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ABSTRACT

The notion of a fractional ideal of a ring with involution is studied to give equivalent
conditions for a subring to be a Priifer ring in a division ring D with involution. Also, a
construction of a certain Priifer ring associated with a given preordering of D is given.
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PRUFER RINGS IN *-DIVISION RINGS

1. INTRODUCTION

As in the commutative case, many of the rings which arise in connection with preorderings in division rings are Priifer
rings, i.e., the localizations at all maximal ideals are valuation rings. Priifer rings also help in studying Approximation
Theorems for Valuations. In this work, these subrings are studied in the case of a division ring D with involution, to give
more properties of orderings and valuations of division rings with involution. In general, rings with involution have been
studied intensively in some applications to Lie algebras, Jordan algebras, and rings of operators. More recently, the
category of rings with involution has been investigated (see [1]). The ideals of an object in this category must be closed
under the involution *, called *-ideals.

In Section 3, the notion of a fractional *-ideal is studied in the case of a *-ring (a ring with involution); for the
commutative case one can refer to [2]. It is shown that a symmetric subring R of D is a Priifer ring if and only if each
finitely generated fractional *-ideal of R is invertible. Furthermore, any total *-subring that contains a Priifer ring B is the
localization of B at some *-prime *-ideal of B.

For a preordering TCD, one can construct a subring consisting of elements of D, which are bounded by some rational
number with respect to the preordering; this subring will turn out to be a Priifer ring. This ring is a useful tool in studying
preorderings in division rings with involution. In fact, it is shown that this subring is the intersection of all
*-valuation subrings which are compatible with the preordering.

2. DIVISION RINGS WITH INVOLUTION

In this section, we state the basic definitions and some facts that will be needed in this work. Hereafter D will be a not
necessarily commutative division ring with involution (an anti-automorphism of period 2), and D" will denote its
multiplicative group of non-zero elements. We simply say D is a *-division ring. If R is a *-closed subring (r€ R implies
r*e R), then we say that R is a *-subring of D. If R is a *-subring of D, a non-empty subset SCR is called a denominator
setif 0¢ S, S is *-closed, S is multiplicatively closed, and § satisfies the Ore-condition (for re R and s€ S there is be R and
t€ S such that rt = sb). In fact, for any arbitrary ring, one can define a right and left denominator set, and right and left
ring of fractions of R, but from [3], any right ring of fractions of a ring with involution R is also a left ring of fractions of
R. So we can speak only of rings of fractions of rings with involution. Also, from [3], if X is a ring of fractions of R, then
there is a uniquely determined involution on X, which is the extension of the involution defined on R. If R is a *-subring
of D, and SCR is a denominator set, then the ring of fractions RS~ = {rs™' : reR, se S} is a *-subring of D. Also,
Rc RS™! because S is non-empty and for each re R, r = (rs)s' € RS, for some s€S.

Lemma 1. If RCD is a *-subring which is closed under conjugation, then

(i) all ideals are two-sided ideals and left submodules of Dy are right,
(if) any subset SCR with O¢ § satisfies the Ore condition.

Proof.

() If Iis a left ideal in R, then for r€R and x€l, xr = xr x' xel and so I is a two-sided ideal. Similarly for
R-submoduies of Dg.

(i1) Let reR, se§. By assumption s#0 and so s”'rs = be R. Hence rs = sb. Take t = s and the Ore-condition is satisfied.

Following [4], a *-ideal P of a *-ring R is called *-prime if IKC P implies IC P or KC P for *-ideals / and K. Obviously
any prime ideal is *-prime. From [4], P is a *-prime *-ideal of R if and only if for @, b€ R such that aRbC P and aRb*C P,
acPorbeP.
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Definition. Let R be a subring of D.

(1) Ris called roral if, for every xe D', x or x'€R.
(2) Ris called symmerric if it contains x*x™' for every xe D',

(3) Ris called a *-valuation ring if it is total and symmetric.

From [5], if R is a symmetric subring of D, then R is *-closed, closed under conjugation and each ideal / in R is
*-closed, two-sided, and has the property that abe I implies bae I. Moreover, R contains the commutator subgroup of D',
i.e., aba™'b™'€R for every a, be D'". R is a symmetric subring of D if and only if R contains x"'x* for every xe D". If Ris a
*-closed total subring which is closed under conjugation then R is symmetric and so it is a *-valuation subring,.

