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ABSTRACT 

Let w ~ 2 be a cardinal and S a class of semisimple left R-modules (closed 
under isomorphisms). A module RM is called w-thick relative to S, if dimS < w 
for each subfactor S of M with S E S. This notion allows us to study from a 
unified point of view w-distributive modules, i.e., modules satisfying: 

A + nB~ = n(A + n B/-£), 
~EA ~EA /-£EA\{A} 

for all submodules A and families {B~}A of submodules with cardinality 
IAI w, and w-thick modules, i.e., modules which are w-thick relative to the 
class of all semisimple left R-modules. In particular, 2-distributive modules coin­
cide with distributive modules, 2-thick modules coincide with uniserial modules, 
No-thick modules coincide with q.f.d. modules, i.e., modules whose factor modules 
have finite uniform dimension. 

We also consider relative w-quasi-invariant, relative w-noetherian, and relative 
w-Bezout modules. Properties of modules from these classes are investigated, 
including the relationship between them. Moreover, for modules RM and RU, the 
relationship between w-distributivity of M and properties of the left EndR(U)­
module HomR(U, M) and the right EndR(U)-module HomR(M, U) are studied. 
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GENERAL DISTRIBUTIVITY AND THICKNESS OF MODULES 

INTRODUCTION AND PRELIMINARIES 

In this paper, associative rings with unit and unital modules will be considered, and homomorphisms will be 
written on the opposite side to the scalars. Terminology and general notations will be taken from [1] without 
reference. 

Throughout, w will denote a cardinal and n a finite cardinal. We write w+ for the smallest cardinal larger 
than w. The notation IXI is used for the cardinality of any set X, and L* for the partially ordered set which is 
dual to a partially ordered set L. 

R will always be an associative ring with unit, R-Mod (resp. Mod-R) will denote the category of unital left 
(resp. right) R-modules, and M will be a left or right R-module depending on the situation, and we will write 
RM or M R if it is appropriate to indicate the side of the module. 

J(M), C(M), End(M), and max(M) will stand for the Jacobson radical, the lattice of submodules, the 
endomorphism ring, and the set of all maximal submodules of M. M(w) and MW denote the direct sum and the 
direct product of w copies of M, and dim V denotes the dimension of any semisimple module V (the cardinal 
number of simple summands of V, e.g. [1, 20.5]). 

Moreover, for any element x and subset A of RM, we put: 

(A : x) = {r E R I rx E A} and £(x) = (0 : x). 

Submodules of factor modules are called sub/actors of M. By crs(M), we denote the cardinality of a representing 
set of all simple subfactors of M. In particular, crs(R) is the cardinality of all (non-isomorphic) simple left 
R-modules, and for any semisimple module V, crs(V) coincides with the cardinality of the set of all homogeneous 
components of V. 

Let us recall some definitions from set theory. For w ~ 2 the cofinal character cf(w) is defined as the smallest 
cardinal {}, such that there exists a family {ae}s of cardinals, where 131 = {} ae < w for all eE 3, and Ls ae = w. 
The cardinal w is called regular provided cf(w) =w, and w is said to be singular if w is not regular. 

Usually these definitions are only applied to an infinite w. However, it will be convenient for us to use them 
also for the case of finite w. Hereby, obviously, cf(n) = 2 for any finite cardinal n 2:: 2, and hence the cardinal 2 
is regular whereas any finite cardinal n 2:: 3 is singular. 

In module theory, theorems are of importance which describe the structure of modules by modules with a 
relatively simple structure, for example uniserial modules. Natural generalizations of uniserial modules are first 
of all distributive modules, i.e., modules with a distributive lattice of submodules, and, secondly, AB5* modules, 
i.e., modules satisfying: 

for all submodules A and inverse families of submodules {BA}A. 

In contrast to distributivity no convenient criterion is known for the AB5* condition and this makes the 
investigation of AB5* modules more difficult. To overcome this problem, in [2] a weaker condition was introduced 
- countably distributive modules. In [3] it was suggested to treat this as a special case of the notion of 
w-distributive modules, where w 2:: 2 is any cardinal, corresponding to w ~o. 

Recall some definitions and propositions from [3]. Let w 2:: 2 and n 2:: 2 a natural number. A lattice is called 
w-distributive, if any non-empty subset of cardinality not greater than w has a greatest lower bound, and: 
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a V /\ b>. = /\ (a V /\ bp), 
>'EA >'EA pEA\{>.} 

for all elements a ELand families {b>.}A of elements, where IAI =w. 

A module M is called w-distributive if the lattice £(M) is w-distributive. Hereby 2-distributivity of a lattice 
(module) coincides with the usual distributivity of a lattice (module). The investigation of n-distributive lattices 
was initiated in [4, 5]. Some differences in the terminology should be pointed out: an n-distributive lattice in 
the sense defined above corresponds exactly to an (n - I)-distributive lattice in the sense of [5]. 

As usual, for any property lP of a module we ~ay that the ring R has this property on the left (right) provided 
the module RR (respectively RR) has property lP. Left noetherian, local left n-distributive rings were studied 
in [6]. Left countably distributive rings appeared in connection with the study of weakly injective modules in 
(7, Theorem 3.2] and [8, Corollary 9]. In [3], the following generalization of a well-known criterion of distributivity 
for modules (see [9, Theorem 1.6], [10, Lemma 1.3]) is shown. 

1.1 	Lemma. For RM and w 2:: 2, the following are equivalent: 

(a) 	Mis w-distributive; 

(b) 	 L:>'EA((L:pEA\{>'} Rap):a>.) = R, for any family {a>.}A of elements ofM, where IAI =Wi 

(c) 	L:A l(a>.) = R, for each independent family {Ra>.}A of cyclic submodules of any factor module of M, 
where IAI w. 

A number of characterizations of distributive modules is known involving uniserial modules (see, for example, 
[10-16]). 

In view of extending suitable results to w-distributive modules, a generalization of uniserial modules will be 
introduced - w-thick modules. Moreover we will show that w-distributive and w-thick modules may be considered 
from a unified point of view by introducing relative w-thick modules. 

1.2 Abstract classes of modules. A class of left R-modules is called abstract if it is closed under isomorphic 
images. In what follows, S will denote an abstract class of semisimple left modules, lC a class of simple left 
R-modules and lC' the abstract closure of the class lC, i.e.: 

lC' = {RQ I Q ::: P for some P E lC}. 

The modules in lC' will be called lC-simple. A submodule A of RM is said to be lC-maximal if the factor module 
M / A is lC-simple. By Sl (lC), we will denote the class of all semisimple modules RM, for which Q E lC' for each 
simple submodule Q of M. In the case when lC is determined by a single module K, we write Sl(lC) Sl(K). 

Clearly SI (lC) SI (lC'), and we have the following obvious characterization of classes of this type. 

1.3 	Lemma. The following properties of an abstract class of semisimple left R-modules are equivalent: 

(a) S is closed with respect to submodules and direct sums; 

(b) 	 S SI (lC) for some class lC of simple left R-modules. 

For any RM we put: 

Socs(M) = :L:{N ~ MIN E S}. 
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If the abstract class S of semisimple left R-modules is closed with respect to submodules and direct sums, then 

S is also closed with respect to factor modules and hence Socs(M) is the largest submodule of M belonging to 

S. 	Hereby: 


Socs(M) 2:{Q ~ M I Q E K/}, 


where K is any class of simple left R-modules with SI(K) = S. 

A module RM is called w-thick relative to S provided dim S < w for any subfactor S of M with S E S. 

By T we denote the class of all semisimple modules. Given a property 1P of modules relative to any class S 

we will simply say that a module M has property 1P if M has property 1P relative to T. 


Modules which are No-thick relative to SI (K) were studied in [8] under the name countably thick relative to 
K. The smallest cardinality w for which a module M is w-thick is called thickness of the module M. A notion 

similar to our thickness is considered in [17]. 


