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ABSTRACT 

The constitutive equations describing the behavior of large elasto-plastic defor
mations of solids have been proposed in a previous paper [ 11. The problem ofanalysis 
of displacements, stresses and strains in elements made of this material subject to 
arbitrarily large deformations under the conditions of plane strain has been formu
lated in terms of the finite element method. 
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1. INTRODUCTION 

In this paper the finite element method is used in the 
case of problems involving large elasto-plastic de
formations of materials. Such materials display an 
initial linear elasticity which is followed, at increasing 
loading, by plastic strains with no rate, or viscous 
effects. The topics included in this paper are: 

1. 	 The finite element formulation of the analysis of 
two-dimensional problems. 

2. 	 Methods ofsolution ofthe equations resulting from 
the use of the finite element method. 

2. FINITE ELEMENT FORMULATION 

In this paper, the problem ofanalysis oflarge elastic
plastic deformations will be formulated in terms of the 
finite element method. Since the basic procedures of 
the finite element method are described in numerous 
papers and monographs (see, for example Reference 
[2]), only the aspects related to the present problem 
will be emphasized in this paper. 

The fundamental equation in the following argu
ments is the principle of virtual work (Equation (2.26), 
Reference [1]:

L8eT s d V - L8uT f d V - L8uT P dS 0 (l) 

which is the condition of equilibrium in terms of the 
displacement field u (x, y). In the finite element method, 
the displacement field u is approximated by a discrete 
model which contains a finite number of independent 
nodal displacements. For this purpose, the regions of 
integration in Equation (1) are divided into a finite 
number of subregions, or elements. Within each ele
ment, the displacement field is approximated by known 
functions which are continuous across the element 
boundaries. For a nonlinear elastic body, for which the 
stress vector is a function ofthe displacement gradients, 
Equation (I) re5mlts in a system of nonlinear algebraic 
equations. In the present problem of an elastic-plastic 
body, the stress s is a functional of the displacement 
gradients, Equation (l) leads to a system offunctional 
equations for the nodal displacements. 

Figure I shows a typical element mesh in an arbitrary 
body with m elements and n nodal points. The compo
nents of displacement at a node i are U j and Vj' The 

~---~----------------------~x 

Figure J. Typical Element Mesh; Notation for Global 

Nodal Displacements 


nodal displacement vector for the body, or the system, 
is the 2n X I matrix q whose elements are 

i.e., 

A typical element with its nodal displacements is 
shown in Figure 2. The nodal displacement vector «b: 
of the element k is 

(4) 

Since, at the corresponding nodes, the nodal dis
placements of an element are identical with the nodal 
displacements of the body, it is evident that 

(5) 

where the form of T k is implied by the definitions 
of q and qJstated by Equations (3) and (4), respectively. 

The displacement field within the element kis approx
imated by linear functions of x and y, 

Figure 2. Typical Triangular Element; Notation for 

Element Displacements 
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1 
U = 2~ [(at + hi X + CIY)UI + (a2 + h2x + C2Y)U2 

+ (a3 + h3 X + C3Y)U3] 
(6)

1 
v 2~ [(a l + hi X + CIY)VI + (a2 + h2x + C2Y)V2 

+ (a3 + h3 X + C3Y)V3] 

where 

Xl YI 
2~ = 2 X (area of triangle) det X 2 Y2 

X) Y3 

and 

with a2, h2' C2' a3, h3' and C3 obtained by cyclic per
mutation of indices. 

In matrix notation, with 

Uk = I~j b 

N, = (a j + hi X + cIy)/2Ll, N2 = ... etc. 

I [b ?J 
Nk = (I N h 1 N 2, 1 N 3)' 

Equation (6) becomes 

Uk Nk qk' (7) 

In view of Equation (5), 

Uk = Nk Tkq (8) 

The components of strain are computed from the 
components of displacement according to equation (8). 
[1]. The result is 

(9) 

where the matrix B k corresponds to the linear terms 
in the strain-displacement relations, while Br takes 
into account the nonlinear terms. It can be easily 
verified that the matrices Bk and Bk are shown by 
Equations (10) and (11), respectively. 

h3 0 1hi 0 h2 0 
B' k -- 1 0 CI 0 C2 0 C3 

[ 
C1 hi C2 h2 C3 h) (10) 

(11) 

where 

1 [h I 0 hi 0 h2 0 h 2 0 h3 0 h3 0] 
Fk 4.12 0 Cl 0 CI 0 C2 0 C2 0 C3 0 c) 

CI hi CI hi C2 h2 C2 h2 C3 h) C3 h) 
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U I 0 o 0 
0 0 UI 0 
0 VI 0 0 
0 0 0 VI 

