
APPLICATION OF STEGER-WARMING FLUX VECTOR 

SPLITTING (FVS) METHOD TO NOZZLE FLOW 


MODELING 


Ahmed N. AI-Motlaq, Ibrahim E. Megahed, and 

Mohammed B. Habeebullah* 


Mechanical Engineering Department 

King Abdulaziz University 


P.D.Box 9027, leddah 21413, Saudi Arabia 


~,J '~~,J~ ~I:a.o J,i.1.J ~jl Ji:. ~IJJ.J w~>'"'" ~~6.l ~",",,6. ~l,j,>.l ~IJ.Jl1 ~lA ~ 

bj"..b.ll Ji.Jl1 ~~ Jw::J u....;b r-'~4 d1,j ~ ~,J .~-,i ~~.J~~ d1,j,J ~I ~lti ~~ 

~4-=i~1 ~.J6.1 ~l:a:ill JJ.;iII J;b .t.~j ~W ~):JI ~lA,J '(r- \ 'A\) ~.;I,J,J ~~I~ 

~~-:II wl:a:ill -;''1 - L· -'.11 ...... -j ..<-: d1l.a • L II ·V·;''I - ~t I -- 1.... .lAW -:11 ~ _ 1Jj.;- iJ.>"'" ~ e:a 'JM • ~ ~ .I.J u _'Y""""'"' cr ~ ".,.- ~~ ':! ,J 

u·LII~WI~~.JWI~_. t:::"'IJ''~'lAI.J J.=.11 J~I·~~~I~.:J...,. 't" _':!-:11 _ 1-- u ·tl..II....a~~ _ 

J"i,J ~~~I", ~,.,...-JI ~ w~1 ~~6. ~ ~l,j,r.J1 J~I ~ ~,J .~)JI Ji:. (~-,i ~~.J~) 

~lA ~ ~ ~,J .~~6.11 ~.lf.J ~~I J.,bJ1 t:::'" ~I..b:i.o ~t:J1 u.:.~ ~,J ~ ~I:a.o J,i.1.J ~",...JI 

~~ w..,.J ~I u:i,J ~ 1.\0 ull ~~ji J,:9>i ~~, ~L...:al ~~~~ ~IJ.Jl1 

Jw::J u....;b ~ ~Jl:io ~IJ.J ~ ~ I.S: .~~I,J to~1 u...."..bJ1 t:::'" ~.;I.il4 dol; i .1 1~tu.11 

. ~~I ~",:LI.I JJ.;iII J;b '->~~ ~~~ u....;b,J Ji.Jl1 ~~ 

ABSTRACT 

The Steger-Warming flux vector splitting is used for the solution of two-dimensional 
Euler equations. An implicit finite difference scheme is used. A computer code is developed 
and tested for subsonic, transonic, and supersonic flow regimes. The method is then applied 
to the flow through a convergent-divergent nozzle and a divergent nozzle, both with strong 
shocks. Further factorization has been done to the formulated finite difference equations. 
As a result of the new factorization, the CPU time to reach the steady state solution decreased 
significantly to about 65% without altering the accuracy. Comprehensive comparisons 
with the MacCormack method are presented. 

*To whom correspondence should be addressed. 
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APPLICATION OF STEGER-WARMING FLUX VECTOR SPLITTING (FVS) METHOD 
TO NOZZLE FLOW MODELING 

1. INTRODUCTION 

Nozzles have wide range of applications in propulsion and aerodynamics and a knowledge of their flow field is important 
for their design. The steady state solutions of the nozzle flow, which is governed by the Euler equations, are calculated as 
asymptotic solutions in time. 

Many numerical schemes, implicit and explicit, have been developed to solve the unsteady Euler equations in their 
conservative and non-conservative forms. Accuracy, shock capturing ability, and low computational cost are the three 
competing goals in the numerical solution of these equations. Explicit schemes are easy to code, but their stability is 
relatively poor due to the low CFL number, which leads to a large number of iterations and long computing time. Implicit 
schemes can be used with high CFL numbers, but require, long and complex coding. 