In Section 2, suitable techniques are developed to handle independent and coindependent families of submod­

ules. 


In Section 3 these techniques are applied to the investigation of modules M over arbitrary rings, which are 

w-thick relative to S. Theorem 3.1 contains several characterizations of such modules in terms of families of 

submodules of M or of any subfactor of M. A very transparent form of these characterizations is obtained for 

w-thick modules. They are collected in Corollary 3.5. 


A module is called q.f.d. (quotient finite dimensiona0 if all its factor modules have finite uniform dimension. 

By Corollary 3.5, 2-thick modules coincide with uniserial modules, and No-thick modules are just q,f.d. modules. 


With any abstract class S of semisimple left R-modules we associate the class S consisting of all modules 

N E S which are not square free, i.e., which have at least one homogeneous component of dimension> 1, and 

put S2(K) SI(K). We call M w-hyperdistributive, if M is w-thick relative to T. 


By a well-known criterion for distributivity of modules [18, Theorem 1], 2-hyperdistributivity of a module 

is equivalent to its distributivity. In [3] a generalization of this criterion for distributivity is proved which we 

formulate using the definition given above. 


1.4 Lemma. For RM and w ~ 2, the following are equivalent: 

(a) M is w-distributive; 

(b) for any simple module RP, M is w-thick relative to S1(P); 

(c) for any simple module RP, M is w-thick relative to S2(P), 

The lemma allows us to deduce several characterizations of w-distributivity of modules from Theore~ 3.1. This 

is done in Corollary 3.7. 


For any cardinality w ~ 2 we define a cardinality w - 1 in the following way: 

If w < No, i. e. w = n, then we put w -	 1 = n - 1. 

If w ~ No, then we put w 1 = w. 

1.5 Semi-minimal (-maximal) submodules. We call a submodule A of M w-semi-minimal relative to S, 

if A E S and dim A = w - 1. Dually, a submodule A of M is called w-semi-maximal relative to S, provided 

the factor module M / A E S and dim M / A = w - 1. A submodule A of M will be called w-semi-minimal 

(w-semi-maxima0 if A is w-semi-minimal (resp., w-semi-maximal) relative to T. 
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1.6 (Co-)quasi-invariant submodules. Recall that a module M is said to be quasi-invariant (see [16]) 
provided every maximal submodule is fully invariant in M. Dually, we say that M is co-quasi-invariant, if every 
minimal submodule is fully invariant in M. Generalizing these definitions we call M w-quasi-invariant relative to 
S, provided any submodule, which is w-semi-maximal relative to S, is fully invariant in M. Similarly, M is said 
to be w-co-quasi-invariant relative to S if any submodule, which is w-semi-minimal relative to S, is fully invariant 
in M. By definition quasi-invariance (co-quasi-invariance) of a module M is equivalent to its 2-quasi-invariance 
(2-co-quasi-invariance ). 

It is well-known that distributivity of a module is equivalent to quasi-invariance of all its subfactors. One 
direction of this is proved in [9], the converse implication is shown in [16]. In Section 4 a generalization of these 
facts is obtained (see 4.4). In particular, w-hyperdistributive modules are characterized by w-quasi-invariant and 
w-co-quasi-invariant modules (see 4.5). 

Consider abstract classes C and S of semisimple left R-modules. Clearly, if C ~ S then any module which is 
w-thick relative to S is also w-thick relative to C. From this and Lemma 1.4 we deduce that 

(1) any w-thick module is w-hyperdistributivej 

(2) any w-hyperdistributive module is w-distributive. 

In Section 5 we ask how to describe rings for which, for a given w ;:::: 2, 

(1) all w-(hyper-) distributive left modules are w-thick; 

(2) all w-distributive left modules are w-hyperdistributive. 

The answers are given in Lemma 5.2,5.6 and 5.7, and Theorem 5.9,5.10. 

In Corollary 5.11 and 5.12, rings R with only finitely many non-isomorphic simple modules are characterized 
in terms of w-thick, w-hyperdistributive, and w-distriputive R-modules. Corollary 5.13 generalizes the well-known 
characterization of distributive commutative rings by localization with respect to all maximal ideals [13] to the 
case of n-distributive commutative rings. 

A module M is said to be fully cyclic [15] if all its submodules are cyclic, and M is a Bezout module if all 
its finitely generated submodules are cyclic. It is well-known (see, for example, [9, 15, 16]) that fully cyclic and 
Bezout modules are closely related to distributive and uniserial modules. To establish analogous relationships 
for relative w-thick modules we define the notions of relative w-noetherian and relative w-Bezout modules. 

1.7 Relative w-noetherian modules. A module M is called w-noetherian relative to S, provided for any 
of its subfactors S, whose semisimple subfactors belong to S, there exists a cardinality e < w such that S is 
e-generated (i.e., has a generating set of cardinality e). Considering the special case S = 'T it is easy to see the 
equivalence of the following properties of RM: 

(a) M is w-noetherian; 

(b) for any submodule A of M, there exists a cardinality e < w such that A is e-generatedj 

If w n is finite then these assertions are obviously equivalent to: 

(c) all submodules of Mare (n 1)-generated. 
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Obviously No-noetherian modules coincide with noetherian modules, and 2-noetherian modules coincide with 
fully cyclic modules. Notice that w-noetherian modules were introduced in Osofsky [19] in a slightly different 
way: as modules for which all submodules are w-generated. So the w-noetherian modules in the sense of Osofsky 
correspond exactly to w+-noetherian modules in our sense. 

1.8 Relative w-Bezout modules. We call a module RM w-Bezout relative to 8, provided for any w-generated 
subfactor S, whose semisimple subfactors belong to 8, there exists a cardinal (J < w such that S is (}-generated. 
Putting 8 = T we easily obtain the equivalence of the following properties of a module RM: 

(a) M is w-Bezout; 

(b) for every w-generated submodule A of M, there exists a cardinality (J < w such that A is (J-generated; 

If w n is a finite cardinality then these assertions are equivalent to: 

(c) all finitely generated submodules of Mare (n 1) -generated. 

RM will be called homogeneously w-noetherian provided M is w-noetherian relative to 8 1(P), for every simple 
R-module RP, M will be called homogeneously fully cyclic {homogeneously Bezout} if M is homogeneously 
2-noetherian (respectiv ly, homogeneously 2-Bezout ). 

If C ~ 8, where C and 8 are abstract classes of semisimple left R-modules, then - as in the case of relative 
w-thick modules - we have: 

(1) any module which is w-noetherian to 8 is w-noetherian relative to C; 

(2) any module which is w-Bezout relative to 8 is w-Bezout relative to C. 

In particular, all w-noetherian modules are homogeneously w-noetherian, and all w-Bezout modules are 
homogeneously w-Bezout. 

It is easy to see that a ring R is left quasi-invariant if and only if all cyclic left R-modules are quasi-invariant. 
We call a ring R generalized left quasi-invariant provided all cyclic semisimple left R-modules are quasi-invariant. 

For any module M and cardinality w ~ 2 consider the conditions: 

(i) M is w-noetherian; (v) M is w-distributive; 

(ii) M is homogeneously w-noetherian; (vi) M is w-hyperdistributive; 

(iii) M is w-Bezout; (vii) M is w-thick. 

(iv) M is homogeneously w-Bezout; 

In Section 6, the study of relationships between the conditions (i )-(vii) will be continued, which was begun in 
Section 5 for the properties (v )-(vii). The implications (i )=>( iii) and (ii) =>( iv) are obvious. The implications 
(i )=>( ii), (iii )=>( iv), (vii )=>(vi )=>(v) were observed above. 