U2 0 0 0 
Gk 0 0 U2 0 

0 V2 o 0 
0 0 0 V2 

U3 0 o 0 
0 0 U3 0 
0 V3 0 0 
0 0 0 V3 

3[blO 	 b,O b O]
Hk = 	 0 hi 0 h2 0 h3 

CI 0 C2 0 C3 0 
o CI 0 	 C2 0 C3 

In the following, the differential de k will be needed 
rather than the strain e k itself. Differentiation of (9) 
yields 

It can be shown, however, that (2]: 

consequently, 

dek (Bk + Bk) dqk = lIk dqk (12) 

and 

(13) 

From the stress-strain relation Equation (3.23), 
Reference ( 1]; 

(14) 

and 

(15)Sk = f: DklIkdqk 

Substitution of (8) and (13) into (1) results 
in 

_oqT 	 TJ f NJfdV 
I Vk 

- oq T L T Jf N Jp dS 0 (16) 
k Sk 

The above equation is valid for any virtual oqT; there
fore 

'fmTJ f BJsk dV - kfmTJFk 
k=1 	 ~ k=1 

(17) 

where 
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b l b2 b30 0 0] 
. 	 0 bl 0 b2 0 b3 

C I 0 C2 0 C3 0[ o 	CI 0 C2 0 C3 

The first term in Equation (20) is thus, 

J dBJskdV=K~dq (23) 
Vk 

where 

(24) 

is the so-called initial stress, or geometric, stiffness 
matrix of the element k. The second term in Equation 
(20) can be written, with (14) as 

J llTDk lIk dqk d V 
Vk 

Kk dqk 
(25) 

where 

J BA7Dk Ble dV + J (B"TDkBZ 
Vk Vk 

+ BZ T Dk Ble + BZTDkBZT) dV (26) 

The matrix Kk will be called the material stiffness matrix 
of the element k. (In the problems of nonlinear elasti
city, the matrix "Kk is known as the elastic stiffness 
matrix.) 

With (23), (25), and (5), (20) becomes 

k=m 

dQ L TI (Kk + Kk ) Tk dq (27):::1[ 

k=l 

and, hence, the matrix K, whose elements are Kij = 
BQ/Bqj' is 

k=m 

K L TI (K~ + Kk ) Tk (28)
k=l 

The matrix 

Kk K~ + "Kk 

is known as the tangent stiffness matrix ofthe element k. 
The matrix K defined by Equation (28) is the global tan
gent stiffness matrix. 

3. METHOD OF SOLUTION 

The functional equations (18) are solved by applying 
incremental steps of loading and performing iterations 
within each increment. The computational procedure 
is then as follows: 

Let q(n) and R(n) be the nodal displacements and the 
right-hand side of (18), respectively, at the end of the 

dB" = _1_ 
k 	 4..12 

and 

where 

Ck = 

and the last summation in Equations (16) and (17) 
extends only over the boundary elements. 

Equation (17) is a nonlinear functional equation in q, 
becauseB k is a function of qk and, thus, of q, and s is a 
functional of q as shown by (15). 

The first term on the left-hand side of Equation (17) 
will be denoted by Q (q); the second and the third terms 
combined, by R. Thus, Equation (17) can be written as 

Q(q) = R (18a) 

or 

Q;(q) R;, i = 1, 2, ... , 2n (18b) 

The numerical solution of (18) or (19) will require the 
derivatives 

Kij 	 i = 1, 2, ... , 2n 
j 1,2, ... , 2n (19) 

Differentiation of Equation (17) yields 

k=m 

dQ = L TI r (dlIl Sk + 1I1 ds k ) d V (20)
k= , . Vk 

From (12), (10) and (11), 

o 

o 0 d(~~) d(~;) 

d(~:) d(~;) d(~;) d(~;) 

(21) 

(22) 

b l 0 c, 0 
0 b l 0 c 1 

b2 0 C2 0 
0 b2 0 C2 

b3 0 C3 0 
0 b3 0 C3 
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nth load increment, for which 

Q(q(n») _ R(n) = O. (29) 

Let L1R be the next load increment, and let L1q be the 
corresponding nodal displacement increment; they 
satisfy 

Q(q(n) + L1q) - (R(n) + L1R) = O. (30) 

The first approximation for L1q will be obtained by 
taking the first term of the Taylor expansion of Q at 
q(n), i.e., by replacing Equation (30) with 

Q(q(n») + Ko L1q - (R(n) + L1R) = 0 

or, in view of (29), 

KoL1q - L1R = 0 (31) 

where 

K, = (~~), ,(oJ 

is the tangent stiffness matrix at q = q(n) (the tangent 
stiffness matrices have been discussed in Section 2; 
see Equations (19), (27), and (28)). 

From (31), the first approximation of L1q follows as 

L1q(l) = K;'L1R. 

