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ABSTRACT 

The notion of a fractional ideal of a ring with involution is studied to give equivalent 
conditions for a subring to be a PrUfer ring in a division ring D with involution. Also, a 
construction of a certain PrUfer ring associated with a given preordering of D is given. 
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PRUFER RINGS IN *·DIVISION RINGS 

1. INTRODUCTION 

As in the commutative case, many of the rings which arise in connection with preorderings in division rings are PrUfer 
rings, i.e., the localizations at all maximal ideals are valuation rings. Prtifer rings also help in studying Approximation 
Theorems for Valuations. In this work, these subrings are studied in the case of a division ring D with involution, to give 
more properties of orderings and valuations of division rings with involution. In general, rings with involution have been 
studied intensively in some applications to Lie algebras, Jordan algebras, and rings of operators. More recently, the 
category of rings with involution has been investigawd (see [1]). The ideals of an object in this category must be closed 
under the involution *, called *-ideals. 

In Section 3, the notion of a fractional *-ideal is studied in the case of a *-ring (a ring with involution); for the 
commutative case one can refer to [2]. It is shown that a symmetric subring R of D is a Prtifer ring if and only if each 
finitely generated fractional *-ideal of R is invertible. Furthermore, any total *-subring that contains a Prtifer ring B is the 
localization of B at some *-prime *-ideal of B. 

For a preordering TeD, one can construct a subring consisting of elements of D, which are bounded by some rational 
number with respect to the preordering; this subring will turn out to be a Prtifer ring. This ring is a useful tool in studying 
preorderings in division rings with involution. In fact, it is shown that this subring is the intersection of all 
*-valuation subrings which are compatible with the preordering. 

2. 	 DIVISION RINGS WITH INVOLUTION 

In this section, we state the basic definitions and some facts that will be needed in this work. Hereafter D will be a not 
necessarily commutative division ring with involution (an anti-automorphism of period 2), and D· will denote its 
multiplicative group of non-zero elements. We simply say D is a *-division ring. If R is a *-closed subring (reR implies 
r*E R), then we say that R is a *-subring of D. If R is a *-subring of D, a non-empty subset ScR is called a denominator 
set if O~ S, S is *-closed, S is multiplicatively closed, and S satisfies the Ore-condition (for re R and sE S there is bE R and 
tES such that rt =sb). In fact, for any arbitrary ring, one can define a right and left denominator set, and right and left 
ring of fractions of R, but from [3], any right ring of fractions of a ring with involution R is also a left ring of fractions of 
R. So we can speak only of rings of fractions of rings with involution. Also, from [3], if X is a ring of fractions of R, then 
there is a uniquely determined involution on X, which is the extension of the involution defined on R. If R is a *-subring 
of D, and ScR is a denominator set, then the ring of fractions RS- I = {rs·1 

: rE R, sE S} is a *-subring of D. Also, 
Rc RS-1

, because S is non-empty and for each rE R, r = (rs)s-I E RS-1 
, for some sE S. 

Lemma 1. IfReD is a *-subring which is closed under conjugation, then 

(i) 	 all ideals are two-sided ideals and left submodules of DR are right, 

(ii) 	any subset ScR with O~ S satisfies the are condition. 

Proof 

(i) 	 If I is a left ideal in R, then for rE Rand xE I, xr = xr X-I XE I and so I is a two-sided ideal. Similarly for 
R-submodules of DR. 

(ii) 	 Let re R, sE S. By assumption s:;tO and so S·I rs =bE R. Hence rs =sb. Take t =s and the Ore-condition is satisfied. 

Following [4], a *-ideal P of a *-ring R is called *-prime if IKr;;,;. P implies Ir;;,;.P or KCP for *-ideals I and K. Obviously 
any prime ideal is *-prime. From [4], P is a *-prime *-ideal of R if and only if for a, bE R such that aRbr;;,;.P and aRb*r;;,;.P, 
aEPorbEP. 
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Definition. Let R be a subring of D. 

(1) 	R is called total if, for every xe DO, x or x-Ie R. 

(2) 	 R is called symmetric if it contains x*x- I for every xe DO. 

(3) 	 R is called a *-valuation ring if it is total and symmetric. 

