DECOMPOSITION OF MEASURES
 ORTHOGONAL TO $H^{\infty}(D)$

Waleed M. Deeb
Department of Mathematics, University of Jordan, Amman, Jordan

> الملاصة :

نفرض أن D هو نطاق محدد في المسنوي المركب ، أن D (D) ${ }^{\text {ألم }}$ هو النظام الجبري للدوال التحليلبة

 نظرية مشابهة $H^{\infty}(D)$ في 'boundedly pointwise dense' $R(\bar{D})$ وأن يكون 'dominant representing measure'

Abstract

Let D be a bounded domain in the complex plane, $H^{\infty}(D)$ the algebra of bounded analytic functions on D and $M(D)$ its maximal ideal space, let $R(\bar{D})$ be the algebra of all continuous functions on \bar{D} which can be approximated uniformly on \bar{D} by rational functions with poles off \bar{D}. In this paper we prove a theorem similar to Bishop's Splitting Lemma for $H^{\infty}(D)$ provided that every $x \in D$ has a dominant representing measure and $R(\bar{D})$ is boundedly pointwise dense in $H^{\infty}(D)$.

DECOMPOSITION OF MEASURES ORTHOGONAL TO $H^{\infty}(D)$

INTRODUCTION:

Let D be a bounded domain in the complex plane and let $H^{\infty}(D)$ denote the Banach algebra of bounded analytic functions on D and $M(D)$ its maximal ideal space. $R(\widetilde{D})$ will denote the algebra of all functions in $C(\bar{D})$ which can be approximated uniformly on \bar{D} by rational functions with poles off \bar{D}. Bishop's Splitting Lemma [7] states that if μ is a Borel measure on \bar{D} which is orthogonal to $R(\bar{D})$ and $U_{1}, U_{2}, \ldots, U_{n}$ form an open cover for \bar{D} then there exist measures μ_{1}, μ_{2}, \ldots, μ_{n} on \bar{D} such that each μ_{1} is orthogonal to $R(\bar{D})$, $\overline{\text { supp } \mu_{i}} \subseteq U_{i}$, and $\mu=\Sigma_{i=1}^{n} \mu_{1}$. In this paper we prove a similar result for measures on $M(D)$ orthogonal to $H^{\infty}(D)$. But D will not be an arbitrary domain; it will be a domain such that every $z \in D$ has a dominant representing measure and $R(\bar{D})$ is boundedly pointwise dense in $H^{\infty}(D)$. At first glance this might seem a strong restriction, but in fact it is not and to the contrary these domains cover the ones needed for the Corona problem [5], because any Δ-domain [3] satisfies both of these conditions and [1] proving the Corona problem for Δ-domains is equivalent to proving it for general domains see [1] and [6] for details).

NOTATIONS, DEFINITIONS, AND SOME PRELIMINARIES

Throughout this paper D will denote a bounded domain in the complex plane, $H^{\infty}(D)$ the Banach algebra of founded analytic functions of D, and $M(D)$ its maximal ideal space. $R(\bar{D})$ will denote the algebra of all continuous functions on \bar{D} which can be approximated uniformly on \bar{D} by rational functions with poles off \bar{D}. All measures considered in this paper are regular Borel measures.

If A is a function algebra and $M(A)$ its maximal ideal space, then the pseudo-hyperbolic distance between two points ψ and ϕ in $M(A)$ is defined by $\rho(\psi$, $\phi)=\sup \{\psi(f): f \in A,\|\mathrm{f}\| \leqq 1 ; \phi(f)=0\}$. The relation $\rho(\psi, \phi)<1$ is an equivalence relation and the equivalence classes are the Gleason parts of $M(A)$ [11].

A measure m on ∂D is called a representing measure for $z \in \bar{D}$ with respect to $R(\bar{D})$ if $f(z)=\int f d m, \forall f \in R(\bar{D})$. It is called a dominant representing measure if whenever m^{\prime} is another representing measure for z then $m^{\prime} \ll m$ (m^{\prime} is absolutely continuous with respect to m).