In Theorem 6.11 rings are characterized for which all Bezout left R-modules are distributive. From the other 
results of Section 6 we mention the following: 

(1) Ifw is infinite then (iii)=>(vii) and (iv)=>(v) hold {Corollary 6.5}; 

(2) if w is finite then (vii)=>( iii) {Lemma 6.7}; 
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(3) if R is a left perfect ring then (v)=>( i) (Lemma 6.14(2)),­

(4) if R is a semilocal ring and w finite, then (v)=>(iii) (Lemma 6.14(1)). 

A detailed list of the interdependence of the above mentioned properties will be given in Theorem 6.17. 

As corollaries to these assertions we obtain well-known facts about the relationships between fully cyclic, 
Bezout, distributive, and uniserial modules (see [9, 15, 16]); results about connections between No-distributive 
and noetherian modules [3]; and also a theorem about left noetherian local rings proved in [6]. 

Let RU and RM denote left R-modules and E = EndR(U). Considering U as a bimodule RUE in the usual 
way we have the functors: 

hU = HomR(U, -): R-Mod --; E-Mod, and 

hu HomR( -, U): R-Mod --; Mod-E. 

Section 7 is devoted to the study of the relationships between w-distributivity of the module M and properties 
of the E-modules hU(M) and hu(M). Notice that for w = 2 such connections were already investigated (see, 
for example, [11, 12, 14, 16]). The interest in this kind of question stems, in particular, from their application 
to the study of endomorphism rings (for M = U we have EE hU(U) and EE = hu(U)), and also from the 
application to the study of U as a module over its endomorphism ring (for M = R we have UE ::: hu(R)). 

Lemma 7.6 gives a sufficient, and Lemma 7.13 gives a necessary condition for the w-distributivity of the left 
E-module hU(M). The dual results on w-distributivity of the right E-module HomR(M, U) are considered in 
Lemma 7.7 and 7.14. Moreover, Theorem 7.16 and 7.17 contain characterizations of w-distributive modules M 
by properties of the left E-module hU(M) and the right E-module hu(M). 

In Corollary 7.19 we collect applications of these results to endomorphism rings and modules over their 
endomorphism rings. Our observations generalize many known results about distributivity of modules (see [11, 
12, 16], a.o.). 

(CO-)INDEPENDENT FAMILIES OF SUBMODULES 

In this section techniques suggested in [3] for handling independent and coindependent families of submodules 
are further developed. Our considerations will be summed up by Lemma 2.2 improving Lemma 4 in [3]. 

For any module RX and set A of cardinality IAI 2:: 2, we denote by Fo(X, A) the set of all families Y = {Y"}A 
of submodules of X. Define maps: 

E: Fo(X, A) --; £(X), 

r: Fo(X, A) --; £(X), 

Moreover, we consider the maps: 

u: Fo(X, A) --; Fo(X,A), Y t-+ {U(Y)"}A, where u(Y)" = LA\{A} YI-" 

"Y: Fo(X, A) --; Fo(X,A), Y t-+ {"Y(Yh}A, where "Y(Yh = nA\{A} Yw 

To any Y = {Y>.} A E Fo(X, A) and submodule Z of r(Y) we associate a factor family: 

Y /Z = {(Y/Z)"}A E Fo(X/Z, A), setting (Y/Zh = Y,,/Z. 
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Y is called a correct family if :E(Y) = X, and is called co-correct if r(Y) = O. 

We define an order relation on the set .1'0 (X, A), by putting: 

Y = {Y.dA ::; Y ' = {Y~}A provided Y.,\ ~ Y~ for each ,\ E A. 

For a family Y = {Y.,\}A E .1'o(X,A) consider the conditions: 

(il) Y.,\ n Le\{.,\} Y~ = 0 for any finite subset 0 f. 8 ~ A and ,\ E 8; 


(i2) Y.,\ nO'(Yh = 0 for each ,\ E A; 


(i3) r(O'(Y)) = 0; 


(i4) 'Y(O'(Y)) =Y and r(O'(Y)) 0; 


and dually: 


(c 1) Y.,\ + ne\p} Y.,\ = X, for any finite subset 0 f. 8 ~ A and'\ E 8; 


(c2) Y.,\ + 'Y(Y).,\ = X for each'\ E A; 


( c 3) :E(l'(Y)) = X ,­

(c4) 0'( 'Y(Y)) Y and :E('Y(Y)) = X. 

It is easy to see that the conditions (i 1)-( i 4) are equivalent and characterize independent families Y of submod­
ules of X. Concerning the conditions (c1)-(c4), we know by [3, Lemma 2], 

(1) the implications (c4) =>(c3) =>(c2) =>(c1) hold; 

(2) ifY is cocorrect then (c4) <=>(c3),­

(3) if O'('Y(Y)) = Y, then (c4) <=>(c3) <=>(c2); 

(4) if X is an AB5· module then (c4) <=>(c3) <=>(c2) <=>(c1). 

A family Y = {Y.,\} A of submodules of a module X is called coindependent in the sense of Takeuchi [21] 
(weakly coindependent, coindependent, strongly coindependent), if Y satisfies the conditions (c 1) (respectively, 
(c2), (c3), (c4)). Notice that weakly coindependent families of submodules are considered in [22] under the 
name "coindependent". 

In the partially ordered set .1'0 (X, A) we introduce two subsets: 

Io(X, A), consisting of all correct independent families Y {Y.,\}A, and 

Co (X, A), consisting of all cocorrect strongly coin dependent families Y = {Y.,\} A. 

We immediately obtain: 

2.1 Lemma. For any RX and set A with IAI ~ 2, the following are equivalent: 

(a) 0' and l' establish a Galois correspondence between .1'0 (X, A) and .1'0 (X, A)· ; 

(b) 0' and l' induce an anti-isomorphism of partially ordered sets between Io(X, A) and Co(X, A); 

(c) the following diagrams are commutative: 

.1'0 (X, A) ~ .1'0 (X, A) -4 .1'0 (X, A) .1'0 (X, A) -4 .1'0 (X, A) ~ .1'0 (X, A) 

E \.t /E /r 
.c(X) .c(X) 
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We call a family Z {Z,X}A of left R-modules S-suitable provided there exist simple sub factors P,X of Z,X 
(A E A) such that ffiA P,X E S. A family Y = {Y,X}A of submodules of a module RX is called S-cosuitable if the 
family {XI Y,X} A is S-suitable. 

Submodules A and B of a module RX are called coisomorphic provided the factor modules XIA and XI B 
are isomorphic. A submodule A of X is called IC-specific if A has a IC-simple subfactor. Dually A is said to be 
IC-cospecific if the factor module XIA has a IC-simple subfactor. 

For any RM and set A with IAI 2:: 2, a pair (8, K), consisting of a subfactor 8 of M and a family K = {K'x}A 
of submodules of 8 is called an (M, A)-family. 

Let 1P be any property of families of submodules of some module. We say that an (M, A)-family (8, K) has 
property 1P if the family K of submodules of 8 satisfies property IP. 

By F(M, A) (respectively, W(M, A), D(M, A), I(M, A), C(M, A)) we denote the set of all (respectively, all 
correct, all cocorrect, all correct independent, all cocorrect strongly coindependent) (M, A)-families. In view of 
the condition IAI 2:: 2 it is easy to see that 

I(M, A) ~ D(M, A) and C(M, A) ~ W(M, A). 

Let A = (VI B, AIB), where B ~ A,X ~ V ~ M for each A E A, be any (M, A)-family. We define mappings: 

QM,A : F(M, A) ~ F(M, A) : f3M,A, 

'PM,A : W(M, A) ~ D(M, A) : 'l/JM,A, 

putting 

QM,A(A) = (~(A)IB, AIB); 

f3M,A(A) = (V/r(A), A/r(A)); 

'PM,A(aM,A(A)) = (~(A)/r(O"(A)), O"(A)/r(O"(A) )); 

'l/JM,A (f3M,A (A)) = (~(,(A))/r(A), ,(A)/r(A)). 