From [5], if R is a symmetric subring of D, then R is *-closed, closed under conjugation and each ideal I in R is 
*-closed, two-sided, and has the property that abe I implies bae I. Moreover, R contains the commutator subgroup of DO, 
i.e., aba-lb-IeR for every a, be D'. R is a symmetric subring of D if and only if R contains x-Ix* for every xe DO. If R is a 
*-closed total subring which is closed under conjugation then R is symmetric and so it is a *-valuation subring. 

Lemma 2. Let D be a *-division ring, R is a symmetric subring of D, and PeR is a *-prime *-ideal of R, then R-P is a 
denominator set. 

Proof. Clearly R-P is *-closed and does not contain zero. By Lemma 1, R-P satisfies the Ore-condition. It remains to 
show that R-P is multiplicative. Let a, be R-P. Since ae P, be P, there is an element xe R such that axbe P or axb*e P. 
Assume axbep, then abx'= ab (b-Ixb) =axbep, for x' =b-IxbeR. If abeP, then abx'eP, a contradiction. Then 
abeR-P. Now, assume axb*eP. By using similar arguments, we get ab*eR-P. So ab b-'b* =ab*eP. If abeP, then 
ab b-' b*e P (where b-Ib*e R), which is a contradiction. Hence abe P and R-P is a multiplicative set. 

Definition 

(1) 	Let RcD be a symmetric subring, and PcR be a *-prime *-ideal, then from lemma 2, R-P is a denominator set. 
Define the localization ofRat P, denoted Rp to be {rs-I : reR, seR-P}. This is a *-subring of D containing Rand 
hence also symmetric. 

(2) 	 A symmetric subring RcD is a Prufer ring if the localization at each maximal *-ideal of R is a *-valuation ring. 

Since any localization of R is symmetric, then a symmetric subring RcD is a Prtifer ring if and only if the localization 
at each maximal *-ideal of R is a total subring. 

3. FRACTIONAL *·IDEALS 

We discuss in this section the notion of fractional *-ideal relative to a *-subring of D. 

Definition. Let R be a *-subring of D. A *-closed R-submodule AcD is afractional *-ideal of R if there is a non-zero 
element reR such that rA~R and r*A~R. 

Since A and Rare *-closed, then we also have Ar~R and Ar*~R; and hence we do not need to define right and left 
fractional *-ideals. 

Clearly, every fractional *-ideal is a fractional ideal. Also, each *-ideal of R is a fractional *-ideal of R, and the 
intersection of two fractional *-ideals is a fractional *-ideal. We say A is a principal fractional *-ideal if A=Ra, a=a**O, 
aeR, a-IeR. We define finitely generated fractional *-ideals in the obvious way. For a fractional *-ideal A, let 
[A:R] = {xeD: xA~R, x*A~R} = {xeD: Ax~R, Ax*~R}. 

If R is a *-subring which is closed under conjugation, then rA~R is equivalent to Ar~R, since raeR implies 
ar = r-' (ra) re R. The following lemma gives some more properties of such subrings. 

Lemma 3. Let R be a *-subring, then 

(i) 	 The sum of two fractional *-ideals is a fractional *-ideal. 

(ii) 	 IfA is a fractional *-ideal, then [A:R] is a fractional *-ideal. 
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Proof. 

(i) 	 Assume A and B are fractional *-ideals of R. Clearly, A+B = {a+b : aEA, bEB} is a *-closed R-submodule. Let 
rp r2ER be such that rlA~, rl*A~ and rfi~, r2*B~. Now, rlr2A~rlA because RA~A as A is an R-submodule. 
So, rlr2A~ rlA~. Then (rlr2)(A+B) = rlr2A+rl(rfi)~. Similarly, (rlr 2)* (A+B) ~. 

(ii) 	By definition [A:R] is *-closed. Since A is a fractional *-ideal, then there is O~rER such that rAc.R, r*Ac.R. Then 
also both r[A:R]~, /[A:R]~. Because, if xE [A:R], so that xA~ and x·A~, then rxA~rR~. Hence r[A:R]~. 
Similarly for /. The proof that [A:R] is an R-submodule goes through in the same way. 

Lemma 4. IfR is a symmetric subring, and A and B are fractional *-ideals of R, then the product AB = : {finite sums of 
elements of the form La; bi or Ib j aj, where ajEA, bjE B}, is a fractional *-ideal. 