Lemma 2. Let D be a *-division ring, R is a symmetric subring of D, and PCR is a *-prime *-ideal of R, then R—-P is a
denominator set.

Proof. Clearly R—P is *-closed and does not contain zero. By Lemma 1, R-P satisfies the Ore-condition. It remains to
show that R—P is multiplicative. Let a, be R—P. Since ag¢ P, bg P, there is an element x€ R such that axb¢ P or axb*¢ P.
Assume axb¢ P, then abx "= ab (b™'xb) = axbg P, for x* = b 'xbeR. If abe P, then abx € P, a contradiction. Then
abe R—P. Now, assume axb*¢ P. By using similar arguments, we get ab’e R—P. So ab b™'b* = ab*g P. If abe P, then
ab b~'b*e P (where b™'b*e R), which is a contradiction. Hence abg P and R-P is a multiplicative set.

Definition

(1) Let RCD be a symmetric subring, and PCR be a *-prime *-ideal, then from lemma 2, R—P is a denominator set.
Define the localization of R at P, denoted R, to be {rs“ : réR, se R-P}. This is a *-subring of D containing R and
hence also symmetric.

(2) A symmetric subring RCD is a Priifer ring if the localization at each maximal *-ideal of R is a *-valuation ring.

Since any localization of R is symmetric, then a symmetric subring RC D is a Priifer ring if and only if the localization
at each maximal *-ideal of R is a total subring.

3. FRACTIONAL *-IDEALS
We discuss in this section the notion of fractional *-ideal relative to a *-subring of D.

Definition. Let R be a *-subring of D. A *-closed R-submodule ACD is a fractional *-ideal of R if there is a non-zero
element r€ R such that FACR and r*ACR.

Since A and R are *-closed, then we also have ArCR and Ar*CR; and hence we do not need to define right and left
fractional *-ideals.

Clearly, every fractional *-ideal is a fractional ideal. Also, each *-ideal of R is a fractional *-ideal of R, and the
intersection of two fractional *-ideals is a fractional *-ideal. We say A is a principal fractional *-ideal if A=Ra, a=a'#0,
agR, a'eR. We define finitely generated fractional *-ideals in the obvious way. For a fractional *-ideal A, let
[A:R] = {x€ D : xACR, x*ACR} = {x€ D : AxCR, Ax*CR}.

If R is a *-subring which is closed under conjugation, then rACR is equivalent to ArCR, since raeR implies
ar=r~' (ra) re R. The following lemma gives some more properties of such subrings.

Lemma 3. Let R be a *-subring, then

(©) The sum of two fractional *-ideals is a fractional *-ideal.
(i) If A is a fractional *-ideal, then [A:R] is a fractional *-ideal.
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Proof.

(i) Assume A and B are fractional *-ideals of R. Clearly, A+B = {a+b : a€ A, be B} is a *-closed R-submodule. Let
r,, r,€R be such that r ACR, r*ACR and r,BCR, r,*BCR. Now, r,r,ACr,A because RACA as A is an R-submodule.
So, r,r,AC r,ACR. Then (r,r,)(A+B) = r,r,A+r (r,B) CR. Similarly, (r,r,)* (A+B) CR.

(ii) By definition [A:R] is *-closed. Since A is a fractional *-ideal, then there is Ore R such that rACR, r*AcR. Then
also both r{A:RICR, r'[A:RICR. Because, if x€ [A:R], so that xACR and x"ACR, then rxACrRCR. Hence r[A:R]CR.
Similarly for r". The proof that [A:R] is an R-submodule goes through in the same way.

Lemma 4. If R is a symmetric subring, and A and B are fractional *-ideals of R, then the product AB = : {finite sums of
elements of the form Zq; b; or £b; a;, where a;€ A, b€ B}, is a fractional *-ideal.