If m, μ are two measures such that $m \ll \mu$ and $\mu \ll m$ we will write $m \sim \mu$.

The closed support of a measure μ will be denoted by suppl μ.

By λ_{z} we will denote the harmonic measure on ∂D, for all $z \in D$. We will say $R(\tilde{D})$ is boundedly pointwise dense in $H^{\infty}(D)$ if $\forall f \in H^{\infty}(D)$ there exists a sequence $\left\{f_{n}\right\} \subseteq R(\bar{D})$ such that $f_{n}(z) \rightarrow f(z), \forall z \in D$, and $\|f\| \leqq M$ for all n, and for some positive real number M.

For a function $f \in H^{\infty}(D), \hat{f}$ will denote its Gelfand transform i.e. \hat{f} is defined on $M(D)$ by $\hat{f}(\phi)=\phi(f)$. In [5] it was proved that if Z is defined on D by $Z(\lambda)=\lambda$ then $\hat{Z}(M(D))=\bar{D}$, and \hat{Z} is a homeomorphism on D.

If μ is a measure orthogonal to $R(\bar{D})$ (to $H^{\infty}(D)$) we will write $\mu \perp R(D)\left(\mu \perp H^{\infty}(D)\right)$.

If μ is a measure on $M(D), \bar{\mu}$ will be the measure defined on \bar{D} by $\tilde{\mu}(E)=\mu\left(\hat{Z}^{-1}(E)\right)$ [2].

If A is a function algebra on $X, p \in X$ is called a peak point if there exists $f \in A$ such that $f(p)=1$ while $|f(y)|<1, \forall y \in X, y \neq p$.

By the point mass measure for $x \in X$ we mean the measure δ_{x} defined by

$$
\delta_{x}(E)=\left\{\begin{array}{l}
1 \text { if } x \in E \\
0 \text { if } x \notin E
\end{array}\right.
$$

Lemma 1. If $z_{0} \in D$ has a dominant representing measure $m_{z_{0}}$ with respect to $R(\bar{D})$, then every point $z \in D$ has a dominant representing measure m_{z} and $m_{z} \sim m_{z_{0}}$.
Proof. Let $z \in D . D$ is contained in a single Gleason part [4], so z and z_{0} are in the same Gleason part. By [11] there exists a representing measure m_{z} for z with respect to $R(\bar{D})$ such that $m_{z_{0}} \ll m_{z}$. Similarly there exists a representing measure $\mu_{z_{0}}$ for z_{0} such that $m_{z} \ll \mu_{z_{0}}$, but $\mu_{z_{0}} \ll m_{z_{0}}$ since $m_{z_{0}}$ is a dominant representing measure, so $m_{z} \ll \mu_{z_{0}}$ hence $m_{z} \sim m_{z_{0}}$.

Let v_{z} be any representing measure for z. By the same theorem in [11], there exists $v_{z_{0}}$, a representing measure for z_{0}, such that $v_{z} \ll v_{z_{0}}$, but $v_{z_{0}} \ll m_{z_{0}} \ll m_{z}$ so $v_{z} \ll m_{z}$ which implies that m_{z} is a dominant representing measure.

Lemma 2. Let μ be a measure on D. Assume for some $z_{0} \in D$ there exists a dominant representing measure $m_{z_{0}}$. Then there exists a measure μ^{*} with
supp $\mu^{*} \cong \partial D$ such that $\mu^{*} \ll m_{z_{0}}$ and

$$
\int_{D} f \mathrm{~d} \mu=\int_{\partial D} f \mathrm{~d} \mu^{*} \quad \forall f \in R(D)
$$

Proof. We use the sweeping method [10], i.e. for any Borel set $E \subseteq \partial D$, we define $\mu^{*}(E)=\int \lambda_{z}(E) \mathrm{d} \mu(z)$, where λ_{z} is the harmonic measure on ∂D for $z \in D$. $\operatorname{So} \mu^{*}(E)=\int_{\partial D} X_{E} \mathrm{~d} \mu^{*}=\int_{\partial D}\left(\int_{D} X_{E} \mathrm{~d} \lambda_{z}\right) \mathrm{d} \mu(z)$ where X_{E} is the characteristic function on E.