Proof. Clearly AB is *-closed R-submodule. Let r l, r2ER be such that rlA~, rl*A~ and r2B~, r2*B~. Then for aEA, 

bEB, we have 

r2r l(ab) =r2 (ria) r2-
1(r2b) E R, and 

r2r l(ba) =(r2b) (b-\brl-
I) (ria) E R, 

Iwhere R contains the commutator b-Irlbrl- . Thus r2 (AB) ~. Similarly, (r2r l)* (AB) ~ and AB is a fractional *-ideal. r l 

Definition. A fractional *-ideal A is invertible if there is some fractional *-ideal A ' such that A ' A=R. 

Since A, A' and R are *-closed, then A ' A=R is equivalent to AA ' =R. In the commutative case, if A is invertible and 
AA ' =R, then A ' =[A:R] (see [2, Proposition 6.4]). For a *-ring R, we have 

Lemma S. Let R be a symmetric subring, then a fractional *-ideal A is invertible if and only if A[A:R] = R. 

Proof. If A[A:R] = R, then A contains an element of Rand [A:R] is a fractional *-ideal by Lemma 3. Hence A is 
invertible. Conversely, if A is invertible, then there is a fractional *-ideal A ' such that AA ' =R. Then A ' ~[A:R], and so 
R =AA ' ~A[A:R] c.R Thus A[A:R]=R. 

Lemma 6. If A is a fractional *-ideal of a symmetric subring R of D and S is a denominator set of R, then AS-I is a 
fractional *-ideal of RS-1containing A. 

Proof. First we show that AS-I is closed under addition. Let as-I, brlE AS-1 .Now 

Since rl st E R, as R is closed under conjugation; then at, b (I-I st)EA, as A is an R-submodule. So as-I + brl = 
(at+b(t- I st»(strIE AS-I. Now, assume as-IEAS-I ,rrlE RS-I foraEA, reR, ands,tES. So, 

(as-I)(rrl) = a(s-Ir)rl 

=a(r
1 

Sl -I)rl, for some rIER, SIES (from the Ore condition) 

= (a r l )(tslrIEAS-1 (as A an R-submodule), 

and AS-I is a right RS-I-submodule. Since RS-I is symmetric (as it contains the symmetric subring R), then it is closed 
under conjugation so that: 

(rrl)(as- I) = (as-I) [(as-Ir l (rrl)(as- I 
) ] EAS-1 , 


and AS-I is also a left RS-1-submodule. 
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Let reR be such that rAr;;;fl., then r can be considered in RSland r(AS1) kRSI. Finally, to show that ASI is *-closed, 
assume as-IEASI for some aEA and SES. Since A and S are *-closed, then a*EAcASI and S*-l E RSI . So, 
(as-1)* =S*-I a* E AS-I as AS-I is an RS-1-submodule. 

The following theorem shows that any fractional *-ideal A of a symmetric subring R of D, is not only a subset of its 
quotient fractional *-ideal AS-I for any denominator set S; but actually it is the intersection of certain fractional *-ideals 
in the ring of fractions of R. Also, this theorem is a key result in proving that any PrUfer ring is the intersection of all its 
*-valuation overrings. Now let R be a symmetric subring of D and P a *-prime *-ideal of R. Then from Lemma 2, 
S=R-P is a denominator set, we write Ap for the fractional *-ideal AS-I. 

Theorem 7. Let A be the set of all maximal *-ideals of a symmetric subring ReD. Let A be a fractional *-ideal of R, 

then A = nAM' 
MEA 

Proof. Clearly A k nAM' Conversely, let x E nAM' Then for every ME A there is SMER-M and aMEAM with 
~A ~A 

x = S~ aM. SO, SM x = aMEA. Let B be the *-ideal of R generated by SM' Then there is a maximal *-ideal M of R with 

BnRkM, and so SME BnRkM, a contradiction. Hence 1 = rM I SM I + ... + rMn SMn for a finite number of maximal 

*-ideals MjE I\. , and rMj ER. Multiplying on the right by x, we get x = rM I SM I X + .,. + rMn SMn X. Since SMj x EA, for 
every i = 1,2, ... , n, and A is an R-submodule, then xEA as desired. 

Lemma 8. Let A be a finitely generated fractional *-ideal of a symmetric subring R of D. Let M be a maximal *-ideal in 

R. Then [AM:RM] = [A:R]M' 

Proof. Since [A:R]M is both right and left ring of fractions, we can write any element XE [A:R]M as S-Iy or ys-I for 
yE [A:R] and SER-M. For x = S-Iy, sER-M, yAr;;;fl., we have sxAM = yAM = yAS1r;;;fl.SI = RM. So, xAM = s-lsxAMkRMand 

hence [A:R]M k [AM:RM]. 