Proof. Clearly AB is *-closed R-submodule. Let r,, r,€ R be such that r ACR, r,*ACR and r,BCR, r,*BCR. Then for ac A,
be B, we have
rzrl(ab) =rn (rla) rznl(rzb) € R, and

rr(ba) = (r,) (b7'rbr") (ra) € R,
where R contains the commutator b”r,brl“. Thus r,r, (AB) CR. Similarly, (r,r)* (AB) CR and AB is a fractional *-ideal.

Definition. A fractional *-ideal A is invertible if there is some fractional *-ideal A such that A “A=R.

Since A, A~ and R are *-closed, then A “A=R is equivalent to AA "=R. In the commutative case, if A is invertible and
AA =R, then A "=[A:R] (see {2, Proposition 6.4]). For a *-ring R, we have

Lemma 5. Let R be a symmetric subring, then a fractional *-ideal A is invertible if and only if A[A:R] = R.

Proof. If A[A:R] = R, then A contains an element of R and [A:R] is a fractional *-ideal by Lemma 3. Hence A is
invertible. Conversely, if A is invertible, then there is a fractional *-ideal A “such that AA “=R. Then A “C[A:R], and so
R=AA"CA[A:R] CR Thus A[A:R]=R.

Lemma 6. If A is a fractional *-ideal of a symmetric subring R of D and S is a denominator set of R, then AS™ is a
fractional *-ideal of RS 'containing A.

Proof. First we show that AS ~!is closed under addition. Let as™', br'e AS™' .Now

1

as”' = an™' s7' =at(st)™, and bt =b(r™! st) sty

Since t™' st € R, as R is closed under conjugation; then a ¢t , b (+™ st)€A, as A is an R-submodule. So as™ + br™! =
(at+b(t™! sH)(st)'e AS™!. Now, assume as'eAS™', rt'e RS forac A, re R, and s,t€ S. So,

(@s™Mrt™y =ais™'ne!
=a(r, s, ™, for some r,€R, s,€ S (from the Ore condition)

=(ar)(ts))'€AS™  (as A an R-submodule),

and AS™ is a right RS'-submodule. Since RS™' is symmetric (as it contains the symmetric subring R), then it is closed
under conjugation so that:

(rt™Yas™ = (as™) [as™ " (' )as™!) 1 €AST,

and AS™' is also a left RS™'-submodule.
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Let re R be such that rACR, then r can be considered in RS 'and HAS™ Y cRS™. Finally, to show that AS™ !is *-closed,
assume as'€AS™ for some acA and seS. Since A and S are *-closed, then a’€ACAS ™' and s~ € RS . So,
(as) =s"a" € AS™ as AS”! is an RS~'-submodule.

The following theorem shows that any fractional *-ideal A of a symmetric subring R of D, is not only a subset of its
quotient fractional *-ideal AS™ for any denominator set S; but actually it is the intersection of certain fractional *-ideals
in the ring of fractions of R. Also, this theorem is a key result in proving that any Priifer ring is the intersection of all its
*-valuation overrings. Now let R be a symmetric subring of D and P a *-prime *-ideal of R. Then from Lemma 2,
S=R-P is a denominator set, we write A, for the fractional *-ideal AS™".

Theorem 7. Let A be the set of all maximal *-ideals of a symmetric subring RCD. Let A be a fractional *-ideal of R,

then A = [|Ay -
Med
Proof. Clearly A C nAM . Conversely, let x € nAM . Then for every Me A there is sye R-M and ay€ Ay with

Med MeA
x = s;} ay. So, sy x = ay€ A. Let B be the *-ideal of R generated by sy. Then there is a maximal *-ideal M of R with
BN RcM, and so sye€ B{1RCM, a contradiction. Hence 1 = ry{ Syy1 + ... + I'un Sy, for a finite number of maximal

*.ideals M€ A, and ry; € R. Multiplying on the right by x, we get x = ry Sy X + ... + I'ys Sy X. Since sy; x €A, for
everyi=1,2,...,n,and A is an R-submodule, then x€ A as desired.

Lemma 8. Let A be a finitely generated fractional *-ideal of a symmetric subring R of D. Let M be a maximal *-ideal in
R. Then [Ap:Ry] = [A:R] ym.

Proof. Since [A:R]y is both right and left ring of fractions, we can write any element x& [A:R]y as s™'y or ys™' for
ye [A:R] and s€ R-M. For x = 57'y, se R-M, yACR, we have sxAy = yAy = YAS'CRS™ = Ry. So, xAy = s sxAyC Ry, and
hence [A‘R]M [on [AM:RM].

