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ABSTRACT 

This paper looks at radical semi groups under the simple radical. Properties under which 
the class of radical semi groups is closed are examined. The main focus of the paper is the 
structure of globally idempotent radical semigroups with maximal right congruences. 
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RADICAL SEMIGROUPS WHERE 8 2 = 8 

In this work we will look at one of many semigroup analogs to the Jacobson radical and use it to help 
understand the structure of certain semi groups [1,2]. We will consider the semigroup radical, rad(S), introduced 
by Hoehnke [1] and referred to as the simple radical by Roiz and Schein [3]. We will use the representation of 
rad(S) as the intersection of all maximal modular right congruences. In the second section we will point out 
some closure properties of the class of all radical semigroups. The focus of this paper is the third section, where 
we will look at the structure of radical semigroups with maximal right congruences in which S2 = S. In the 
language of Schein [41, this would be the globally idempotent radical semi groups with maximal right congruences. 
This then classifies the structure of all finite globally idempotent radical semigroups. Prior work by Oehmke [21 
classified radical monoids and Tishchenko [51 and Hoehnke [1] have classified all radical semigroups with zero. 
In the final section, we take a brief look at non-globally idempotent radical semigroups. 

1 ELEMENTARY DEFINITIONS AND RESULTS 

Throughout this paper S is a semigroup and S1 is the semigroup with an identity adjoined. All concepts 
and notation of the theory of semigroups not defined here are as in [6]. If p is a [right) congruence on S with 
a, b E S, we will use the notation (a, b) E P to denote that a and b are related under p. [a]p will denote the 
equivalence class of p containing a. The partial order for equivalence relations can be used as a partial order for 
[right] congruences as well. The meet and join of two [right] congruences are defined accordingly. We will denote 
the trivial congruence by t and the universal congruence by v. 

If I is a [right] ideal of S, we will denote the Rees [right) congruence associated with I by R/; this is defined 
by (a, b) E R/ ¢:} a = b or a, bE I. 

If T is an equivalence class of a right congruence and a E S, then define the set a-IT = {s E SII as E T}. 

The following is then the largest right congruence having T as an equivalence class: (a, b) E IT ¢:} a-IT = b-1T. 

2 CLOSURE PROPERTIES OF RADICAL SEMIGROUPS 

The intersection of all maximal modular right congruences, rad(S), is a two sided congruence and following 
Hoehnke [1], we will take this as the definition of the radical of S. A semigroup S is said to be semisimple if 
rad(S) = t. S is said to be radical if rad(S) = v, in other words if S has no maximal modular right congruences. 
As examples, the reader can verify that a left zero semigroup is radical and the infinite cyclic semigroup on a 
single generator is semisimple. 

We will primarily be looking at radical semigroups in this paper. Let A be the class of all radical semigroups. 
We begin this study by looking at some closure properties of A. The first is true of radicals in general. The 
second shows that the class of radical semigroups is closed under taking direct products and the proof can be 
found in [7]. 

Proposition 2.1 If S is a radical semigroup and <p is a semigroup homomorphism from S onto <p(S), then <p(S) 

is a radical semigroup. In other words, A is closed under homomorphisms. 

Proposition 2.2 If Sa for a E A, where A is an index set, is a family of radical semigroups then IT Sa is a 
a 

radical semigroup. In other words, A is closed under direct products. 

We now turn our attention to the ideals of semigroups. Tishchenko [8] has shown, having given a counter 
example, that the radical of an ideal is not the restriction of the radical of the semigroup to the ideal. However, 
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Slover [9] showed that if the semigroup has a left zero, then rad(S)IJ = rad(I). We show here that in the case 
of radical semi groups we also get the result. In other word, A is closed under ideals. 

As Oehmke showed in [10], if p is a right congruence on S and a E S then the conjugate, pa, of p by a is a 
right congruence on S where pa is defined as follows; 

(x,y) Epa {::} (ax,ay) E p. 

In addition to giving us new right congruences on a semigroup, the idea of a conjugate can also be used to 
extend a maximal right congruence i on an ideal T of S to a right congruence on the entire semigroup. By 
conjugating a maximal modular right congruence i on T by its left identity, we are then able to create a maximal 
modular right congruence on S whose restriction to T is exactly i. This then gives us our desired result. 

