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ABSTRACT 

Results of a self-consistent modified tight-binding calculation of the bandstructure 
of body-centered cubic titanium are reported. These results are discussed, and used 
to calculate the noninteracting conduction electron susceptibility for this crystal. 
The large density of states at the Fermi level, the nesting of the Fermi surface, and 
the occurrence of peaks in the susceptibility were used, in a sufficiency argument, 
to investigate the lattice instability occurring in this phase of titanium. 
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ELECTRONIC PROPERTIES OF STOICHIOMETRIC TITANIUM ALLOY 

CRYSTALS: II, SUSCEPTIBILITY OF BODY-CENTERED CUBIC TITANIUM 


l. INTRODUCTION 

The energy-band method is a successful scheme for 
obtaining accurate and readily usable eigensolutions 
of the effective one-electron Hamiltonian, and has 
been applied to a large number of real systems. Based 
on the eigenvalues, physical properties such as the 
density of states (DOS), Fermi surface topology 
[1], and response functions [2] have been calculated. 
The eigenfunctions have been used in the calculations 
of the X-ray form factors, Compton profiles [3], 
positron annihilation, and the optical properties 
[4, 5] of a variety of metallic and semiconducting 
crystals. These calculated physical quantities are 
found to be in good agreement with experimental 
ones [61. Further, the eigensolutions have also been 
used to study electronically driven instabilities in 
metals [7-91. These instabilities, as formulated by 
Kubo et al. [101 and recently reviewed by Chan and 
Heine [II], are thought to result from a divergence in 
the generalized static electronic susceptibility, X(q). 

This paper reports on the bandstructure of body­
centered cubic (BCC) titanium, and the resulting 
calculation of X(q) for this metal is presented. The 
structure obtained in the X(q) is then used in an at­
tempt to account for the instability of the BCC crystal 
phase of titanium. 

Two forms of titanium are known. a-Ti, stable at 
room temperature, has a close packed hexagonal 
structure with a 2.950 A, c = 4.683 A, and c/a 
1.587. The electronic structure [12-141, Fermi sur­
face topology [15, 16], and the possibility of the 
occurrence of magnetic breakdown [17] are some of 
the physical properties investigated for this phase. 
Three of the findings that are relevant to the thesis 
of this paper will be singled out: (i) The DOS at the 
Fermi level is found to be close to 22.0 electrons/ atom/ 
Rydberg [12,13]; (ii) No Fermi surface nesting 
(existence of large parallel pieces) has been reported 
[ 12-14]; and (iii) The de-Haas-van Alphen measure­
ments indicate that the Fermi surfaces of Ti and 
Zr are quite similar [15,161. 

The other form is [3-Ti which has the body-centered 
cubic structure. This phase cannot be retained by 
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quenching pure Ti. It is unstable at room temperature, 
undergoing a transition to the a-phase at about 882°C 
[181. However, as shown in Figure 1 [19], the [3-phase 
can be retained at room temperature by quenching Ti 
in alloys containing at least 5 atomic %solute of Mn, 
Fe, and V. There is another important feature to the 
figure. The various quenched alloys, when extra­
polated to zero solute content, predict that the lattice 
spacing of [3-Ti at room temperature is 3.295 A. The 
scatter about this value of the lattice constant is repor­
ted [18] to be 0.2%. If one regards the progressive 
decrease in the atomic percentage of the solute as a 
lattice deformation of the [3-phase of the Ti rich alloy, 
then a transition from the [3- to the a-phase may be 
effected by the existence of a charge density wave 
[10, 11]. The mechanism and the necessary conditions 
for the existence of this process are elaborated in the 
rest of this section. 

The reduction of the atomic percentage of a solute 
may be regarded as a spatially inhomogeneous pertur­
bation. It involves a rearrangement of the positive ions. 
This deformation has the effect of promoting con­
duction electrons from an originally occupied region 
of the reciprocal space (k-space) to populate an unoc­
cupied one. If the redistribution is such that the elec­
trons are scattered from orbitals with no spin flip, the 
instability is of the nature of lattice distortion coupled 
to a charge density wave. If it involves a spin flip then 
the instability manifests itself as a spin density wave 
[201. 

