 in [7] or [9:8.1], we have $H^{\infty}(D)$ is isometrically isomorphic to $H^{\infty}(m)$, so there exists a canonical lift of *m* to M(D), denote it by \hat{m} , see [5]. Also if $\{f_n\} \subset R(\bar{D})$ and f_n converges to $f \in H^{\infty}(D)$ pointwise boundedly then $\int_{M(D)} f_n d_{\mu} \rightarrow \int \hat{f} d\mu$ for any $\mu \ll \hat{m}$. Now since \hat{Z} is a homeomorphism over D, τ_i has a natural lift $\hat{\tau}_i$ to M(D).

Let $\mu_i = \hat{h}_i \hat{m} + \hat{\tau}_i$ so $\bar{\mu}_i = v_i$, where $\underline{\hat{h}_i}$ is the Gelfand transform of h_i to $M(L^{\infty}(m))$. Clearly supp $\mu_i \subseteq \hat{Z}^{-1}(U_i)$ which proves (4). To prove (2): let $f \in H^{\infty}(D)$. Then there exists a bounded sequence $\{f_n\} \subseteq R(\bar{D})$ such that $f_n(z) \rightarrow f(z)$ for all $z \in D$. So

$$\int_{M(D)} \hat{f} d\mu_{i} = \lim \int_{M(D)} \hat{f}_{n} \hat{h}_{i} d\hat{m} + \lim \int_{M(D)} \hat{f}_{n} d\hat{\tau}_{i}$$
$$= \lim \int_{M(D)} \hat{f}_{n} \hat{h}_{i} d\hat{m} + \lim \int_{D} f_{n} d\tau_{i}$$
$$= \lim \int_{D} \int_{D} f_{n} h_{i} dm + \lim \int_{D} \int_{D} f_{n} d\tau_{i}$$

$$= \lim \int_{\mathcal{D}} f_n d\bar{\mu}_i = \lim \int_{\mathcal{D}} f_n d\nu_i = 0.$$

To prove (1) and (3): Let $\sigma = \mu - \sum_{i=1}^{n} \mu_i$. Then for any $E \subseteq \overline{D}$ we have

$$\bar{\sigma}(E) = \sigma(\hat{Z}^{-1}(E)) = (\mu - \sum_{i=1}^{n} \mu_i)(\hat{Z}^{-1}(E))$$
$$= \mu(\hat{Z}^{-1}(E)) - \sum_{i=1}^{n} \mu_i(\hat{Z}^{-1}(E))$$
$$= \bar{\mu}(E) - \sum_{i=1}^{n} \nu_i(E) = 0$$

So $\mu = \sum_{i=1}^{n} \mu_i + \sigma$ and $\bar{\sigma} = 0$.

REFERENCES

- [1] M. Behrens, 'The Maximal Ideal Space of Algebras of Bounded Analytic Functions on Infinitely Connected Domains, *T.A.M.S.*, **161** (1971), pp. 359–379.
- [2] W. Deeb, 'Measures Orthogonal to $H^{\infty}(D)$ ' The Arabian Journal for Science and Engineering 1 (1975), pp. 105–107.

- [3] W. Deeb and D. Wilken, 'Δ-domains and the Corona', T.A.M.S., 231 (1977), pp. 107–115.
- [4] S. Fisher, 'Bounded Approximation by Rational Functions', *Pacific J. Math*, **28** (1969), pp. 319–326.
- [5] T. Gamelin, 'Lectures on $H^{\infty}(D)$ ', La Plata Notas de Math. No. 21 (1972).
- [6] T. Gamelin, 'Localization of the Corona problem', Pacific J. Math, 34 (1970), pp. 73-81.
- [7] T. Gamelin, Uniform Algebras, Englewood Cliffs, N.J., Prentice-Hall, 1969.
- [8] T. Gamelin, 'Uniform Algebras on Plane Sets', Proc. Symposium of Approximation Theory, Austin, Texas, Academic Press, to appear.
- [9] T. Gamelin and J. Garnett, 'Pointwise Bounded Approximation and Dirichlet Algebras', J. Functional Analysis, 8 (1971), pp. 360-404.
- [10] I. Glicksberg, 'Dominant Representing Measures and Rational Approximations', T.A.M.S., 130 (1968).
- [11] G. Leibowitz, Lectures on Complex Functions Algebras, New York, Scott and Forsman, 1970.
- [12] H. Royden, *Real Analysis*, New York, Macmillan, 1968.

Received 26 September 1978; Revised 9 January 1980.