Lemma 2.1 Let i be a maximal right congruence on an ideal T of S and let e E T. Then 
ie {(x,y) E S x S I (ex,ey) E i} is a right congruence on S. 

Proof: ie is clearly an equivalence relation on S, thus we only need to verify that ie is right compatible. To 
this end, let s E S and (x, y) E Ie. We must show that (xs, ys) E ie or that (exs, eys) E i. Note that since 
s may not be in T, this is not trivial. First notice that exs, eys E T and (ex, ey) E i. Since T is a two-sided 
ideal, for any u E T we have (exsu, eysu) E i. Now assume that there is an s E S such that (exs, eys) f/. i. Fix 
vET and let V = [exsV]r. Note that (exsv, eysv) E i. Now construct Tv. It is straightforward to see that 
(exs, eys) E Tv. From the definition of Tv and the fact that V is an equivalence class of i we see that i ::; Tv, 
but since i is maximal it must be that i = Tv or Tv = v. The first of these implies that (exs, eys) E i which 
is a contradiction and the second implies that V = T which is also a contradiction. So it must be the case that 
Vs E S (exs, eys) E i or that ie is a right congruence on S. D 

We now state and prove our desired theorem. 

Theorem 2.1 If S is a radical semigroup with a two-sided ideal T, then when treated as a semigroup on its 
own, T is a radical semigroup. 

Proof: Assume that T is not a radical semigroup. Then there exists a maximal modular right congruence i on 
T. Let e E T be the left identity for i. By Lemma 2.1 ie is a right congruence on S. It is straightforward to see 
that ie is modular with left identity e and that ielT = i. Furthermore, note that since for all s E S we have 
(es, s) E ie, T intersects every ie-class. To see that ie is maximal assume that 0' is a right congruence on S such 
that ie < 0'. Then ielT < O'IT' But ielT = i and i is a maximal right congruence on T, so O'IT = v and hence 
0' = V on S. Thus ie is a maximal modular right congruence on S and hence S is not a radical semigroup. 0 

3 THE STRUCTURE OF RADICAL SEMIGROUPS WITH 8 2 = 8 

For this section, we assume that S is globally idempotent. The simplest way to achieve this is to have an 
identity. The structure of radical monoids was determined by Oehmke in [2], and the theorem is included here 
for completeness. 

Theorem 3.1 (Oehmke) If S is a radical monoid, then S is a group with no maximal subgroups. 
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From this point on, we will assume that in general 8 does not have an identity element. Let p be a right 
congruence on a semigroup 8. By a generator for p we mean an element m E 8 such that for all y E 8 there 
exists z E 8 such that (mz, y) E p. Notice that if p is modular, then any left identity is a generator for p. 

Conjugation of a right congruence by one of its generators will produce a modular right congruence. 

Lemma 3.1 Let p be a right congruence with generator m on a semigroup 8. Then pm is a modular right 

congruence. 

Proof: Let e E 8 be such that (me, m) E p. Thus, for any s E 8 we have (mes, ms) E p and hence (es, s) E pm. 

Thus e is a left identity for pm. 0 

We now show how to find a generator for a maximal right congruence. 

Lemma 3.2 Let 8 be a semigroup such that 8 2 = 8. Let p be a maximal right congruence on 8 then p has a 

class that is not a right ideal if and only if p has a generator. 

Proof: Let x be in a class, [x]p, that is not a right ideal. Then, since 8 2 = 8, find m, yES such that x = my. 

Now consider the right ideal x8 U {x} = xS!. This right ideal intersects [x]p but can not be contained in it, 
otherwise [x]p is a right ideal [2, Lemma 2J. But then x8! must intersect every class of p [2, Lemma 1]. Now 
notice that xS! ~ m8 and hence mS intersects every p-class as well. So, for any u E S we can choose z E 8 
such that mz E [u]p. Thus m is a generator for p. To see the converse, note that any element of a right ideal 
class can not be a generator. 0 

The fact that every element can be written as a product is a necessary hypothesis that was neglected by the 
author in a similar result, Lemma 4, in [2]. Consider the three element semigroup 8 = {a, b, z} where any product 
of elements is z. Then the partition {a, b} and {z} forms a maximal right congruence without a generator that 
has a class, {a, b}, that is not a right ideal. 