To first order, the response of the electrons to such 
perturbations is measured by the generalized static 
susceptibility with Fourier components: 

x(q)x (0)(q) 
1 - I(q) X(q) (1) 

Here I(q) denotes the electron-electron interaction 
term, and X(q) is given in the random phase approxi­
mately by 

X(q) = 	 L IMn,m(k + q, k)IJ(En(k» [1 - f(Em(k + q»l, 
nkm Em(k + q) En(k) (2) 

where En(k) is the energy of the Bloch electron at the 
point k of the Brillouin zone and in band n. The 
Fermi function f(En(k», at T = 0, has the value 0 or 
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Figure I. ()- Titanium Solid Solution Lattice Spacings 

1 depending on whether En(k) is above or below the 
Fermi energy, E F, respectively. Mn•m is the oscillator 
strength matrix element and will be considered con­
stant in this calculation. The constant matrix element 
approximation has been adopted by many researchers 
[7,8,21,22] and was found to be most valid for the 
interband transitions. 

X(q) is the 'bare' or noninteracting conduction 

electron susceptibility. This quantity, in linear response 
theory, gives the response of the magnetization of the 
electron gas in a metal to a spatially varying field of 
wave vector q. An instability, of the type discussed 
earlier, sets in when this quantity diverges. The diver­
gence happens in a nesting situation, that is, in a 
situation in which there are large areas of the Fermi 
surface which are parallel or nearly parallel. 

Based on this model, several calculations have been 
performed [7,8,11,21,22] which made use of the 
X(q) structure coupled to the phonon soft modes of 
the Bee structure to account for structural instabili­
ties in Sc, Zr, and many of the rare-earth crystals. This 
same model is used here to investigate the instability 
of the fJ-Ti phase. 

In Section 2 we present the energy-band model 
adopted, and discuss the resulting energy bands, 
density of states, and the Fermi surface topology for 
the body-centered cubic titanium. In Section 3 we 
display the Analytical Tetrahedron Linear Energy 
Method which makes use of the bandstructure results 
in order to calculate X(q). The calculated susceptibility 
is presented and analyzed in the last section. 

2. BANDSTRUCTURE 

The present calculation was undertaken primarily in 
order to investigate the X(q) for Bee titanium. Such an 
investigation requires us to generate accurate energy 
bands, density of states, and the Fermi surface for this 
metal. 

Our calculation of the eigensolutions is self-con­
sistent and parallels a recently reported calculation of 
the energy bands for face-centered cubic titanium 
[231. The reader is referred to this paper for additional 
details concerning the method. In the present method 
we have used the Kohn-Sham-Gaspar local exchange 
potential [24]. No muffin-tin approximation is involved 
in this calculation. 

The Bloch functions are constructed from a basis of 
independent Gaussian functions (IGF). The basis 
consists of 13 IGF for s symmetry, ten IGF for the 
radial part of each p symmetry, and five for the radial 
part of each d symmetry. In selecting the exponents 
we made use of the self-consistent calculation of the 
free titanium atom performed by Wachters [251. The 

o 
lattice constant is taken to be 3.295 A. 

The calculation was begun by constructing a crystal 
potential from a superposition of overlapping neutral-
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Figure 2. Energy Bands in BCC Titanium Along some Lines ofHigh Symmetry. Lattice 
Constant Equals 3.295 A 

atom charge densities, the atom was assumed to be in 
the 3d34s I configuration. Energy levels and wave 
functions at 140 points in isth ofthe Brillouin zone were 
determined for this potential and used to initiate an 
iterative procedure leading to self-consistency. The 
iterative process was stopped when the change in the 
potential in two consecutive iterations was less than 1 
part in 104

• 

The self-consistent eigensolutions are then used to 
trace the bandstructure, calculate the density of 
states, and map the orbits of the Fermi surface in the 
three crystallographic directions. The results are 
reported here. 

2.1. Energy Bands 

The calculated bandstructure along several high 
symmetry directions is presented in Figure 2. The 
bands show the expected hybridization between a 
narrow-d-band complex and a broad-s-p-band. Selec­
ted energies at high symmetry points are given in 
Table 1, and a comparison for some characteristic 
energy differences with the calculation of Snow and 
Waber [26] is effected in Table 2. 