Numerical schemes can be classified according to their ability to produce dissipation [1]. Artificial viscosity can be added 
to the scheme in order to make 'it dissipative, but this is violating the nature of the Euler equations (inviscid). Some schemes 
are naturally dissipative because they follow the physical characteristics of the equations [2]. The MacCormack [3] and 
Steger-Warming FVS methods [4] respectively represent these two types of schemes. 

The objective of the present work is to develop a computer code to solve the governing equations for two-dimensional 
nozzle flows by an implicit version of the Steger-Warming FVS method. The code will be validated by two-dimensional 
nozzle flow solutions (exact and numerical). Further factorization will be implemented for the formulated finite difference 
equations. The effect of this further factorization on the solution speed and accuracy will be investigated. Also, a comparati ve 
study with the MacCormack method will be conducted. 

2. GOVERNING EQUATIONS 

The unsteady Euler equations for two dimensional planar/axisymmetric .flow can be written in conservative form as: 

aQ aE aF 
-+-+-+aH=O (2.1)at ax ay 

where 

pu pu 2 + P puv 1 pvu
Q= p 1 [PU 1F= [PV 1 [PV 1E= H=­

pv ' puv' pv 2 + p' y pv 2
[ 

pet (pet + p)u (pet + p)V (pet + p)V 

and a =0 for planar flow, a =1 for axisymmetric flow. 

The above equations can be transformed from physical domain (x,y,t) to computational domain (~, 11, 't). For a fixed 
computational domain the governing equations written as follows: 

(2.2) 

where 

The non-conservative form will be: 

(2.3) 

aE a"F 
where A, B are the jacobians of the equations given by ---= and ---= respectively [3]. 

aQ aQ 
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3. NUMERICAL ALGORITHMS 

3.1. MacCormack Explicit Formulation 

A predictor/corrector scheme with first order accuracy in time and second order accuracy in space applied to the 
conservation form of Euler equations. 

For the first level (predictor) forward differencing is used to provide: 

(3.1.1) 

and for the second level (corrector) backward differencing is used to result in: 

- {- - &'t [- - ] &'t [- -] -}Q.n:,"l = 0.5 Q.n. + Q.*. - £'*. - £.*...1' - - F*. - F*'-l - &'taH·*· (3.1.2)
I,} I,} I,} &11 I,} I.} &11 I.} I.} I,} 

Artificial viscosity can be added to the scheme in the form of curve smoothing [5,6]: 

Qi,j = [<I> Qi,j + Qi+l,j + Qi-l,j + Qi,j+l + Qi,j-d/[<I> + 4] , (3.1.3) 

where <I> is the smoothing factor given by: 

<I> 2: max[_1 _1]
&l;' &11 . 

3.2. Steger-Warming FVS Formulation 

The flux vectors E, Fare homogeneous of degree one in Q 

i.e. E(aQ) aE(Q) foranyvalueofa 

and 

therefore, 

The eigenvalues can be split into non-negative and non-positive eigenvalues such that: 

therefore the flux vector can be split as follows: 

and 

where A++A-=A. 

The negative part of the flux vector contains terms that travel upstream while positive part terms travel down stream. By 

replacing E, A with B respectively in the above steps the F flux vector can be obtained. 

After linearization [3] the governing equations in non-conservative form can be written as follows: 

(3.2.1) 
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After flux splitting the above equation can be written as follows: 

(3.2.2) 

A first order backward difference approximation is used for positive terms and a first order forward difference is used for 
negative terms in the above equations, which can be solved in two stages obtained by factorization; each stage is a system 
of block tridiagonal equations. Full descriptions of this factorization are given in [3]. 