We now know when a maximal right congruence has a generator and we know that conjugating by a generator 
gives a modular right congruence. The next question that begs to be asked is what happens when a maximal 
right congruence is conjugated by a generator. We see that the conjugate is itself a maximal right congruence. 

Lemma 3.3 Let p be a maximal right congruence on S with generator m. Then pm is a maximal right congru

ence on 8. 

Proof: Assume that pm is not a maximal right congruence. Then there exists a right congruence a such that 
pm < a < 1/. We first show that the following inverse conjugate, ma, is a right congruence on 8: 

(a, b) E ma {:} :3 s, t E 8:3 (s, t) E a and (ms, a), (mt, b) E p. 

We must first show that ma is an equivalence relation. Let a E 8, then since m is a generator for p we 
can find s E S such that (ms, a) E p. Since a is a right congruence (s, s) EO', so (a, a) E ma and ma is 
reflexive. To see that it is symmetric, simply switch the order in which sand t are chosen. To see that ma 

is transitive assume that (a,b), (b,c) E mO'. Thus there exists s,t,u,v E S such that (s,t), (u,v) E a and 
(ms, a), (mt, b), (mu, b), (mv, c) E p. We choose s and v as our elements of 8. Clearly (ms, a), (mv, c) E p, so 
all that needs to be shown is that (s,v) E a. Notice that (mt,b), (mu,b) E p so (mt,mu) E p and (t,u) E pm. 

But this implies that (t, u) E a and hence that (s, v) E a. Thus ma is an equivalence relation. Showing that ma 

is right compatible is straightforward. 
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We now show that if our original assumption, that pm < a < l/, is true, then p < ma < l/, which contradicts 
the maximality of p and thus pm must be maximal. 

To see that ma is proper, notice that if not, then for all u, v E 8 we have (mu, mv) E ma. This implies 
that there are s,t E 8 such that (s,t) E a and (mu,ms), (mv,mt) E p. So (u,s), (v,t) E pm < a. Now by 
transitivity of a, we get (u, v) Ea. Hence a = l/, which is a contradiction, so ma is proper. 

To see that p < ma, note that if (a, b) E P then there exists s E 8 such that (ms, a), (ms, b) E P and hence 
(a, b) E ma, thus p ~ ma. We now consider the case that p = ma. Let (s, t) E a. We show that (s, t) E pm. 
Clearly (ms,ms), (mt,mt) E p and thus there exists s,t E 8 such that (s,t) E a and (ms,ms), (mt,mt) E p 
and so by definition (ms, mt) E ma. But if ma = p then (ms, mt) E p and (s, t) E pm. So if p = ma then 
pm = a which is a contradiction. Hence p < ma < l/. But as mentioned, this contradicts the maximality of p 
and thus pm is maximal. 0 

We are now ready to discuss the structure of radical semigroups with maximal right congruences such that 
8 2 = 8. 

Theorem 3.2 Let 8 be a radical semigroup with a maximal right congruence such that 8 2 = 8. Then 8 = I U J 
where I and J are disjoint right ideals. 

Proof; Let p be a maximal right congruence on 8. Then p has at least two classes. If p has any classes that are 
not right ideals then by the above lemmas we can construct a maximal modular right congruence contrary to 
the radicalness of 8. So all of the p classes must be right ideals and by [2, Lemma 3] there must be exactly two 
right ideal classes I and J. 0 

We point out here that this decomposition need not be unique, consider a left zero semigroup. There are, 
however, semigroups in which this decomposition can be done in only one way. It is also worth pointing out that 
this result is not a biconditional. There are in fact semisimple semigroups which can be decomposed in this way. 

The next question to consider is whether or not these semi groups can have two-sided ideals. We will see that 
radical semi groups with maximal right congruences such that 8 2 = 8 have no zeros and the factor semigroups 
of those that have ideals can have no maximal nor modular right congruences. We begin by stating a result of 
Hoehnke [1]. 

Theorem 3.3 (Hoehnke) If 8 is a semigroup with a left zero, then every proper modular right congruence is 
contained in a maximal, and necessarily modular, right congruence. 