The calculation ofSnow and Waberis an Augmented­
Plane-Wave (APW) nonself-consistent calculation of 
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Table 1. Selected Energy levels of 

Electrons in Titanium. Energies are in 


Rydbergs 


r l 0.0000 N, 0.2407 
r 25, 0.4689 N2 0.3717 
r l2 0.6215 N'I 0.5160 

NI 0.6107 
H12 0.2908 N4 0.6378 
H25, 0.7048 N3 0.7310 
H I5 0.9864 

P4 0.3697 EF = 0.4125 
P3 0.6415 

Table 2. Characteristic Energy-level Separations. Energies 
are in Rydbergs 

Present Snow and Waber [26] 
Calculation Calculation 

H 12-r, 0.2908 0.27 
r 25' -rl 0.7048 0.52 
r 25,-H '2 0.1781 0.26 
H 25,-H I2 0.4140 0.44 
NI-N4 0.3971 
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energy bands for all the 3d transition metals from 
scandium to copper. The calculation uses the un­
modified Slater exchange and is aimed at determining 
which of the two atomic configurations, 4s2 3d" or 
4s I 3d"+ 1 is the favored in crystalline form. It was 
found to be the 4s I 3d"+ I. 

The agreement between the two calculations is 
very poor. The starting potential in the two calcula­
tions is the same and this poor agreement may be 
attributed to self-consistent effects [27]. The self­
consistency tends to broaden the d-band complex 
through s-d and p-d hybridizations and leaves the 
s-p band relatively unchanged. 

2.2. Density of States 

The density of states for this bandstructure is dis­
played in Figure 3. The two peaks at 0.36 Ry and 0.64 
Ry are characteristic of all BCC structures and in this 
particular case arise from the nearly flat bands 
HI2 ~ F3 ~ O2 ~ L2 ~ G I, and H 25 , ~ F3 ~ OJ 
and 0 4 ~ LI and L4 respectively. The Fermi level (EF ) 

is at 0.4150 Ry with respect to this origin, and the occu­
pied portion of the d-band complex is 0.165 Ry. The 
total d-band width is 0.4140 Ry. The calculation of 
Snow and Waber gave a total width of 0.34 Ry, and an 
EF lying in the same relative region ofthe first peak. The 
density of states at EF is calculated to be 21.18 states/ 
(Ry.-atom) as compared to the value of 22 obtained in 
Reference [26]. Our calculation yields an electron­
specific-heat coefficient of 3.67 mJ mol-I K -2. The 
experimental value for this coefficient is 3.32 in the 
a-phase. 

2.3. Fermi Surface 

We have studied the Fermi surface which results 
from our calculation. It consists (i) a large electron 
surface about H. This surface supports an octahedral 
closed orbit in the (100) plane with distortions in the 
H -+ Nand H -+ r directions. This surface does not 
support any closed orbits in the (110) or (111) planes; 
(ii) an electron surface that resembles a dumbbell 
around P and does not intersect the (110) and (111) 
planes; (iii) an ellipsoidal electron surface about N. 
This surface supports a closed orbit in the (100) plane, 
and in the (Ill) plane passing through H; (iv) a large 
electron hole about r. This hole is mUltiply connected 
in the (100) plane, and its intersection with the (110) 
plane results in a distorted circular orbit. The inter­
sections of this electron hole with the (111) plane about 
rand H form octahedral orbits. 

Surfaces enumerated (i) and (ii) result from the 
second band intersections with the Fermi level, and 
the other two result from the third band intersections. 
The cross sections of this Fermi surface in the (100), 
(110), and (111) planes are shown in Figures 4, 5 and 
6, respectively. The dimensions of closed orbits for 
this surface are reported in Table 3. 

From this table it can be observed that the dimen­
sions of the intersections are clustered about the 
values of 0.45, and 0.55. Also, a careful survey of 
Figures 4-6 reveals that large segments of the electron 
hole about r (surface (iv» in the (110) and (11 1) planes 
are parallel. It is clear that this Fermi surface is nested, 
and that the calculated susceptibility, x (q), should 
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Figure 3: Density of States for Bee Titanium. The Density ofStates at the Fermi Level EF is 
21.18 Stateslatom-Ry 
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Figure 4. Fermi Surface Cross Sections in the (100) Planes 
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Figure 5. Fermi Surface Cross Sections in the (110) Plane 
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exhibit structures (peaks) at IqIvalues of 0.45 and 0.55 
in units of (2n/ a). 