Now for any $f \in C(\bar{D})$ we have

$$
\int f \mathrm{~d} \mu^{*}=\int_{D}\left(\int_{\partial D} f(w) \mathrm{d} \lambda_{z}(w)\right) \mathrm{d} \mu(z)
$$

If $f \in R(\bar{D})$ then $\int_{\partial D} f(w) \mathrm{d} \lambda_{z}(w)=f(z)$ because λ_{z} is a representing measure with respect to $R(\bar{D})$ for z (see [7], p. 226]). Hence for such f we have:

$$
\int f \mathrm{~d} \mu^{*}=\int_{D}\left(\int_{\partial D} f(w) \mathrm{d} \lambda_{z}(w)\right) \mathrm{d} \mu(z)=\int_{D} f \mathrm{~d} \mu
$$

and $\mu^{*} \ll \lambda_{z} \ll m_{z} \ll m_{z_{0}}$.
Lemma 3. Assume there exists $z \in D$ with dominant representing measure m with respect to $R(\bar{D})$. If $\mu \perp R(\bar{D})$ then $\exists h \in L^{\prime}(m)$ such that $\mu=h m$.

Proof. Since $\mu \perp R(\bar{D}), \mu=\Sigma h_{i} m_{i}$ where $h_{i} \in L^{1}\left(m_{i}\right)$ and each m_{i} is a representing measure for some point $z_{i} \in D$ such that suppl $m_{i} \subseteq \partial D$ and $h_{i} m_{i} \perp R(\bar{D})$. In fact we also have $\|\mu\|=\Sigma\left\|h_{i} m_{i}\right\|$. (See [10] for a proof.) Write $\mu=h_{1} m_{1}+\Sigma h_{j} m_{j}$, where z_{1} is any point in the Gleason part which contains D, and $J=\left\{j: z_{j}\right.$ is not in the Gleason part which contains $D\}$, because $\mu \perp R(D)$. So $v \perp R(D)$ and applying Lemma 3 to v we get $v=h_{1} m$ where h_{1} is in $L^{1}(m)$. But since $\mu_{2}^{*} \ll m$ then $\exists h_{2} \in L^{\prime}(m)$ such that $\mu_{2}^{*}=h m$ so $\mu_{1}=v-\mu_{2}^{*}=h_{1} m-h_{2} m=$ $\left(h 1^{1}-h 1^{2}\right) m=h m$ and $h \in L^{\prime}(m)$.

From this we get $\mu=h m+\mu_{2}$.
We are in a position now to prove the main theorem.

Theorem. Let D be a domain which satisfies the following:
(1) there exists $z \in D$ with dominant representing measure m; (2) $R(\bar{D})$ is boundedly pointwise dense in $H^{\infty}(D)$.

Let $U_{1}, U_{2}, \ldots, U_{n}$ be an open cover for \bar{D}, and let μ be a measure on $M(D)$ such that $\mu \perp H^{\infty}(D)$. Then there exist measures $\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \sigma$ on $M(D)$ such that:
(1) $\mu=\sum_{i=1}^{n} \mu_{i}+\sigma$;
(2) $\mu_{i} \perp H^{\infty}(D)$ for each $i=1,2, \ldots, n$;
(3) $\bar{\sigma}=0$; and (4) $\overline{\operatorname{supp} \mu_{i}} \subseteq \hat{Z}^{-1}\left(U_{i}\right)$.