On the set of all subfactors of M, we introduce an order relation by the condition 

VIB:;:; V'IB', provided V C V' and B C B', 

where B C V and B' C V' are any submodules of M. Then F(M, A) (and its subsets W(M, A), D(M, A), 
I(M, A), C(M, A)) is turned into a partially ordered set by putting for any A (8, A), A' = (8', A') in 
F(M, A), 

' A :;:; A' provided 8 :;:; 8 and A,X :;:; A~, for each A E A. 

2.2 Lemma. Let RM be a module, A any set of cardinality IAI 2:: 2, S an abstract class of semisimple left 
R-modules and A = (VI B, AIB) an (M, A)-family, where B ~ A,X ~ V ~ M for all A E A. Then: 

(1) QM,A and f3M,A are coclosure operations on the partially ordered sets F(M, A) and F(M, A)*, respectively, 
where 


QM,A(F(M, A)) = W(M, A) and f3M,A(F(M, A)*) = D(M, A)*. 


(2) 	 'PM,A and'l/JM,A yield a Galois correspondence between W(M, A) and D(M, A)*, where 

'PM,A(W(M,A)) = C(M,A)* and 'l/JM,A(D(M,A)*) = I(M,A). 


(3) 	 If AIB is an S-suitable independent family of submodules of VIB, then 
O"(A)/r(O"(A)) is an S-cosuitable, cocorrect and strongly coindependent family of submodules of~(A)/r(O"(A)). 
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(4) 	 If AlB is an independent family of non-zero (IC-simple, pairwise isomorphic, IC-cospecific) submodules 
of VIB, theno-(A)/r(o-(A)) is a cocorrect, strongly coindependentfamily of proper (IC-maximal, pairwise 
coisomorphic, IC-cospecific) submodules of~(A)/r(o-(A)). 

(5) 	 If AlB is an S-cosuitable weakly coindependent family of submodules of VIB, then ,(A)/r(A) is an 
S-suitable independent family of submodules of ~(,(A))/r(A). 

(6) 	 If AlB is a weakly coindependent family of proper (IC-maximal, pairwise coisomorphic, IC-cospecific) 
submodules of VIB, then ,(A) Ir(A) is an independent family of non-zero (IC-simple, isomorphic copies, 
IC-cospecific) sub modules of ~(,(A))/r(A). 

Proof. (1) is obvious. 

(2) Clearly the maps IPM,A: W(M, A) ~ D(M, A)* : 1/JM,A are antitone. 

We want to show that: 

for any A = ('E(A)IB, AIB) E W(M, A), A' = (V' Ir(A'), A'/r(A')) E D(M, A)*. For this, notice that, by 

Lemma 2.1(c): 


1/JM,A (IPM,A (A)) = (~(A)/r(o-(A)), ,(o-(A))/r(o-(A))), 


IPM,A(1/JM,A(A')) = (~(,(A'))/r(A'), o-(,(A'))/r(A')). 

Applying Lemma 2.1( a) we obtain our assertion. 

It remains to prove that IPM,A(W(M,A)) = C(M,A)* and 1/JM,A(D(M,A)*) = I(M,A). 

Indeed, A' E C(M,A)* means that B' = r(A'), o-(,(A')) A' and ~(,(A')) = V', implying the first 

equality. Similarly, the second equality is obtained. 


(3),(4) By (2), the direct decomposition: 

~(A)IB = (A>JB) E9 (o-(A»JB), 

and the isomorphisms: 
(~(A)/r(o-(A)))/(o-(Ah/r(o-(A))) ~ A>.IB, 

hold for any >. E A. 

(5),(6) Since weak coindependence of the family AlB of submodules of VI B implies weak coindependence of 

the correct family A/r(A) of submodules of V/r(A), in view of (2) the direct decompositions: 


V/r(A) = (A>./r(A)) E9 (,(Ah/r(A)), 

and isomorphisms: 
(VI B)/(A>.IB) ~ ,(A)>./r(A), 

hold for each >. E A. 	 o 

3 CHARACTERIZATIONS OF RELATIVE w-THICK MODULES 

Now the techniques developed in Section 2 will be applied to study modules which are w-thick relative to S 

over arbitrary rings. 
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A class S of semisimple left R-modules will be called weakly hereditary if for any module XES and cardinal 
w with 2 ::; w ::; dim X, there exists a submodule Y ~ X such that YES and dim Y = w. In particular, every 
hereditary (i. e. closed under submodules) class of semisimple modules is weakly hereditary. As an example of a 
weakly hereditary class of semisimple left R-modules which is not hereditary, one may consider S, where S is a 
hereditary class of semisimple R-modules. 

3.1 Theorem. For any module RM, w 2: 2, and any abstract class S of semisimple left R-modules, the following 
are equivalent: 

(a) 	M is w -thick relative to S,­

(b) 	any S-suitable independent family {KA}A of submodules of any subfactor S of M has IAI < 2,­

(c) 	any cocorrect strongly coindependent family {KA}A of maximal submodules of any subfactor S of M, for 

which eA(S/KA) E S, has IAI < w,­

(d) 	any S-cosuitable weakly coindependent family {KA}A of submodules of any subfactor S of M has IAI < w,­

(e) 	for any family A = {AA}A of submodules of M with IAI 2: w, the family ,(A)/r(A) of sub modules of 
E(r(A»/r(A) is not S-suitable,­

(f) 	for any family A {AA}A of sub modules of M with IAI 2: w, the family q(A)/r(q(A» of submodules 
of E(A)/r(q(A» is not S-cosuitable. 

If the class S is weakly hereditary the following are equivalent to (a)-(f): 

(g) 	for any family A = {AA}A of sub modules of M with IAI = w, the family ,(A)/r(A) of submodules of 
E(,(A»/r(A) is not S-suitable,­

(h) 	for any family A = {AA}A of submodules of M with cardinality IAI = w, the family q(A)/r(q(A)) of 
submodules of E(A)/r(q(A)) is not S-cosuitable. 

The proof of Theorem 3.1 follows immediately from Lemma 3.2 and 3.3 below. To formulate these we need one 
more definition. We call a module RM w-pseudo-thick relative to S, if S ¢ S for any semisimple subfactor of M 
with dimS = w. 

3.2 Lemma. For any module RM, w 2: 2, and any abstract class S of semisimple left R-modules, the following 
are equivalent: 

(a) 	M is w-thick relative to S,­

(b) 	M is u-pseudo-thick relative to S, for any cardinality u 2: w. 

If the class S is weakly hereditary, the following is equivalent to (a)-(b): 

(c) 	M is w-pseudo-thick relative to S. 

Proof. The proof of the lemma is obvious. 

3.3 Lemma. For any module RM, w 2: 2, and any abstract class S of semisimple left R-modules, the following 
are equivalent: 

(a) 	M is w-pseudo-thick relative to S,­

(b) 	any independent family {KA}A of sub modules of any subfactor S of M, with IAI = w is not S-suitable; 

(c) 	eA(S/KA) ¢ S for any cocorrect strongly coindependent family {KA}A of maximal submodules of any 
subfactor S of M with IAI = w,' 
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(d) 	any weakly coindependent family {K~}A of submodules of any subfactor S of M with IAI W is not 
S -cosuitable; 

(e) 	for any family A = {A~}A of submodules of M with IAI w, the family ,(A)jr(A) of submodules of 
E(,(A))jr(A) is not S-suitable; 

(J) 	 for any family A = {A~}A of submodules of M with IAI = w, the family u(A)jr(u(A)) of submodules 
of E(A)jr(u(A)) is not S-cosuitable. 