3. CALCULATION OF THE SUSCEPTIBILITY 

The calculation of the susceptibility of titanium 
that utilizes the bandstructure results presented in the 
previous section uses the Analytical Tetrahedron 
Linear Energy Method [7]. The irreducible part of the 
Brillouin zone, for which the En{k) are calculated, is 
divided into nonoverlapping tetrahedra. Each of these 
tetrahedra will be referred to as a microzone. Inside 
each microzone, this method assumes that the energy 
bands vary linearly, and thus the surface of constant 
energy is a plane. 

Generating the nonoverlapping tetrahedral micro­
zones is easy once it is realized that the irreducible 
wedge (l/48th) of the Brillouin zone is also tetra­
hedra,. Constructing the mid-points of r -+ P, r -+ N, 
r -+ H, N -+ H, N -+ P, P -+ H lines and joining them 
results in eight nonoverlapping tetrahedra. Each of 
these tetrahedra may be further subdivided into eight 
microzones that are octahedral and nonoverlapping, 
and so on. The total number thus obtained is 8 P where 
p is the cycle number. 

Once the microzones are generated, it becomes con­
venient to arrange the energies at the comers of any 
of the tetrahedra in increasing or decreasing order. 
Let k j (i = 1-4) represent the coordinates of the ith 
corner of the tetrahedron. Denoting En{k;) by E;, the 
energies at the four corners can always be arranged 
such that 

(3) 

and since the volume of each microzone can be made 
arbitrarily small it is then justifiable to express 

(4) 

with 
3 

b = L {E j - E 4)r j 

j= 1 

where 

with 

and 

k; = kj - k4' 

k2 X k3• 
r 1 = 6V ' 

j = 1-3 
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Figure 6. Fermi Surface Cross Sections in the ( III ) Plane 

Table 3. 	 Locations of the Intersections of the Fermi Surface regions. One of the regions is the one which is occupied
with Zone Symmetry Unes. I..engths are Expressed in Units by band En (k), and the other corresponds to that 

of (lnla). 
region of the same tetrahedron which is unoccupied 

Plane Orbit Direction Length by band Em(k + q). The nand m band indices may be 
identicaL In the first regionf(En(k)) is equal to I andr -t H 0.450 

Octagon about H H-tN 0.451 in the secondf(Em(k + q)) is equal to zero. For further 
(100) 	 details reference is made to the paper by Rath and 

Ellipsoid about N N-tr 0.312 Freeman [71.
N-tH 0.182 

The evaluation of the contribution for a complete 
Dumbbell about P P -t N 0.385 microzone is effected by transforming the summation 

P -t H 0.456 over k in expression (2) to an integral: p-tr 0.456 
(110) x(q) = ~LJ d3~(En(k)) [1 - f(Em(k + q))l

Hole about r r -t N 0.396 (2n)~ m,n BZ Em(k + q) - En(k) (5)r -t H 0.560 

r-tP 0.406 
 where Q 	 is the volume of the Winger-Seitz cell. The 

contribution consists in evaluating the Fermi factor 
(111) 	 Hole about r r-tN 0.409 

discussed earlier, and integrating H-tN 0.528 

Ellipsoid about N H-tN 0.421 


N-tN 0.247 


V is the volume of the tetrahedron. In this procedure Expanding the energy difference 
the tetrahedra need not have the same volume; the only Em(k + q) - En(k) A + BX + CY + DZ,
requirement is that the energy En(k) within the micro­

zone can be expanded linearly as required by the the coefficients A, B, C, D are determined from the 

relation numbered (4). values of the energies at the corners of the tetrahedron, 


Now the evaluation of the x(q) boils down to provided a linear expansion is assumed. Explicit 
(i) the calculation of the fractional volume of a given expressions for Jnm for all possible cases are also given 
tetrahedron that contributes to the susceptibility in reference [71. 
function; and (ii) the evaluation of the contribution for Since the calculation of X(q) requires t~e knowledge
a complete tetrahedron. of En (k) and Em (k + q) at a very large number ofpoints, 

The fractional volume is that portion of the tetra­ fitting the calculated energy bands to an analytical 
hedron for which the Fermi factor f(En(k)) [1 f expression is very desirable. The original band­
(Em{k + q))l is equal to unity. After arranging the structure is calculated for 140 points on the irreducible 
energies (Equation (3)), and making use of the planar wedge. These are adequate for k but very restrictive to 
constant energy surfaces assumption (Equation (4)), the values of q that can be used to calculate Em (k + q). 
the fractional volume sought is the intersection of two This is restrictive in the sense that we might be unable 

The Arabian Journal/or Science and Engineering Volume 4. Number I. 