Now, to prove the converse, we assume A = Ra;.a;,...,a,]. Let x€ [Ay:Ry], then xAy C Ry and xa; = si"l r;, for some
r€Rand s,€R-M,i=1,...,n. So,s;xacRfori=1,...,n. From (s, ... s,)xa;=5; ... 5i.; [$i (5is1 +.- 8n) s{l 1s:x ap, and
since R is closed under conjugation, we have (s; ... 5,) x a,€R forevery i = 1, ..., n, so that (s, ... s,) x ACR. Hence
(51...5)x€ [A:RR]. Thus x = (s, ... 5, (5 ... s,) x € S [A:R] = [A:R]p.

Corollary 9. Let A be a finitely generated fractional *-ideal such that Ay is invertible for each maximal *-ideal M. Then
A is invertible in R.

Proof. Since Ay, is invertible, then by Lemma 5,

Ay [Ay: Ryl =Ry

So, AM [A : R] M= RM.
Now, taking the intersection over the set A of all maximal *-ideals, and noting that A = nAM ,[ARR] = n[A *Rly
andR= ﬂRM (from Theorem 7); we get A[A:R] = R, and hence A is invertible. Med MeA

MeA

Lemma 10. Let R be a total *-subring, then every finitely generated fractional *-ideal is principal, and hence invertible.

Proof. We first claim that the set of all fractional *-ideals is totally ordered. Suppose that M, N are two fractional
*.ideals such that MZN and NZM. Let xe M-N and ye N-M. Since (xy")y =x¢N and (yx)x = yg M, we have xy"'&¢R
and yx"'¢ R and so R is not total, a contradiction. Now, let A = Ra, + ... + Ra, be a non-zero finitely generated fractional
*.ideal of R. By the above, {Ra,, ..., Ra,} has a largest element, say Ra,DRa; (i=1, ..., n). Then ACRa; C A, and A is
principal.

We now come to the main result of this section. This result gives equivalent conditions for a symmetric subring to be a
Priifer ring. These conditions generalize those in the commutative case.
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Theorem 11. The following are equivalent for a symmetric subring R of D.

(i) For each *-prime *-ideal P, R, is a *-valuation ring.
(ii) For each maximal *-ideal M, Ry is a *-valuation ring.

(iii) Each finitely generated fractional *-ideal of R is invertible.

Proof.
(i) = (ii) is clear.

(i) = (iii) Let A be a finitely generated fractional *-ideal. By (ii), Ry is total for every maximal *-ideal M. Hence, by
Lemma 10, the finitely generated fractional *-ideals Ay in Ry, are invertible, for every maximal *-ideal M. Thus A is
invertible by Corollary 9.

(ifi) = (ii) Let P be a *-prime *-ideal in R. As in the commutative case [2], using (iii) one can show that the set of
P 4

principal ideals of R, is well ordered by inclusion. Now, let x = —:—e D, where a, b are non-zero elements in R. If x¢ R,,,

then Rp.azRp.b. So, by the above, Rp.bCRp.a. Hence x*' = 2 € Rp and Rp is a total subring. Since Rp is also
P a

symmetric, then Rp is a *-valuation subring.

Lemma 12. Suppose BCD is a Priifer ring and A is a total *-subring containing B. Then A = Bp for some *-prime *-ideal
Pof B.

Proof. Since A contains the symmetric subring B, then A is symmetric, and so it is a *-valuation subring. Let / be the
maximal *-ideal of non-units of A, and let P = I B. Then, clearly P is a *-prime *-ideal in B. But B is a Priifer ring, so
Bp is a *-valuation ring, and by construction BpCA. We show now that ACBp. Assume a€A and a¢ Bp, then
a'l=rsepP Bp for some re P and s B—-P. Now, re PCI implies that a’'e I, which contradicts ae A. Hence ACBp, as

required.
Corollary 13. Suppose BCD is a Priifer ring. Then B is the intersection of all its *.valuation overrings.