In this study, further factorization has been done to obtain four systems of block bidiagonal equations which are easy to 
solve. This kind of factorization is mentioned in [5] and recommended for the multispace problems. The four stages are 
given as follows: 

(3.2.3) 

(3.2.4) 

8't ) -. ( 8't + ) -. -*.I + - B:-. 8Q.. + - - B. l' 8Q.. 1 =8Q. , (3.2.5)( 811 I,} 811 1- ,} I.}I,} I,}­

A't - J - (A't - J - -*1- -B;). + aA'tCj }. AQ., + -Bj }'+1 AQ; }'+I = AQj }. (3.2.6)( All ' ",} All' , , 

where 

1 (- _ - _)- _]
) + 811 Fij - Fij-I + Fij+l - Fij + aHj,j . 

4. NUMERICAL RESULTS 

4.1. Code Validation 

The code is tested by three different nozzles for different flow regimes.The first case is radial flow in a subsonic nozzle 
with an angle of convergence equal to 45° [7] given in Figure 1. The results obtained are shown in Figures 2 and 3: they are 
identical to the exact solution within a maximum percentage error in the computed Mach number of 1.36%, compared with 
the exact value. The second case is transonic flow in a convergent divergent nozzle with strong shock given in [5]. Figure 4 
shows good agreement with the recent technique. The shock has been captured 5% of the nozzle length downstream from 
the position of the reference technique used in [5]. This slight deviation in shock position is a result of the solution technique. 
The reference technique is based on some approximations that could affect the solution accuracy. Artificial viscosity which 
is added to maintain stability violates the nature of the Euler equations (inviscid) while the amount of the added viscosity 
will affect the shock position and shape. The second approximation in the reference method is due to the assumption of 
constant enthalpy all over the nozzle field and excludes the energy equation (only continuity and momentum equations are 
solved). Consequently, the FVS method which has no such approximations is more accurate than the reference method. The 
third case is a full supersonic convergent divergent duct with 4% thick circular arc bump given in [8]. The results are shown 
in Figure 5. The two solutions are almost identical. 
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Figure 1. Convergent Nozzle Geometry. 
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Figure 2. Comparison Between the Exact and Numerical Solutions ofthe Convergent Nozzle Flow. 
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4.2. Applications 

After validation, the code for the FVS method and another code developed for MacCormack method were applied for two 
different nozzles in order to compare the two techniques. Further factorization, as discussed before, will be investigated. 

4.2.1. Nozzle Geometry 

(1) 	 Axisymmetric convergent divergent nozzle with wall contour given by 

r(x) = I + 0.05x2 -2S;xS;2 

(II) Planar divergent nozzle with wall contour given by 

Yw =1 + 0.27 x 0 S; x S; 3. 

The shapes of the two nozzles are shown in Figure 6. 

4.2.2. Solution Grids 

For the first nozzle, a uniform H-grid with 121 x 21 points in ~, 11 directions respectively was used, while O-grid with 
41 x 17 points was used for the second nozzle. The two grids are shown in Figure 7. 

I 	 I I 
.9 	 .7 .6 

Figure 3. Isobar Linesfor Subsonic Nozzle. 

I 
.8 
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4.2.3. Initial and Boundary Conditions 

1. 	 Convergent-divergent nozzle 

Initially the flow is at rest (zero velocity) with total pressure and total temperature all over the field. The solution is 
started by imposing the static pressure value at the exit to capture the shock in the divergent section. At the inlet, total 
temperature and total pressure are fixed while the velocity components are updated from the interior by two points 
extrapolation. The other flow variables can be calculated. At the exit, the static pressure is imposed, while density and 
velocity components are extrapolated from the interior. 

2. 	 Divergent nozzle 

Initially the flow is supersonic all over the nozzle with Mach number equals to the inlet Mach number of 1.13. At the 
inlet the flow is supersonic and therefore all the eigenvalues are positive which requires three analytical boundary 
condition to be imposed at the inlet (pressure, density, and velocity). The other flow variables can be calculated. In order 
to capture the shock in the nozzle, the exit boundary conditions are the same as for the first nozzle. For fully supersonic 
flow, the flow variables are extrapolated from the interior and there is no need to impose any of them at the exit. 

a. Explicit central scheme ref. [5]. 

b. Implicit central scheme ref. [5]. 

c. Implicit fVS. 