(6) 

25 



R. A. Tawil 

to select those values of q at which the structure in the 
susceptibility might occur. 

The periodicity of the bandstructure, En{k) = 
En{k + Ks) (Ks is a reciprocal lattice vector), suggests 
the following form for the analytical fit 

En{k) = L an{R,Jexp{ik . R,J, (7) 

" 
where R" is a direct lattice vector, and the an are the 
coefficients to be determined for the band n. Compu­
tational details of this, and of the evaluation of Equa­
tion (5) are given in the following section. 

4. SUSCEPTIBILITY RESULTS 

In the evaluation of the susceptibility, the analytical 
fit suggested in Equation (7) was transformed into an 
eigenvalue equation of the following form: 

L {En{k) - L an{R,,) exp{ik. R.,)} exp{-ik. Rv) = 0 
v " 

The summations over the indices v and p, were carried 
out over 35, 52, and 65 closed shells of the direct lat­
tice. The root mean square fit for the bands under 
consideration improved by 1 part in 104 in going from 
52 to 65. The summation over the band under n (m) 
was carried out for six bands. 

To evaluate the integral over k, the irreducible wedge 
(l/48th of the Brillouin zone) was divided into 512 
microzones. Calculation of Equation (5) for 3 different 
values of q with 4096 microzones yielded a change 
(-IO-,*) in the X{q) value with 512 microzones. That 
did not justify the computer time expenditure. For all 
the results reported here, the evaluation of Equation 
(5) utilized 512 microzones. On the other hand, a 
calculation with 64 microzones resulted in a change 
of about 8% ofX{q). These results reflect on the validity 
of the linearity assumption (Equation (4)) of the energy 
bands within a microzone. 

Plots of X{q) along the three crystallographic 
directions [ 100], [110], and [ Ill] are shown in Figures 
7, 8 and 9, respectively. In the [ 100] three distinct peaks 
occur, at Iql values of 0.453, 0.550, and 0.750. The 
Iql values given here are in units of (2n/a). For the first 
two peaks the value of the susceptibility is 120% 
X (q = 0). X{q = 0) is equal to the density of states at 
EF • The X (q) in the [ 110] is symmetric about the value 
q = 0.500 (units of v' 2 n/a). The structures occur at 
q = 0.455 and 0.540, in the same units. The value of the 
susceptibility at the two structures is 125 % X (q = 0). 
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Structures in the [111] occur at relatively the same 
IeII values as in the [ 100]. 

Based on the observations that the X(q) in the [110] 
does not exhibit any structure at a Iql value of 0.75, 
and that the electron surface dumbbell about N does 
not intersect the (110) plane; it is suggested here that 
the structure at Iql = 0.75 results from a nesting ofthe 
dumbbell with portions of the octahedral surface 
about H. The dimensions of the dumbbell are too 
small to support nesting at such a 'large' value of q. 
The pair of structures centered at Iql = 0.50 result 
from the nesting of the same surface: the electron 
hole about r. A possible nesting which may account 
for the structure at Iql = 0.455 is suggested in Figure 6. 
For the structure at Iql 0.540, the shaded area in 
Figure 5 is suggested as a possible nesting situation. 

The above results have been obtained from a calcu­
lation for which the matrix elements Mn,m in Equation 
(2) were taken to be constant. It is an accepted fact 
[28], that in the calculations that included the matrix 
elements [21] the structures in the X(q) that result from 
the nesting of the same surface are slightly modified. 
The effect of including the matrix elements is pro­
min ant (tends to smoothen the effect) in the case of 
nesting between two distinct surfaces. Based on this 
observation, it is believed thatthestructureat Iql = 0.75 
may disappear in a calculation that includes matrix 
elements contributions. The two structures resulting 
from the hole surface will remain relatively unaffected 
[291. 