Proof. (a)=>(b) Assume {K~}A to be an independent S-suitable family of submodules of a subfactor S of M 

and cardinality IAI = w. Then there exist simple subfactors p~ of K~ (A E A) with EaA p~ E S. This is a 

contradiction since EaA p~ is a subfactor of M and dim (EaA P~) = w. 


(b)=>(d) By Lemma 2.2(5), the assumption of the existence of an S-cosuitable weakly coindependent family 

AjB of sub modules of a subfactor VjB of M, where {A~}A' IAI = w, and B ~ A~ ~ V ~ M for all AE A, leads 

to an S-suitable independent family ,(A)jr(A) of submodules of E(,(A))jr(A). This yields a contradicition 

to condition (b). 


(d)=>( c) is obvious. 

(c)=>( a) In contrast to (a), assume there exists an independent family AjB of simple submodules of the 

subfactor VjB of M, A = {A~}A' IAI = w, EaA(A~jB) E Sand B ~ A~ ~ V ~ M for all A E A. In 

view of Lemma 2.2(4), u(A)jr(u(A)) is a co correct strongly coindependent family of maximal submodules of 

E(A)jr(u(A)) where E(A)ju(Ah:::: A~jB, for all AE A. This contradicts condition (c). 


(b)=>(e) It suffices to recall that, by Lemma 2.2(2), the family ,(A)jr(A) of submodules of E(,(A))jr(A) 

are independent. 


(e)=>( d) Arguing by contradiction, let us assume the existence of an S-cosuitable weakly coindependent 

family AjB of sub modules of the factor module VjB of M, where A = {A~}A' IAI = wand B ~ A~ ~ V ~ M 

for all A E A. By Lemma 2.2(5) we obtain an S-suitable independent family ,(A)jr(A) of submodules of 

E(,(A))jr(A), which contradicts condition (e). 


(d)=>(J) It suffices to recall that, by Lemma 2.2(2), the family u(A)jr((u(A)) of sub modules ofE(A)jr(u(A)) 

are strongly (and hence, in particular, weakly) coindependent. 


(J)=> (b) In contrast to (b), assume that there exists an S-suitable independent family AjB of submodules of 

a subfactor Vj B of M, where A = {A~}A' IAI = w and B ~ A~ ~ V ~ M for all A E A. By Lemma 2.2(3), we 

have an S-cosuitable family u(A)jr(u(A)) of submodules of E(A)jr(u(A)), which is impossible by (J). This 

completes the pl"Jof of the Lemma. 0 


Putting S = Sl (K), we obtain from Theorem 3.1 the following corollary. 

3.4 	Corollary. For any module RM, w ~ 2, and class K of simple left R-modules the following are equivalent: 

(a) 	M is w-thick relative to Sl (K); 

(b) 	 any independent family {K~}A of K-specific submodules of any subfactor S of M has IAI < Wi 

(c) 	any cocorrect strongly coin dependent family {K~}A of K-maximal submodules of any subfactor S of M 

has IAI < W; 

(d) 	any weakly coindependent family {K~}A of K-cospecific submodules of any subfactor S of M has IAI < Wi 

(e) 	for any family A {A~}A of submodules of M with IAI = w, there exists A E A, such that ,(Ahjr(A) 
is not a K -specific submodule in E ( ,(A))jr(A) i 

(J) 	 for any family A = {A~}A of submodules of M with IAI = w, there exists some A E A, such that 
u(A)~jr(u(A)) is not a K-cospecific submodule in E(A)jr(u(A)). 
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Continuing the specialization of Theorem 3.1, we obtain by Corollary 3.4 for JC = P, the class of all simple 
left R-modules: 

3.5 	Corollary. For any module RM and w ~ 2, the following are equivalent: 

(a) 	M is w-thick; 

(b) 	 any independent family {KA}A of non-zero sub modules of any subfactor S of M has IAI < w; 

(c) 	any cocorrect strongly coindependent family {KA} A of maximal sub modules of any subfactor S of M has 

IAI < w; 

(d) 	any weakly coindependent family {KA}A of proper submodules of any subfactor S of M has IAI < w; 

(e) 	for any family {AA} A of submodules of M and IAI = w, there exists AE A, such that 


AA;2 n A~j 

A\{A} 

(I) 	for any family {AA} A of submodules of M and IAI = w, there exists AE A, such that 

AA ~ L Aw 
A\{A} 

3.6 Remark. The equivalence of the condition (a) and (b) in Corollary 3.5 shows, that ~o-thick modules coincide 
with q.f.d. modules generalizing a well-known characterization of q.f.d. modules [20, Lemma]. For w = ~o the 
conditions (e) and (I) provide new characterizations of q.f.d. modules. The equivalence of the conditions (a) and 
(e) 	(or (a) and (I)) shows that 2-thick modules coincide with uniserial modules. 

3.7 	Corollary. For any module RM and w ~ 2, the following are equivalent: 

(a) 	M is w-distributive; 

(b) 	 any independent family {KA}A of isomorphic simple submodules of any subfactor S of M has IAI < w; 

(c) 	any independent family {KA}A of isomorphic non-zero sub modules of any subfactor S of M has IAI < w; 

(d) 	 any cocorrect strongly coindependent family {KA} A of coisomorphic maximal submodules of any subfactor 

S of M has IAI < w; 

(e) any weakly coindependent family {KA} A of coisomorphic proper submodules of any subfactor S of M has 

IAI < w; 

(I) 	for any family A = {AA}A of submodules of M with IAI = w, and any simple module RP, there exists 
some A E A, such that ,(A)A/f(A) has no subfactor isomorphic to P; 

(g) 	for any family A = {AA}A of submodules of M with IAI = w, and any simple module RP, there exists 
some A E A, such that ~(A)/(7(A)A has no subfactor isomorphic to P. 

Proof. The conditions (a) and (b) are equivalent by Lemma 1.4. Moreover, notice that any family {KA}A of 
pairwise isomorphic non-zero submodules in S form a family of {P}-specific sub modules of S, for some simple 
module RP (depending on {KA}A). Similarly, any family of coisomorphic proper submodules of S form a family 
of {P}-cospecific submodules of S, for some simple module RP, Therefore the equivalence of the conditions 
(b)-(g) follows from Corollary 3.4. 0 

3.8 	Remark. The equivalence of the conditions (a)-(e) in Corollary 3.7 were proved in [3, Theorem 1]. Corollary 
3.7 generalizes many known results about distributive modules ([23, Proposition 4.1.1], [9, p. 293, Corollary 1], 
[18, Theorem 1] and others). 
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4 w-THICK AND w-(CO-)QUASI-INVARIANT MODULES 

The following observation is obvious. 

4.1 Lemma. For any module RM, w ~ 2, and any abstract class S of semisimple left R-modules, the following 

are equivalent: 


(a) M is w-thick relative to S; 

(b) all subfactors of Mare w-thick relative to S; 

(c) all semisimple subfactors of Mare w-thick relative to S. 

Putting some conditions on the class of semisimple modules we have: 

4.2 Lemma. Let w ~ 2 and let S be an abstract class of semisimple left R-modules which is closed under 

submodules and finite direct sums. Then every module M which is w-thick relative to S is w-quasi-invariant 

relative to Sand w-co-quasi-invariant relative to S. 


Proof. Let RM be w-thick relative to S. We prove that M is w-quasi-invariant relative to S. Assuming the 
contrary, consider a submodule A ~ M which is w-semi-maximal relative to S, but is not fully invariant in M. 
Then 8 M/A E Sand dim8 = w - 1, and (A)a r£:. A, for some a E EndR(M). 

We have a monomorphism M/(A)a- 1 -+ 8, x + (A)a- 1 f--7 (x)a + A. 