Then by [8] for all $j \in J, z_{j}$ is a peak point and hence the only representing measures for z_{j} are the point mass measures.

Now $m_{1} \ll$ because m is a dominant representing measure hence there exists $g_{1} \in L^{\prime}(m)$ such that $m_{1}=$ $g_{1} m$. Then $\mu=h_{1} g_{1} m+\Sigma_{j} h_{j} \delta_{j}$ where δ_{j} is the point mass measure for z_{j}.

Since $\mu \perp R(\bar{D}),\left.\mu\right|_{\left\{z_{j}\right\}} \perp R(\bar{D})[7]$; so $h_{j} \delta_{j}=0$, for every $j \in J$, hence $\mu=h_{1} g_{1} m=h m$. Clearly $h \in L^{\prime}(m)$.

Lemma 4. Assume μ is a measure on $\bar{D}, \mu \perp R(\bar{D})$. If there exists a dominant representing measure m for some $z \in D$ with respect to $R(\bar{D})$ then $\mu=h m+\mu_{2}$ where $h \in L^{\prime}(m)$ and supp $\mu_{2} \sqsubseteq D$.

Proof. Write $\mu=\mu_{1}+\mu_{2}$ where $\mu_{1}=\mu_{\partial D}$ and $\mu_{2}=$ μ_{D}. Then by Lemma 2 there exists a measure μ_{2}^{*} such that $\overline{\operatorname{supp} \mu_{2}^{*}} \subseteq \partial D, \mu_{2}^{*} \ll m, \int f \mathrm{~d} \mu_{2}=\int f \mathrm{~d} \mu_{2}^{*} \forall f \in R(\bar{D})$. Let $v=\mu_{1}+\mu_{2}^{*}$ then supp $v \subseteq \hat{\partial} D$ and $\forall \mathrm{f} \in R(\bar{D})$ we have $\int f \mathrm{~d} \nu=\int f \mathrm{~d} \mu_{1}+\int \mathrm{f} \mathrm{d} \mu_{2}^{*}=\int f \mathrm{~d} \mu_{1}+\int f \mathrm{~d} \mu_{2}=\int f \mathrm{~d} \mu=$ 0.

Proof. Since $\mu \perp M^{\infty}(D)$ we have [2] that $\bar{\mu} \perp R(\bar{D})$. By Bishop's Splitting Lemma [7] there exists measures $v_{1}, v_{2}, \ldots, v_{n}$ on \bar{D} such that $v_{i} \perp R(\bar{D}), \overline{\operatorname{supp} v_{i}} \subseteq U_{i}$ and $\bar{\mu}=\sum_{i=1}^{n} v_{i}$.

By Lemma 4 there exists $h_{i} \in L^{\prime}(m)$ and a measure τ_{i} on D such that $v_{i}=h_{i} \mathrm{~m}+\tau_{i}$, for every $i=1,2, \ldots, n$.

By theorem 11.1 in [7] or [9:8.1], we have $H^{\infty}(D)$ is isometrically isomorphic to $H^{\infty}(m)$, so there exists a canonical lift of m to $M(D)$, denote it by \hat{m}, see [5]. Also if $\left\{f_{n}\right\} \subset R(\bar{D})$ and f_{n} converges to $f \in H^{\infty}(D)$ pointwise boundedly then $\int_{M(D)} f_{n} \mathrm{~d}_{\mu} \rightarrow \int f \mathrm{~d} \mu$ for any $\mu \ll \hat{m}$. Now since \hat{Z} is a homeomorphism over D, τ_{i} has a natural lift $\hat{\tau}_{i}$ to $M(D)$.