In order to relate the structure ofX(q) to the possible 
occurrence of an instability, the structure has to be 
related to the phonon dispersion curves. It is generally 
believed that the kinks in the phonon curves arise 
from peaks in X(q) [11], and that the diagonal element 
of the dielectric function £(q, q) is related to X(q) 
through the relation [7] 

£(q, q) 1 + A /(q) X(q), 

where A is a constant, and /(q) is the transform of the 
electrostatic electron-electron interaction including 
exchange and correlation effects. Since the dielectric 
screening by the conduction electrons plays an impor­
tant role in determining the ion-ion interaction trans­
mitted by the conduction electrons, one might expect a 
sharp maximum in X(q) to manifest itself also as a 
Kohn anomaly in the phonon dispersion curve [301. 
The occurrence of this anomaly is marked by the 
existence of a phonon soft mode which is responsible 
for a peak in the /(q) occurring in Equation (1). Recent­
ly Moss et al. [31] have cast this mechanism in phonon 
language indicating how a body-centered cubic .... 
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hexagonal close packed transformation can be accom­
plished through the combined action of a soft long 
wavelength [112] Shear mode, polarized in [111], 
followed by a zone boundary [110] shear, polarized in 
[ 110]. To characterize the softening of this mode, Moss 
[32] performed inelastic neutron studies on several 
alloys of low solute concentration in which it was clear 
that the dynamical response of the body-centered 
cubic lattice was extremely anomalous, including 
very overdamped phonons and a central quasi-elastic 
peak, especially in the vicinity of i [ 111]. 

The phonon frequencies around i[ 111] in body­
centered cubic lattices are naturally soft. Price et al. 
[33] showed, if the separate eigenvalue contributions 
to the dynamical matrix are represented by Coulombic 
(arising from BCC lattice + Ze charges immersed in a 
neutralizing electron gas), electron-ion (the effect of 
screening) and core-repulsive parts, then the un­
screened Coulombic part alone gives rise to a deep 
dip near the i[ Ill] for longitudinal modes. Normal 
screening merely pulls the small q low-frequency modes 
down toward zero to give the proper acoustic velocity. 
For this reason metals as dissimilar as Na, j3-Cu, Zn, 
Fe, and Nb show pronounced minima in the longi­
tudinal phonon dispersion curve at q = i[ 111]. 

Further, the problem of the soft phonon mode 
leading to periodic lattice distortion as a consequence 
of nesting Fermi surfaces has been considered by Chan 
and Heine [111. To investigate how the electron­
phonon interaction renormalizes the phonon fre­
quency, the authors supposed that the lattice system 
is driven into a single phonon mode q. The electron­
phonon coupling scatters electrons from state k to 
state k + q, k + q + Ks (Ks is a reciprocal lattice vector). 
This way, the movement of the electrons screens the 
phonon mode. The screening depends on the geometry 
of the Fermi surface. If the geometry is such that q 
approximately spans two nesting pieces of Fermi 
surfaces, and if the electron-phonon coupling is strong 
enough, the phonon mode may become soft. Lattice 
distortion thus takes place and the phonon frequency 
may be reduced to show a cusp shaped Kohn anomaly 
in the phonon spectrum. The scattering of the electrons 
by this phonon mode sets up a charge density wave of 
wave vector q. 

In our investigation, the calculated density of states 
curve determined from the reported bandstructure 
exhibits a large DOS at the Fermi level. This DOS is 
equal to 21.18 states (Ry-atom) which is approximately 
twice that of Fe [27], and will result in a large electron­
phonon term for the metal under consideration. The 
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susceptibility exhibits two peaks that result from the 
nesting of the electron-hole about r. And, by the argu­
ments presented above, this structure coupled to the 
naturally occurring Bee soft longitudinal phonon 
mode are sufficient conditions for the occurrence ofan 
instability that transforms the {j-Ti crystal to the a 
phase. This instability is of the periodic lattice distor­
tion coupled to a charge density wave type. The investi­
gation of the {j-Ti at low solute concentration taking 
into account the effects of lattice contractions are 
underway and will be the subject of a future communi­
cation. 
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