Moreover, the module N = M/((A)a-1nA) embeds into (M/(A)a- 1)EB8, and hence there exists a monomor­

phism N -+ 8 2 • Since 8 2 E S, we have N E S. Noticing that (A)a r£:. A, we deduce that the natural epimorphism 

'lr: N -+ 8 has kernel Ke'lr = A/((A)a-1n A) =1= O. So N ~ Ke'lr EB S E Sand dimN ~ w. This contradicts the 

fact that M is w-thick relative to S. 


Dually the co-quasi-invariance of M relative to S is established. o 

4.3 Lemma. For any semisimple module RT, w ~ 2, and any abstract class S of semisimple left R-modules, 

which is closed under submodules and finite direct sums, the following are equivalent: 


(a) T is w-thick relative to S; 

(b) T is w -quasi-invariant relative to S; 

(c) T is w-co-quasi-invariant relative to S. 

Proof. (a)=>( b) and (a)=>( c) follow from Lemma 4.2. 

(b)=> (a) Assume that, in contrast to (a), the module T is not w-thick relative to S. Then by the weak 

hereditariness of the class S, there exists a submodule 8 of T, such that 8 E S and dim 8 = w. Then T = 8 EB V 

for some submodule V of T. For a decomposition 8 ffiA PA, where PAare simple modules, there exist ~,T/ E A, 

such that ~ =1= T/ and Pe ~ Since T/(Pe EB V) ~ ffiA\{O PA, the submodule Pe EB V of T is semi-maximal
Pw 

relative to S. However, Pe EB V is not a fully invariant submodule in T, since there exists a E EndR(M), for 

which (PeEB V)a ~ Pry EB V, a contradiction. 


(c)=>( a) This is shown with dual arguments. 0 
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4.4 Theorem. For any module RM, w ~ 2, and any abstract class S of semisimple left R-modules, which is 
closed under submodules and finite direct sums, the following are equivalent: 

(a) M is w-thick relative to Si 

(b) each subfactor of M is w-quasi-invariant relative to S; 

(c) each semisimple subfactor of M is w -quasi-invariant relative to S i 

(d) each subfactor of M is w-co-quasi-invariant relative to S,. 

(e) each semisimple subfactor of M is w-co-quasi-invariant relative to S. 

Proof. (a)=?(b) and (a)=?(d) follow from Lemma 4.1 and 4.2. 

(b)=?( c) and (d)=?( e) are obvious. 

(c)=?(a) and (e)=?(a) follow from Lemma 4.1 and 4.3. o 

Putting S = T, we obtain from Theorem 4.4 the following corollary. 

4.5 Corollary. For a module RM and w ~ 2, the following are equivalent: 

(a) M is w-hyperdistributive; 

(b) each subfactor of M is w-quasi-invariant; 

(c) each semisimple subfactor of M is w-quasi-invariant,. 

(d) each subfactor of M is w-co-quasi-invariant; 

(e) each semisimple subfactor of M is w-co-quasi-invariant. 

4.6 Remark. Putting w = 2, we obtain from Corollary 4.5 the well-known equivalence of the following properties 
of a module RM: 

(a) M is distributive; 

(b) each subfactor of M is quasi-invariant; 

(c) each sub factor of M is co-quasi-invariant. 

The implications (a)=?( b), (a)=?( c) are shown in [9, page 293, Corollary 4], and (b)=?( a) is proved in [16, Lemma 
12]. 

w-THICK AND w-(HYPER-)DISTRIBUTIVE MODULES 

As already mentioned in Section 1, any w-thick module is w-hyperdistributive and any w-hyperdistributive 
module is w-distributive. We are going to investigate conditions under which the converse implications hold. 

For convenient reference we formulate the following obvious lemma. 

5.1 Lemma. Let RT be a semisimple module, w ~ 2, and S an abstract class of semisimple left R-modules 
closed under submodules and direct sums. Then: 
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(1) T is w-thick relative to S if and only if dim Socs(T) < w. 

(2) T is w-thick relative to S if and only if one of the following conditions holds: 

(i) dim Socs(T) < w; 

(ii) dimSocs(T) ~ wand dimSocs(T) is square free. 

(3) T is w-thick if and only if dim (T) < w. 

(4) T is w-hyperdistributive if and only if one of the following conditions holds: 

(i) dim (T) < W; 

(ii) dim (T) ~ wand T is square free. 

(5) T is w-distributive if and only if each of its homogeneous components has dimension less than w. 

5.2 Lemma. For any module RM and w ~ 2, the following are equivalent: 

(a) M is w-thick; 

(b) M is w-hyperdistributive and crs(S) < w, for any semisimple subfactor S of M. 

Proof. (a)=>(b) It suffices to notice that by condition (a), for any semisimple subfactor S of M we have 
crs(S) ~ dimS < w. 

(b)=>(a) By Lemma 4.1 and 5.1(4), for any semisimple subfactor S of M one of the following condition is 
satisfied: 

(i) dimS < Wj (ii) dimS ~ wand S is square free. 

Since condition (ii) contradicts (b), we conclude that (i) holds. o 

5.3 Corollary. For w ~ 2 and a module RM, satisfying crs(M) < w, the following are equivalent: 

(a) M is w-thick; 

(b) M is w-hyperdistributive. 

Bad and Good Modules 

Let RT be a semisimple module and w ~ 2. T is called w-bad if dim T ~ wand every homogeneous component 
of T has dimension less than w. We call T w-quasi-bad, if T is w-bad and is not square free. T is called w-good 
(w-quasi-good), if T is not w-bad (respectively, w-quasi-bad). 

If the module T is w-bad, then we say that a cardinal (} is w-bad for T, if (} = crs(V) for some submodule 
V of T of dimension dim V = w (such a submodule V is necessarily w-bad). If T is w-quasi-bad, we say that a 
cardinal (} is w-quasi-bad for T, if (} = crs(V) for some w-quasi-bad submodule V of T of dimension dim V = w. 

Moreover, we define cardinals cfT(w) and qcfT(w), which we will call, respectively, cofinal character of the 
cardinal w relative to T, and quasi-cofinal character of w relative to T: 

If T is w-good, we put cfT(W) = qcfT(w) = W. If T is w-bad we define cfT(w) as smallest w-bad cardinality 
of T. If T is w-bad and square free, we put qcfT(w) = (dim T)+. Finally, if T is w-quasi-bad we define qcfT(w) 
as smallest w-quasi-bad cardinality of T. Obviously: 
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5.4 Lemma. For any semisimple module RT and w ~ 2 we have 

2 ~ cf(w) ~ cfT(w) ~ W, cfT(w) ~ qcfT(w) ~ (dimT)+. 

In particular, if w is regular then cfT(w) = w. 

5.5 Lemma. Ifw ~ 2 and R satisfies crs(RR) ~ cf(w), then there exists some w-distributive semisimple module 
RT, for which crs(T) cf(w), and moreover, 

(1) cfT(w) cf(w); 

(2) if w ~ 3 then qcfT(w) = cf(w). 

Proof. By definition of cf(w), there exists a family of cardinalities {ae}E, such that ae < w for each eE 3, 
2:E ae wand 131 cf(w). Let {Pe}E be a family of pairwise non-isomorphic simple left R-modules. Putting 

T €BE p?~d and recalling the definition of cfT(w) and cf(w), it is easily seen that (1) holds. 

We proceed to the proof of (2). If w ~ 3 is regular, then w is infinite. This gives the possibility to assume 
that ae ~ 2 for some eE 3 (otherwise we may replace T by T $ Pe). If w ~ 3 is singular, then again ae ~ 2 
for some eE 3 (otherwise 2:E ae cf(w) =I w). So in both cases the module T is w-quasi-bad. Now referring to 
the definition of qcfT(w) and cf(w), we easily derive that qcfT(w) cf(w). 0 

5.6 Lemma. For any module RM and w ~ 2, the following are equivalent: 

(a) M is (.I)-thick; 

(b) M is w-distributive and each semisimple subfactor of M is w-good; 

(c) M is w-distributive and crs(S) < cfs(w), for any semisimple subfactor S of M. 