-I
Now, to prove the converse, we assume A = R[aJ,a2, ... ,an]. Let xE [AM:RM], then xAMkRM and xai = Sj rj, for some 

rjER and sjER-M, i =1, ... , n. So, SjX a,ER for i = 1, ... , n. From (Sl ... sn) x aj= SI ... Si_1 LSi (Si+1 ... sn) s;l] SiX ai, and 
since R is closed under conjugation, we have (SI ... sn) x aiE R for every i = 1, ... , n, so that (SI ... sn) x Ar;;;fl.. Hence 
(SI ... sn) x E [A:R]. Thus x = (SI ... snrl (SI ... sn) x E Sl [A:R] = [A:R]M' 

Corollary 9. Let A be a finitely generated fractional *-ideal such that AM is invertible for each maximal *-ideal M. Then 
A is invertible in R. 

Proof. Since AM is invertible, then by Lemma 5, 

AM [AM: RM] =RM. 

So, 

Now, taking the intersection over the set I\. of all maximal *-ideals, and noting that A = nAM ' [A:R] =n[A: R]M , 
and R = nRM (from Theorem 7); we get A[A:R] = R, and hence A is invertible. MEA MEA 

MEA 
Lemma 10. Let R be a total *-subring, then every finitely generated fractional *-ideal is principal, and hence invertible. 

Proof. We first claim that the set of all fractional *-ideals is totally ordered. Suppose that M, N are two fractional 
*-ideals such that Mc:t.N and Nc:t.M. Let XEM-N and YEN-M. Since (xy-I)y =xi.N and (y[I)X =yi.M, we have xy-1i.R 
and yx-1i. R and so R is not total, a contradiction. Now, let A =Ral + ... + Ran be a non-zero finitely generated fractional 
*-ideal of R. By the above, {RaJ, ... , Ran} has a largest element, say Rat;;JRaj (i=I, ... , n). Then Ar;;;fl.al c A, and A is 

principal. 

We now come to the main result of this section. This result gives equivalent conditions for a symmetric subring to be a 
PrUfer ring. These conditions generalize those in the commutative case. 
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Theorem 11. The following are equivalent for a symmetric subring R of D. 

(i) For each *-prime *-ideal P, Rp is a *-valuation ring. 

(ii) For each maximal *-ideal M, RM is a *-valuation ring. 

(iii) Each finitely generated fractional *-ideal of R is invertible. 

Proof. 

(i) ~ (ii) is clear. 

(U) ~ (iii) Let A be a finitely generated fractional *-ideal. By (ii), RM is total for every maximal *-ideal M. Hence, by 
Lemma 10, the finitely generated fractional *-ideals AM in RM are invertible, for every maximal *-ideal M. Thus A is 
invertible by Corollary 9. 

(iii) ~ (U) Let P be a *-prime *-ideal in R. As in the commutative case [2], using (iii) one can show that the set of 

principal ideals of Rp is well ordered by inclusion. Now, let x =!:E D, where a, b are non-zero elements in R. If xeRp, 
b 

then Rp.actRp.b. So, by the above, Rp.bt;;.Rp.a. Hence X-I = b E Rp and Rp is a total subring. Since Rp is also 
a 

symmetric, then Rp is a *-valuation sUbring. 

Lemma 12. Suppose BcD is a PrUfer ring and A is a total *-subring containing B. Then A = Bp for some *-prime *-ideal 
PofB. 

Proof. Since A contains the symmetric subring B, then A is symmetric, and so it is a *-valuation subring. Let I be the 
maximal *-ideal of non-units of A, and let P =I(l B. Then, clearly P is a *-prime *-ideal in B. But B is a PrUfer ring, so 
Bp is a *-valuation ring, and by construction Bpr;;;.A. We show now that Ar;;;Bp. Assume aEA and aeBp, then 
a-I =rs-IEP Bp for some reP and sEB-P. Now, rePt;;l implies that a-lEI, which contradicts aEA. Hence Ar;;;Bp, 'as 

required. 

Corollary 13. Suppose BcD is a PrUfer ring. Then B is the intersection of all its *-valuation overrings. 