Proof. Let C denote the intersection of all *-valuation overrings of B. Clearly BC.C, and we will show that CCB. By
Lemma 12, for a *-valuation subring A containing B, we have A=Bp for some *-prime *-ideal P. Since B is a Priifer ring,
then Bp is a *-valuation ring. Hence C = [ Bp, where the intersection over all *-prime *-ideal of B. By Theorem 7,
B = () By, where the intersection over all maximal *-ideals of B. Then C = () Bp < [ By = B, as desired.

4. ORDERINGS AND PRUFER RINGS

In this section, it will be shown that the bounded subring associated to a given preordering of D is a Priifer ring in D.
First, we give the basic facts about orderings and valuations of a division ring with involution D. Let § denote the
subgroup of D’ generated by the symmetric elements (s = s*, O#se D). Let S(D) denote the subgroup generated by the
norms xx*, x€ D', and the commutators xyx™'y™ and yxy 'x™' for xe D" and ye S. One checks easily that the subgroup S(D)
is closed under * and normal in D". Let (D) denote the set of sums of elements from S(D). The set (D) is a *-closed

normal subgroup when it does not contain 0.

By a preordering of a division ring D with involution, we mean a *-closed normal subgroup T of D’ that is closed
under sums and contains every xx*, x #0. By an ordering of D, we mean a preordering T such that for each non-zero
symmetric element s, T contains either s or —s. We note that 2(D)cT for every ordering T of D, and D possesses an
ordering if and only if Og Z(D) (see [6]).
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A valuation can be associated with an ordering, the following construction of such a valuation can be checked as in
[7]. Call x bounded if xx* < r for some re Q" (the positive rationals), and call x infinitesimal if xx* < r for every reQ".
The set V of bounded elements is a *-valuation ring [7], which we call it the bounded subring. The set J of infinitesimal
elements, which equals the set of noninvertible elements in ¥, is a *-closed two-sided ideal in ¥ that contains every
proper ideal. By standard construction (see[5]), any *-valuation subring V gives rise to a *-valuation on D (a valuation ©
onto a totally ordered abelian group with the additional property that o(x*) = w(x) for all non-zero x € D). We call the
valuation associated to the bounded subring, the order valuation. In fact, for every ordered division ring D with
involution, the order valuation o is compatible with the ordering, in the sense that 0<x<y => o(x) = o(y) (see [7]).

Exactly as for an ordering, one can define the bounded elements and the infinitesimals at a given preordering of the
*.division ring. For a preordering T, let V,, J, denote the sets of all bounded elements and infinitesimals respectively.
One can adapt the proof of Theorem 17 in [8], to get:

Theorem 14. Let {T;},.; be the family of orderings containing a given preordering T, of the *-division ring D. Let V, J;
be the subring of bounded elements and the ideal of infinitesimals, respectively, attached to the ordering 7;. Then
Vo=NVyJo=NJ;.

Corollary 15. For any preordering T, of D, the bounded subring V, is a *-valuation subring.
Proposition 16. For any preordering T, of D, the bounded subring ¥, is a Priifer ring.

Proof. Let M be a maximal *-ideal of V,. Let O#s*=seD, and K = Q(s), a *-closed commutative subfield of D. Then
T = T,NK is a preordering of K, and its bounded subring is ¥"=V,NK. Let M~ = MNK, then M~ is a *-prime
*.ideal of V~. Now V'~ is a Priifer subring of the commutative field K, and so by [2, Theorem 6.6}, (V¥ “)),” is a valuation
subring. If x & (V,)us, then xe (V7)) 7, so that x“e(V’ W~ < (Vo). Hence, (V,)u is a *-valuation subring.

Corollary 17. V, is the intersection of all its *-valuation overrings. In fact, V, is the intersection of all *-valuation
subrings which are compatible with T,

Corollary 17, is an immediate consequence of Proposition 16 and Corollary 13.

If D is an ordered division ring with involution, i.e., 0¢Z(D), then Z(D) is a preordering of D. Then, the bounded
subring V, associated to Z(D) is the intersection of all *-valuation rings compatible with (D), which is equal to the
intersection of all real *-valuation rings (see [9]). Thus, we have

Corollary 18. If D is an ordered division ring with involution, then the intersection of all real *-valuation rings is a
Priifer ring.
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