Proof. (a):::} (b) is obvious. 

(b):::}(a) It suffices to notice that, by Lemma 4.1 and 5.1(5), dimS < w for any w-good semisimple subfactor 
SofM. 

(b)#(c) This follows from the fact that for any w-distributive semisimple module S, the condition 
crs(S) < cfs(w) is equivalent to S being w-good. 0 

Now we turn to the study of the relations between w-hyperdistributivity and w-distributivity. First recall 
that for any module RM the following are equivalent: 

(a) M is 2-hyperdistributive; (b) M is 2-distributive; (c) M is distributive. 

5.7 Lemma. For any module RM and w ~ 2, the following are equivalent: 

(a) M is w-hyperdistributive; 

(b) M is w-distributive and every semisimple subfactor of M is w-quasi-good; 

(c) M is w-distributive and crs(S) < qcfS (w), for any semisimple subfactors S of M. 
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The proof is similar to the proof of Lemma 5.6, which also implies the following. 

5.8 Corollary. For w 2:: 2 and a module RM with crs(M) < cf(w), the following are equivalent: 

(a) M is w-thick; 

(b) M is w-hyperdistributive; 

(c) M is w-distributive. 

The next results show the influence of the number of simple modules on the relation between thickness and 
distributivity. 

5.9 Theorem. For any ring Rand w ~ 2, the following are equivalent: 

(a) crs(RR) < W; 

(b) every w-hyperdistributive left R-module is w-thick; 

(c) every w-hyperdistributive semisimple left R-module is w-thick. 

Proof. (a)=*( b) follows from Corollary 5.3; (b)=*( c) is obvious. 

(c)=*(a); Let {P~}s be a representing family of all simple left R-modules. Assuming, contrary to (a), that 
121 2:: w, we consider the module T = EBs P~. By Lemma 5.1(3),(4), Tis w-hyperdistributive and is not w-thick, 
contradicting ( c). 0 

5.10 Theorem. For any ring Rand w 2:: 2, the following are equivalent: 

(a) crs(RR) < cf(w); 

(b) every w-distributive left R-module is w-thick; 

(c) every w-distributive semisimple left R-module is w-thick; 

(d) every w-distributive semisimple left R-module is w-good; 

If w 2:: 3 then (a)-(d) are equivalent to: 

(e) every w-distributive left R-module is w-hyperdistributive; 

(I) every w-distributive semisimple left R-module is w-hyperdistributive. 

(g) every w-distributive semisimple left R-module is w-quasi-good. 

Proof. (a)=*(b) follows from Corollary 5.8; (b)=*(c) is obvious. 

(c)=*( a) Assume crs(RR) ~ cf(w). Then by Lemma 5.5, there exists an w-distributive semisimple module 
RT, for which crs(T) = cfT(W). By Lemma 5.6, the module is not w-thick, contradicting condition (c). 

(c){::}( d) follows from Lemma 5.1(3), (5). 

(b)=*( e) =*(1) are obvious; (I){::}(g) follows by Lemma 5.1(4), (5). 

For the rest of the proof we assume w 2:: 3. 

(I)=*(a) Assume that, contrary to (a), we have crs(RR) 2:: cf(w). Then by Lemma 5.5, there exists an 
w-distributive semisimple module RT, for which crs(T) qcfT(w). By Lemma 5.7, T is not w-hyperdistributive, 
contradicting (I). 0 
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5.11 Corollary. For a ring R the following are equivalent: 

(a) crs(RR) = 1; 

(b) for w ~ 2, all w-distributive left R-modules are w-thick; 

(c) for some n ~ 2, all n-distributive semisimple left R modules are n-thick; 

(d) for w ~ 2, all w-distributive left R-modules are w-hyperdistributive; 

(e) for some n ~ 3, all n-distributive semisimple left R-modules are n-hyperdistributive; 

(I) for w ~ 2, all w-hyperdistributive left R-modules are w-thick; 

(g) all distributive semisimple left R-modules are uniserial. 

Proof. The equivalence of (a)-(e) follows from Theorem 5.10 and the fact that cf(n) 2 ~ cf(w), for any finite 
n ~ 2 and any w ~ 2. 

The equivalence of (a), (I), and (g) follows from Theorem 5.9. 0 

5.12 Corollary. For any ring R the following are equivalent: 

(a) crs(RR) < ~o; 
(b) for infinite w, all w-distributive left R-modules are w-thick; 

(c) all ~o-distributive semisimple left R-modules are ~o-thick; 

(d) for infinite w, all w-distributive left R-modules are w-hyperdistributive; 

(e) all ~o-distributive semisimple left R-modules are ~o-hyperdistributive; 

(I) for infinite w, all w-hyperdistributive left R-modules are w-thick; 

(g) all ~o-hyperdistributive semisimple left R-modules are ~o-thick. 

Proof. The equivalence of (a)-(e) follows from Theorem 5.10 and the fact that cf(~o) ~o ~ cf(w), for any 
infinite w. 

The equivalence of (a), (I), and (g) follows from Theorem 5.9. 0 

5.13 Corollary. For R commutative and n ~ 2, the following are equivalent: 

(a) R is n-distributive; 

(b) the localization of R at any maximal ideal is an n-thick ring. 

Proof. Let Rm be the localization of R at the ideal m E max(RR) and Pm the canonical map of the lattice of 
ideals of R to the lattice of ideals of Rm , defined by 

Pm(I) = {alb Ia E I, bE R\m}, for I E C(RR). 

It is well-known that Pm is a lattice homomorphism and the family {Pm(I) }mEmax(R) uniquely determines the ideal 
I. Therefore the n-distributivity of R is equivalent to the n-distributivity of all rings R m, where m E max(R). 
It remains to notice that, by Corollary 5.11, any local ring is n-distributive if and only if it is n-thick. 0 

114 The Arabian Journal/or Science and Engineering. Volume 25, Number 2C. December 2000 



German M. Brodskii and Robert Wisbauer 

5.14 Remark. For w = 2, Corollary 5.3 and 5.8 lead to a well-known result about distributivity of modules 
[16, Lemma 16]. Similarly Corollary 5.11 is a generalization of [10, Lemma 1.11], Corollary 5.12 is a generalization 
of [3, Corollary 5], and Corollary 5.13 generalizes [13, Lemma 1]. Compare also [25]. 

6 w-THICK, w-NOETHERIAN AND w-BEZOUT MODULES 

We will need the following obvious lemmas. 

6.1 Lemma. If the module RM satisfies crs(S) = 1, for any semisimple subfactor S of M (e.g., if crs(M) = 1), 
then for any w ~ 2 we have: 

(1) M is w-noetherian if and only if M is homogeneously w-noetherian; 

(2) M is w-Bezout if and only if M is homogeneously w-Bezout. 

6.2 Lemma. For a semisimple module RT and any infinite cardinal (l, the following are equivalent: 

(a) T is (l-generated; 

(b) dim (T) ~ {l. 

Proof. (a)=}(b) Assume w = dim (T) > {l. Then considering for T a generating set of cardinality {l, it is easy to 
see that w ~ {lNo = {l < w, a contradiction. 

(b)=}(a) is obvious. o 

6.3 Lemma. For a semisimple module RT, w > 2, and an abstract class S of semisimple left R-modules, 
consider the conditions 

(1) T is w-thick relative to S; 

(2) T is w-noetherian relative to S; 

(3) T is w-Bezout relative to S. 

Then (1) =}(2) =}(3). If w is infinite and S is weakly hereditary then (3) =}(1). 

Proof. (1) =}(2) For S E S n £(T) put {l = dimS. Then S is {l-generated and hence (l < w by (1). 

(2) =}(3) is obvious. 