Figure 4. /s01nach Lines/or Convergent-Divergent Nozzle(dM 0.02). 
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Figure 5. Mach Distribution for 4% Thick Circular Arc Bump in the Upper and Lower Walls. 
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Figure 6. The Geometries ofthe Convergent Divergent and Divergent Nozzles. 

I 

Figure 7. Computational Gridsfor the Convergent-Divergent and Divergent Nozzles. 
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For both nozzles, at the axis of symmetry reflection technique is used [9-11]. At the wall, the tangential contravariant 
velocity U is extrapolated linearly from the interior to ensure the slip condition and the nonnal contravariant velocity V is 
zero to ensure no mass flux through the solid boundary. Pressure and density at the wall are extrapolated from the interior. 
The contravariant velocities U and V are given as follows 

V=ullx+ V ll y ' 

4.2.4. FVS and MacCormack Method 

For the convergent-divergent nozzle, the two methods were run at the same CFL; the steady state solution obtained after 
almost the same number of iterations while the time per iteration is six times larger in the case of FVS method than with 
MacConnack method with artificial viscosity (ct> = 31). Generally the results are almost the same; Figures 8, 9 show the 
Mach number variation along the nozzle axis and upper wall. We can notice, in the case of the FVS method, the glitch in the 
throat area where some of the eigenvalues are zero at the sonic flow while the algorithm deals with negative and positive 
eigenvalues (subsonic and supersonic flow) only. It is recommended to add a small positive number (blending tenn) to the 
eigenvalues so they will not become zero. Also, at the axis of symmetry the shock is smeared over six grid points more in the 
case of the MacConnack method than for the FVS method, while it is smeared over eight points at the wall. Figures 10, 11 
show the variation of the pressure at the axis of symmetry and the upper wall; little difference can be noticed at the shock. 

1.80 l 
1.40 -j 

--A:-­ FVS 

1.20 

1.00 

:Ii 0.80 

0.60 

0.40 

0.20 

0.00 ~------~----~----~----~----~------~----~----~ 

0.00 1.00 2.00 3.00 4.00 
AXIAL LENGTH (FT) 

Figure 8. Mach Distribution along the Axis ofthe Convergent-Divergent Nozzle. 
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Figure 10. Pressure Distribution along the Axis ofthe Convergent-Divergent Nozzle. 
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For the divergent nozzle, Figures 12, 13 show the variation of the Mach number and the pressure. A slight difference 
between the two methods can be noticed at the supersonic region, with no change in the subsonic region; this is due to the 
large gradient at the supersonic region. The shock in this case has the same behavior as in the first case, i.e. smeared over 
more grid points in the case of the MacCormack method; this can be noticed clearly from Figure 14. 

In the case of the convergent-divergent nozzle the maximum CFL number used in the FVS method is two times greater 
than that for the MacCormack method and the CPU time per iteration is three times greater. While the maximum CFL 
number in the case of the divergent nozzle with shock is the same in both methods, if the flow is fully supersonic as shown 
in Figure 15, the maximum CFL number is five times greater in the FVS than for the MacCormack method. 

4.2.5. The Effect ofFurther Factorization 

In Section 3.2 two different techniques to solve the finite difference equations based on approximate factorization are 
presented. To compare the two techniques the divergent nozzle problem is solved by using each method independently with 
the same O-type grid, CFL, initial conditions, boundary conditions and convergence criterion. The two solutions, as shown 
in Figure 16, are the same; the steady state solution is obtained after the same number of iterations and the same time of 
integration. The convergence history is given in Figure 17; where the convergence criterion is given as 

im im 

L P;~jm L P;~j~ 
E == l""i.......
=I'---__.;...i=..:..1--I :S 10-7 • 

1.20 l 
I -e- MacCormackI 

-A-­ FVS 

0.80 

0.40 

0.00 --t---,..---..,..--------y---r-----y---.----,--------. 

