A NOTE ON RINGS WITH NO NIL RIGHT IDEALS

Abdullah H. Al-Moajil
Gulf Organization for Industrial Consulting, P.O. Box 5114, Doha, Qatar

A result of Gupta states that if D is a division ring such that $x y^{2} x=y x^{2} y$ for all $x, y \in D$, then D must be commutative [1]. The purpose of this note is to give a generalization of this theorem. We will prove the following theorem. Throughout this paper, R, denotes a ring with identity.

Theorem

Let R be a ring with no nonzero nil right ideals. Suppose that there exist nonnegative integers n, m, k with $m>0$ and $n=2 m+k$ such that $x^{m} y x^{k} y x^{m}=y x^{n} y$ for all x, y in R. Then R is commutative.

The proof of the above theorem consists of five lemmas. The first three lemmas are well known and easy, thus we omit their proofs here. We let the familiar notation $[x, y]$ stand for $x y-y x$.

Lemma 1

If R is a ring, x, y are elements of R and n is a positive integer, then

$$
\left[x^{n}, y\right]=\sum_{k=0}^{n-1} x^{k}[x, y] x^{n-k-1}
$$

Lemma 2

If $[x,[x, y]]=0$, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$ for all positive integers k.

Lemma 3

If R is a ring and $x, y \in R$ satisfy $[x,[x, y]]=0$ then $\left[x,\left[x, y^{2}\right]\right]=2[x, y]^{2}$.

Lemma 4

Let R be a ring with no nonzero nilpotent elements. If there exist nonnegative integers n, m, k with $m>0$ and $n=2 m+k$ such that $x^{m} y x^{k} y x^{m}=y x^{n} y$ for all x, y in R, then R is commutative.

Proof

Since R has no nilpotent elements, R is a subdirect product of domains $R_{\alpha}[2,3]$. Clearly, each R_{α} satisfies the hypotheses of the lemma. So, we may assume that R is a domain. Let $x, y \in R$. There exist integers n, m, k as in the statement of the lemma such that $x^{m}(x+y) x^{k}$ $(x+y) x^{m}=(x+y) x^{n}(x+y)$. If we let $p=m+k+1$, this reduces to $x^{p} y x^{m}+x^{m} y x^{p}=x^{n+1} y+y x^{n+1}$. Since $n=2 m+k$, this can be written as, $\left[x^{p},\left[x^{m}, y\right]\right]=0$ which by Lemma 1 easily leads to

$$
\begin{equation*}
\left[x^{p m},\left[x^{m}, y\right]\right]=0 . \tag{1}
\end{equation*}
$$

By Lemma 1, we have, $\left[x^{p m}, y\right]=\sum_{i=0}^{p-1} x^{m i}\left[x^{m}, y\right]$ $x^{m(p-i-1)}$, and since $x^{p m}$ commutes with $\left[x^{m}, y\right]$ by (1),
it follows that $x^{p m}$ commutes with $\left[x^{p m}, y\right]$, i.e.

$$
\begin{equation*}
\left[x^{p m},\left[x^{p m}, y\right]\right]=0 . \tag{2}
\end{equation*}
$$

Let $s=p m$ so that (2) becomes

$$
\begin{equation*}
\left[x^{s},\left[x^{s}, y\right]\right]=0 . \tag{3}
\end{equation*}
$$

Since (3) holds for all $x, y \in R$, replacing y by y^{2}, we can find a positive integer t such that

$$
\begin{equation*}
\left[x^{t},\left[x^{t}, y^{2}\right]\right]=0 . \tag{4}
\end{equation*}
$$

From Equations (3) and (4) it is easily seen that $\left[x^{s t}\right.$, $\left.\left[x^{s}, y\right]\right]=0$ and $\left[x^{s t},\left[x^{t}, y^{2}\right]\right]=0$. Letting $q=s t$ and using Lemma 1 again in the same way it was used to derive Equation (2), we obtain

$$
\begin{equation*}
\left[x^{q},\left[x^{q}, y\right]\right]=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[x^{q},\left[x^{q}, y^{2}\right]\right]=0 . \tag{6}
\end{equation*}
$$

Since R is a domain, we have two cases:

Case 1

Char $R=r \neq 0$. Then by (5) and Lemma 2 $\left[\left(x^{q}\right)^{r}, y\right]=r\left(x^{q}\right)^{r-1}\left[x^{q}, y\right]=0$, and hence, R is commutative by Herstein's theorem [4].

Case 2

Char $R=0$. Then, using Equation (5), we have, by Lemma 3, $2\left[x^{q}, y\right]^{2}=\left[x^{q},\left[x^{q}, y^{2}\right]\right]$, and hence by Equation (6) $2\left[x^{q}, y\right]^{2}=0$ which implies that $x^{q} y=y x^{q}$. Therefore, it follows by Herstein's theorem [4] that R is commutative.

Lemma 5

Let R be a ring such that there exist integers n, m, k, with $m>0, n=2 m+k$ and $x^{m} y x^{k} y x^{m}=y x^{n} y$ for all x, y
in R. If x is a nonzero element of R such that $x^{2}=0$, then the right ideal $x R$ is nil.

Proof

Applying the given identity to $x+x y$ and $x y$ we have $(x+x y)^{m}(x y)(x+x y)^{k}(x y)(x+x y)^{m}=x y(x+x y)^{n} x y$. Using the fact that $x^{2}=0$, this reduces to $(x y)^{m+1}$ $(x y)^{k+1} \quad\left[(x y)^{m}+(x y)^{n-1} x\right]=(x y)^{n+2}$, or $(x y)^{n+2}+$ $(x y)^{n+1} x=(x y)^{n+2}$. Therefore $(x y)^{n+1} \quad x=0 \quad$ or $(x y)^{n+2}=0$. Thus, every element of $x R$ is nilpotent, i.e. $x R$ is nil.

Proof of the Theorem

By Lemma 5, we may assume that R contains no nilpotent elements. Therefore, the conclusion of the theorem follows from Lemma 4.

ACKNOWLEDGMENT

The author thanks H. Abu-Khuzam for many interesting and relevant conversations.

REFERENCES

[1] R. Gupta, 'Nilpotent Matrices with Invertible Transpose', Proceedings of the American Mathematical Society, 24 (1970), pp. 572-5.
[2] V. Andrunakievitch and J. M. Rjahubin, 'Rings without. Nilpotent Elements and Completely Prime Ideals', Docklady Akademie Nauk SSSR, 180 (1968), pp. 911.
[3] I. Herstein, Rings with Involution. University of Chicago Press, 1976, p. 4.
[4] I. Herstein, 'A Commutativity Theorem', Journal of Algebra, 38 (1976), 112-118.

Paper Received 7 April 1982; Revised 13 December 1982.