Proof. Let C denote the intersection of all *-valuation overrings of B. Clearly Bc::,C, and we will show that Cr;;;B. By 
Lemma 12, for a *-valuation subring A containing B, we have A=Bp for some *-prime *-ideal P. Since B is a Prttfer ring, 
then Bp is a *-valuation ring. Hence C = nBp, where the intersection over all *-prime *-ideal of B. By Theorem 7, 
B =nBM, where the intersection over all maximal *-ideals of B. Then C = nBp c nBM = B, as desired. 

4. ORDERINGS AND PRUFER RINGS 

In this section, it will be shown that the bounded subring associated to a given preordering of D is a Prtifer ring in D. 
First, we give the basic facts about orderings and valuations of a division ring with involution D. Let S denote the 
subgroup of D' generated by the symmetric elements (s =s*, ();tSE D). Let SeD) denote the subgroup generated by the 
norms xx*, XED', and the commutators XYX·1y-l and yxy-IX-l for XED' and yES. One checks easily that the subgroup SeD) 
is closed under * and normal in D'. Let l:(D) denote the set of sums of elements from SeD). The set l:(D) is a *-closed 
normal subgroup when it does not contain O. 

By a preordering of a division ring D with involution, we mean a *-closed normal subgroup T of D· that is closed 
under sums and contains every xx*, X :;t:0. By an ordering of D, we mean a preordering T such that for each non-zero 
symmetric element s, T contains either s or -so We note that ,,£(D)cT for every ordering T of D, and D possesses an 
ordering if and only if Oe l:(D) (see [6]). 
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A valuation can be associated with an ordering, the following construction of such a valuation can be checked as in 

[7]. Call x bounded if xx* < r for some reQ+ (the positive rationals), and call x infinitesimal if xx* < r for every reQ+. 


The set V of bounded elements is a *-valuation ring [7], which we call it the bounded subring. The set J of infmitesimal 

elements, which equals the set of noninvertible elements in V, is a *-closed two-sided ideal in V that contains every 

proper ideal. By standard construction (see[5]), any *-valuation subring V gives rise to a *-valuation on D (a valuation 0> 


onto a totally ordered abelian group with the additional property that o>(x*) = o>(x) for all non-zero x e D). We call the 

valuation associated to the bounded subring, the order valuation. In fact, for every ordered division ring D with 

involution, the order valuation 0> is compatible with the ordering, in the sense that O<xS;y => o>(x) ~ o>(y) (see [7]). 


Exactly as for an ordering, one can defme the bounded elements and the infinitesirnals at a given preordering of the 

*-division ring. For a pre ordering To, let Vo, Jo denote the sets of all bounded elements and infmitesirnals respectively. 

One can adapt the proof ofTheorem 17 in [8], to get: 


Theorem 14. Let {1';} iel be the family of orderings containing a given preordering To of the * -division ring D. Let Vi, Jj 


be the subring of bounded elements and the ideal of infmitesirnals, respectively, attached to the ordering 1';. Then 

Vo = nVi, Jo= nJ j • 

Corollary IS. For any preordering To ofD, the bounded subring Vo is a *-valuation subring. 

Proposition 16. For any pre ordering To ofD, the bounded subring Vo is a Priifer ring. 

Proof Let M be a maximal *-ideal of Vo. Let O:t;s*=seD, and K = Q(s), a *-closed commutative subfield of D. Then 

T' = TonK is a preordering of K, and its bounded subring is V'=VonK. Let M' = MnK, then M' is a *-prime 

*-ideal of V'. Now V' is a Priifer subring of the commutative field K, and so by [2, Theorem 6.6], (V')M' is a valuation 

subring. If x E (Vo)M, then xe (V')M', so that X-I e (V')M' ~ (Vo)M. Hence, (Vo)M is a *-valuation subring. 


Corollary 17. Vo is the intersection of all its *-valuation overrings. In fact, Vo is the intersection of all *-valuation 

subrings which are compatible with To. 


Corollary 17, is an immediate consequence of Proposition 16 and Corollary 13. 

If D is an ordered division ring with involution, i.e., OE1:(D), then 1:(D) is a preordering of D. Then, the bounded 

subring Vo associated to 1:(D) is the intersection of all *-valuation rings compatible with 1:(D), which is equal to the 

intersection of all real *-valuation rings (see [9]). Thus, we have 


Corollary 18. If D is an ordered division ring with involution, then the intersection of all real *-valuation rings is a 

Priifer ring. 
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