Let $\mu_{i}=\hat{h}_{i} \hat{m}+\hat{\tau}_{i}$ so $\bar{\mu}_{i}=v_{i}$, where \hat{h}_{i} is the Gelfand transform of h_{i} to $M\left(L^{\infty}(m)\right)$. Clearly supp $\mu_{i} \subseteq \hat{Z}^{-1}\left(U_{i}\right)$ which proves (4). To prove (2): let $f \in H^{\infty}(D)$. Then there exists a bounded sequence $\left\{f_{n}\right\} \subseteq R(\bar{D})$ such that $f_{n}(z) \rightarrow f(z)$ for all $z \in D$. So

$$
\begin{aligned}
\int_{M(D)} \hat{f} \mathrm{~d} \mu_{i} & =\lim \int_{M(D)} \hat{f}_{n} \hat{h_{i}} \mathrm{~d} \hat{m}+\lim \int_{M(D)} \hat{f}_{n} \mathrm{~d} \hat{\tau}_{i} \\
& =\lim \int_{M(D)} \hat{f}_{n} \hat{h_{i}} \mathrm{~d} \hat{m}+\lim \int_{D} f_{n} \mathrm{~d} \tau_{i} \\
& =\lim \int_{\bar{D}} f_{n} h_{i} \mathrm{~d} m+\lim \int_{D} f_{n} \mathrm{~d} \tau_{i}
\end{aligned}
$$

$$
=\lim \int_{D} f_{n} \mathrm{~d} \bar{\mu}_{i}=\lim \int_{D} f_{n} \mathrm{~d} v_{i}=0
$$

To prove (1) and (3): Let $\sigma=\mu-\sum_{i=1}^{n} \mu_{i}$. Then for any $E \subseteq \bar{D}$ we have

$$
\begin{aligned}
\bar{\sigma}(E) & =\sigma\left(\hat{Z}^{-1}(E)\right)=\left(\mu-\sum_{i=1}^{n} \mu_{i}\right)\left(\hat{Z}^{-1}(E)\right) \\
& =\mu\left(\hat{Z}^{-1}(E)\right)-\sum_{i=1}^{n} \mu_{i}\left(\hat{Z}^{-1}(E)\right) \\
& =\bar{\mu}(E)-\sum_{i=1}^{n} v_{i}(E)=0
\end{aligned}
$$

So $\mu=\sum_{i=1}^{n} \mu_{i}+\sigma$ and $\bar{\sigma}=0$.

REFERENCES

[1] M. Behrens, 'The Maximal Ideal Space of Algebras of Bounded Analytic Functions on Infinitely Connected Domains, T.A.M.S., 161 (1971), pp. 359-379.
[2] W. Deeb, 'Measures Orthogonal to $H^{\infty}(D)$ ' The Arabian Journal for Science and Engineering 1 (1975), pp. 105-107.
[3] W. Deeb and D. Wilken, ' Δ-domains and the Corona', T.A.M.S., 231 (1977), pp. 107-115.
[4] S. Fisher, 'Bounded Approximation by Rational Functions', Pacific J. Math, 28 (1969), pp. 319-326.
[5] T. Gamelin, 'Lectures on $H^{\infty}(D)$ ', La Plata Notas de Math. No. 21 (1972).
[6] T. Gamelin, 'Localization of the Corona problem', Pacific J. Math, 34 (1970), pp. 73-81.
[7] T. Gamelin, Uniform Algebras, Englewood Cliffs, N.J., Prentice-Hall, 1969.
[8] T. Gamelin, 'Uniform Algebras on Plane Sets', Proc. Symposium of Approximation Theory, Austin, Texas, Academic Press, to appear.
[9] T. Gamelin and J. Garnett, 'Pointwise Bounded Approximation and Dirichlet Algebras', J. Functional Analysis, 8 (1971), pp. 360-404.
[10] I. Glicksberg, 'Dominant Representing Measures and Rational Approximations', T.A.M.S., 130 (1968).
[11] G. Leibowitz, Lectures on Complex Functions Algebras, New York, Scott and Forsman, 1970.
[12] H. Royden, Real Analysis, New York, Macmillan, 1968.

Received 26 September 1978; Revised 9 January 1980.