0.00 1.00 2.00 3.00 
AXIAL LOCATION (ft) 

Figure 11. Pressure Distribution along the Wall o/the Convergent-Divergent Nozzle. 
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Figure 12. Mach Distribution along the Divergent Nozzle. 
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Figure 13. Pressure Distribution along the Divergent Nozzle. 
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(a) (b) 

Figure 14. Isomach Lines in the Divergent Nozzle (AM = 0.04). 
(a) FVS; (b) MacCormack. 

2.60 

2.00 

1.60 

MacCormack 

1.00 

0.60 

0.00 -4--------~------~------~------~~------~------~ 

0.00 1.00 2.00 3.00 
AXIAL LENGTH (FT) 

Figure 15. Mach Distribution along the Axis o/the Divergent Nozzle. 
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Figure 16. Comparison Between the Two Methods ofFactorization. 
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Figure 17. Solution Convergence History. 
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The CPU time per iteration is reduced significantly for the second technique (block bidiagonal) compared to the first 
(block tridiagonal). The reduction in CPU time varies from one case to the other; depending on the number of grid points. 
Table 1 shows the time per iteration for different grids. It can be noticed that the finer the grid, the greater is the reduction 
rate. 

Table 1. Convergence CPU Time Comparison*. 

Time I Iter. Time I Iter. Reduction 
Grid 

Bidiagonal Tridiagonal Rate 

41 x 21 20.6 s 37.35 s 44.8% 

61 x 21 30.7 s 56.14 s 45.3% 

121 x 21 61.69 s 177.25 s 65.2% 

*mM 486-66 Processor 

S. CONCLUSIONS 

The FVS and MacCormack methods described in the previous sections have been coded and tested in a variety of flow 
problems. Both methods gave almost the same results. The FVS method is more accurate; this can be noticed from the crisp 
shocks and the oscillation free solutions obtained in comparison with the MacCormack method, also from the fact that 
Euler equations are inviscid while artificial viscosity is added in the MacCormack method. The MacCormack method is 
easy to code and steady state solution is obtained faster than for the FVS. The maximum CFL number depends on the 
boundary condition of the flow. In general, the FVS method, due to its implicit formulation, allows a higher CFL number 
than the MacCormack method in most cases. In addition, artificial viscosity allows a higher CFL number for the MacCormack 
method than that stated by analytical stability analysis. The major drawback of the FVS method is the large number of 
calculations, which required more memory and time. This drawback can be overcome by using further factorization, which 
hugely reduced the CPU time, especially in large grids. In addition, this method has some problems in the sonic region. The 
glitch that appeared in that region is due to the eigenvalues approaching zero, which could damage the solution. Adding a 
blending term will prevent the eigenvalues from becoming zero which improves the solution stability. Another error inherited 
due to the addition of the blending term is that the summation of the split flux vectors (E+, E-, F+, and F-) will no longer 
equal the original (non-split) flux vectors E and F. It is recommended to use finer grid at that area which will minimize the 
glitch influence but will not solve the problem. 

NOMENCLATURE 

Latin 


A Jacobian matrix of the flux vector E 


B Jacobian matrix of the flux vector F 


C Jacobian matrix of the flux vector H 


D Matrix of eigenvalues 


E Flux vector in x-direction 


et Total energy [m2/s2] 


F Flux vector in y-direction 


H Axisymmetry flux vector 


Identity matrix 


J Jacobian of transformation 


p Pressure [N/m2] 


Q Dependent variables vector 


r Axisymmetric nozzle radius [m] 


t Time [s] 
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u Velocity component in x-direction [mls] 


v Velocity component in y-direction [mls] 


X Eigenvector matrix 


x x-Direction [m] 


y y-Direction [m] 


Greek 

Increment in time or space 


Time in computationl domain 


Density 


Curvilinear coordinate direction 


11 	 Curvilinear coordinate direction 

Subscript 

A Associated with jacobian A 

w Planar nozzle wall 

Superscript 

+ 	 Associated with positive split vector 

Associated with negative split vector 


n Time level 


* 	 Intermediate value in multi-step integration level 


Dimensionless value in computational domain. 
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