Theorem 3.4 If 8 is a radical semigroup where 8 2 = 8 and 8 has a maximal right congruence, then 8 does 
not have a zero. 

Proof; Decompose 8 into its two disjoint right ideals I and J. If one contains a two-sided zero then the other is 
not a right ideal. 0 

Theorem 3.5 If 8 is a radical semigroup where 82 = 8, 8 has a maximal right congruence and 8 has a proper 
two-sided ideal T, then 8IT has no maximal nor modular right congruences. 

Proof: First note that since 81T is a homomorphic image of 8 it is radical by Proposition 2.1 and clearly every 
element in 81T can be written as a product. Since 81T has a zero, it has a left zero and hence by Hoehnke's 
result, 8 IT can not have a modular right congruence and remain radicaL If 8 IT has a maximal right congruence 
the above theorem is contradicted. Thus 8 IT has no maximal nor modular right congruences. 0 
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We point out here that since sIT has no maximal right congruences it can not have a maximal ideal and 
thus must be infinite. Furthermore, since S = I U J, the ideal T and all ideals containing it must intersect both 
I and J. 

Since finite semigroups have maximal right congruences we get the following corollary. 

Corollary 3.1 A finite radical semigroup such that S2 = S is simple. 

So finite globally idempotent radical semigroups are simple semigroups that can be decomposed into a disjoint 
union of two right ideals. 

4 WHEN 8 2 "# 8 

We now give a brief discussion to the case in which S2 =f:. S and a few conjectures are made as to the structure 
of radical semi groups of this type. We begin by noting that the free semigroup on a set of elements is not radical, 
in fact it is semisimple. 

Proposition 4.1 The free semigroup, S, on a set of elements A is semisimple. 

Proof: Fix a prime p. Create the following equivalence relation PP' 

(x,y) E Pp {:} Ixl == Iyl modp 

where Ixl is length of the word x in terms of the number of elements of A. Since there are no relations on the 
generators this is well defined and is clearly right compatible. It is also modular, where the left identities are 
those words whose length is a multiple of p. To see that it is also maximal, let 0' > pp. Then there are elements 
x, yES such that (x, y) E 0' but (x, y) t/. pp. Since 0' > Pp we can assume with out loss of generality that 
Ixl < Iyl ::; p. Let n = Iyl - Ixl· Then by multiplying on the right by an element in A it can be shown that if 
lsi == ItImod n then (s, t) E 0'. Since p is prime and n < p we see that (n,p) = 1 and hence for any s, t E S, 
where lsi> Itl, there exists positive integers k and m such that kn - mp = Isi-itl or kn + ItI = mp + lsi. Now 
find z E S such that Izi = kn + ItI = mp + lsi. Then (s, z), (z, t) E 0' and thus (s, t) E 0'. So 0' = v, and Pp is 
maximal. It is now clear that rad(S) = n{p I p is maximal and modular} ::; n{pp Ip is prime} = L. 0 

Let S be a semi group such that S2 =f:. S. Decompose S in the following way. Let Al = {x E S I Vs, 
t E S x =f:. st}. These are the elements of S that can not be written as a product. Now create the ideal 
II = S - AI' Let A2 = {x E II IVs, tEll X =f:. st} and 12 = h - A 2. Continue to recursively define An and In. 
Note that each of the In are ideals of S. It can be shown that any element in Ai can be written as a product 
of elements in AI. From the above result, if S is a radical semigroup then there must be some relations on the 
generators AI' With the additional assumption that the semi group has the descending chain condition on ideals, 
we can get a clearer understanding of the structure of these radical semigroups. 

Proposition 4.2 Let S be a radical semigroup with the descending chain condition on ideals such that S2 =f:. S. 
Then there exists an ideal T of S such that T2 = T and SIT is a nilpotent s emigro up. 

Proof: As in the above paragraph, create the chain of ideals h, 12, .... Due to the chain condition this chain 
must terminate. Let the smallest ideal in the chain be T = In. Then by its construction T2 = T, else another 
ideal in the chain can be created that is properly contained in T. By Theorem 2.1, T is radical and, clearly, 
SIT = S I In is nilpotent. 0 
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