If the above approximate value is substituted into 
Equation (30), we have 

Q(q(n) + L1q(l)) - (R(n) + L1R) -'P. (32) 

The next correction to L1q is obtained by expanding Q 
at q = q(n) + L1q(I)' which results in 

Q(q(n) + L1q(I») + K(I) L1q (R(n) + L1R) = 0 

or, with (32) in 

(33) 

where K(I) is the tangent stiffness at q = q(n) + L1q(I)' 
From (33), 

(34) 

and, now, 

L1q L1q(l) + L1q(2)' (35) 

The lth correction to L1q follows, thus, from 

L1q(i) K(i~,) 'P(i-I) (36) 

where 

K O- ) = K(q(n) + L1 q(l) + ... + L1q(i-I») (37) 

'PU-
' 
I ) = Q(q(n) + L1q(l) + ... + L1q(i__ I») 

- (R(n) + L1R) (38) 

G. Z. Voyiadjls 

The value of L1q after I corrections is 

L1q = L1q(l) + L1q(2) + ... + L1q(j) (39) 

The above procedure is formally identical with the 
known Newton-Raphson method for the solution 
of a system of nonlinear algebraic equations. The 
convergence of this method for a system of nonlinear 
algebraic equations has been widely discussed (see, for 
example, [3]). 

It should be kept in mind, however, that the equa
tions of the present problem (Equations (18)) are not 
algebraic equations in q. Consequently, many pro
perties of the Newton-Raphson method, especially 
those related to the nature ofthe approximation and to 
the convergence of the process, are not transferable 
to the case of Equations (18). The differences between 
the Newton-Raphson method applied to a system of 
nonlinear algebraic equations (e.g. of a nonlinear 
elastic problem) and the system offunctional equations 
(as in the present problem) is illustrated in Figures 
3a, b. 

In the case of algebraic equations (Figure 3a), after 
the first value L1q(l) has been found, the corresponding 

(0) Q 

Rlnt 1)--I--_______-----,.__"7't"74I""--____ 

exact Q VS. q 

R(n)-t---.F-+.-------t---I--------..q 

(b) 

exact Q VS. q 
approximate 

R(n+J)+-______...--~___",.II"'"------

R(n)+---f--;-:;-----t---+-----_~ q
q(n) 

I• 6 q(l) 

Figure 3. Iteration Process for (a) A Nonlinear Elastic 

Solid and for (b) An Elasto-Plastic solid 
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value of Q(q(n) + L1q(I» (point A) and the slope KI for 
the next step can be computed exactly. The process 
is known to converge to the exact solution [31. 

In the case of functional equations (Figure 3b), from 
the value L1q(I)' the value of Q(q(n) + L1q(l) can be 
determined only approximately, Le., the point A cannot 
be located exactly on the true curve Q(q), and the slope 
K I for the next step is also only approximate. Con
sequently, the convergence theorems of the Newton
Raphson method, developed for systems of algebraic 
equations, are not directly applicable to the present 
problem. The same objections apply to the modified 
Newton-Raphson method (in which K; is replaced by 
the matrix Ko in every step of iteration) as well as to 
other iterative procedures developed for the finite 
element analysis of elasto-plastic solids, such as the 
'initial strain' method [4] and the 'initial stress' method 
[51. The treatment of the incremental Equations (31) 
as a system ofordinary differential equations (proposed 
in Reference [9]) and the application of higher-order 
numerical integration methods does not remove the 
difficulties outlined above. 

In spite of the lack of a formal proof ofconvergence, 
the method described in this section has been shown to 
yield results of remarkable accuracy. References 
[6-8] contain a detailed discussion and numerical 
results which prove, at least heuristically, the validity 
of the procedure. 

4. 	 SUMMARY AND CONCLUSIONS 

The problem of analysis of displacements, stresses, 
and strains in elements made of elasto-plastic metals, 
subjected to arbitrarily large deformations under the 
conditions of plane strain has been formulated in 
terms of the finite element method. The resulting 
system of integral equations for the nodal displace
ment can be solved by using a combination of Euler's 
forward integration with the Newton-Raphson itera
tion at each step. 

The work described in this paper seems to demon
strate the feasibility of the theory of plasticity oflarge 
deformations and the finite element technique in solv

ing complex problems (Le., any shape and any deform
ation) of the mechanics of elasto-plastic metals. At the 
same time, certain topics have been exposed as requir
ing further extensive investigations. They are 

1. 	 Efficient methods of solution of the integral 
equations resulting from the application of the 
finite element technique to the problems of stress 
and strain analysis. Specially, reduction of 
computer time and clarification of the nature of 
convergence appear to be of utmost urgency. 

2. 	 Criteria for selection of optimal types of finite 
elements. Clearly, the experience accumulated in 
linearly elastic problems is not directly transferable 
to the present problems. 
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