(3) =}(1) It suffices to show that dim(S) < w, for any S E S n £(T). Assume that dimS ~ w, for some 
S E S n £(T). Since S is weakly hereditary there exists some submodule V ~ S, V E S, with dim V = w. From 
(3) and Lemma 6.2 it follows that dim V ~ {l, for some cardinal (l < w, a contradiction. 0 

6.4 Corollary. For a semisimple module RT and w ~ 2 consider the conditions: 

(1) T is w-thick,- (4) T is w-distributive; 

(2) T is w-noetherian; (5) T is homogeneously w-noetherian; 

(3) T is w-Bezout; (6) T is homogeneously w-Bezout. 
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Then (1) =>(2) =>(3) and (4) =>(5) =>(6). 

If w is infinite, then (3) =>(1) and (6) =>(4). 

6.5 Corollary. 	Let R be a ring, w infinite, and S a weakly hereditary abstract class of semisimple left R-modules. 
Then all left R-modules which are w-Bezout relative to S are w-thick relative to S, 

In particular, all w-Bezout left R-modules are w-thick and all homogeneously w-Bezout left R-modules are 
w-distributive, 

Proof. Since all semisimple subfactors of a module M which are w-Bezout relative to S, are w-Bezout relative 
to S, it suffices to apply Lemmata 6.3 and 4.1. 0 

6.6 Example. Let R = Kn - the (n, n)-matrix ring over a field K. Then RR ~ pn, where RP is a sim­
ple R-module. The module RR is fully cyclic (and hence n-noetherian, Bezout, n-Bezout) however it is not 
n-distributive (and hence not n-thick). This shows that the condition w 2: No in the formulation of Lemma 6,3 
and Corollaries 6.4, 6.5 is essential. 

6.7 Lemma. For any ring Rand n 2: 2, every n-thick left R-module is n-Bezout. 

Proof. If RM is an n-thick module, then by Corollary 3.5, for any n-generated submodule A = 2::1 Rai ~ M, 
there exists i E {I, 2, ... ,n}, such that 

Rai ~ L Raj. 
15j5n 

j"ei 

Therefore A is (n - I)-generated. 	 o 

6.8 Remark. Lemma 6.7 generalizes the well-known fact that every uniserial module is Bezout (e.g., [1, Theorem 
55.I(2)(ii )]). 

6.9 Lemma. Let RT be a semisimple module and n 2: 2. If T is n-distributive and finitely generated, then T is 
(n - 1)-generated. 

Proof. For any a E {a, I} and module RM, denote by M[a] the left R-module °if a = 0, and the module M itself 
if a = 1. Without loss of generality we may assume that T :I 0. Notice that for some pairwise non-isomorphic 
simple left R-modules PI, ... ,Pr and natural numbers kl' ... ,kr < n, we have an isomorphism T ~ ES~=1 pti

• 

Putting k = maxl:5i5rki, we can write T ~ ES~=1 Qj, where 

r 	 k 

Q. _ ffi p[aij ] 
J -'17 i , aij E {a, I}, ki = Laij, 1 Sis r, 1 S j S k. 

i=1 	 j=1 

Since k < n and the modules Ql, ... ,Qk are square free, it remains to show that any finitely generated semisimple 
square free left R-module is cyclic. By [1, Theorem 9.12] it suffices to verify that Vi + ni;i:j Vj = R (1 SiS q), 
for any maximal left ideals VI,"" Vq of R, for which the left R-modules R/V1 , ••• , R/Vq are pairwise non­
isomorphic. Assuming the contrary, there exists i E {I, 2, ... ,q} such that nj;i:i Vj ~ Vi. Considering the. 
natural epimorphism R/ nj;i:i Vj -+ R/Vi and the embedding R/ nj;i:i Vj -+ ESj;i:i(R/Vj), we conclude that 
R/Vi embeds into ESj;i:i(R/Vj), which is not possible. 
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6.10 Corollary. Let RT be a semisimple module and w ~ 2. If T is w-distributive and crs(T) < No, then T is 

{l-generated, for some cardinal (l < w. 

Proof. If w < No apply Lemma 5.1(5) and 6.9. 

If w ~ No apply Corollary 5.8 and Lemma 5.1(3). 	 o 

6.11 Theorem. For a ring R the following are equivalent: 

(a) 	R is generalized left quasi-invariant; 

(b) for any maximal left ideal V of R and a, b E R, 

(1 + V : a) n (V : b) = 0 or (V: a) n (1 + V : b) = 0; 

(c) 	all semisimple cyclic left R-modules are square free; 

(d) 	for any semisimple module RT and n ~ 2, the module T is (n - I)-generated if and only if T is 
n-distributive and finitely generated; 

(e) 	for some n ~ 2, all (n - 1) -generated semisimple left R-modules are n-distributive; 

(J) 	 for w ~ 2, all homogeneously w-Bezout left R-modules are w-distributive; 

(g) 	 all homogeneously Bezout left R-modules are distributive; 

(h) 	all left Bezout-modules are distributive; 

(i) 	for some n ~ 2, all n-Bezout semisimple left R-modules are n-distributive. 

Proof. (a)<=>( c) This follows from the observation that for semisimple modules, quasi-invariance is equivalent to 
being square free. 

(b)<=>(c): Condition (c) is obviously equivalent to: for any maximal left ideal V of R, the left R-module 
(R/V)2 is not cyclic. In other words, there is no epimorphism of left R-modules f : R ---t (R/V)2. Given any 
homomorphism f : R ---t (R/V)2, put (l)f = (a+ V, b+ V). It remains to recall that surjectivity of f is equivalent 
to the existence of x, y E R, for which (1 + V, V) = (x)f and (V, 1 + V) = (y)f, i.e., 

x E (1 + V : a) n (V : b) and y E (V : a) n (1 + V : b). 

(c)=>(d): By Lemma 6.9, an n-distributive and finitely generated semisimple module T is (n -I)-generated. 
Conversely, if we know that Tis (n -I)-generated then T = L::~l Rail for suitable a}, ... ,an-l E T. Applying 
(c) and Lemma 5.1(5) we conclude that T is n-distributive. 

(d)=>( e): Obvious. 

(e)=>( c): Assuming the contrary there exists a simple module RP such that p 2 is cyclic. Then the module 
pn is (n - I)-generated and hence n-distributive. This is impossible by Lemma 5.1(5). 

(d)=>(J): If w ~ No we apply Corollary 6.5. Consider the case w = n < No. Since all semisimple subfactors 
of a homogeneously n-Bezout module are homogeneously n-Bezout, by Lemma 4.1, it suffices to prove that any 
homogeneously n-Bezout semisimple module RT is n-distributive. Assuming the contrary, using Lemma 5.1(5), 
we conclude that the module T contains a submodule S isomorphic to pn, where P is some simple R-module. 
Therefore the module S is (n - I)-generated and n-distributive which is impossible by Lemma 5.1(5). 

(J)=>(g)=>(h)=>(i) are obvious, and (i) =>(e) follows from the fact that any (n - I)-generated semisimple 
module RT is n-Bezout. 0 
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6.12 Remark. Theorem 6.11 implies the known fact: Over a left quasi-invariant ring all left BezQut modules 
are distributive (see [15]). 

6.13 Corollary. For a semisimple module RT and n ~ 2, consider the conditions 

(1) 	 T is n-distributive; 

(2) 	 T is n-Bezout; 

(3) 	 T is homogeneously n-Bezout. 

Then (1) =>(2) =>(3). If the ring R is generalized left quasi-invariant then (3) =>(1). 

Proof. (1) =>(2) Any n-generated submodule S of Tis (n - I)-generated by Lemma 6.9. 
(2) =>(3) is obvious, and (3) =>(1) follows from Theorem 6.11. 	 o 

6.14 Lemma. Let R be a ring, w ~ 2 and n ~ 2. Then: 

(1) 	 If R is semilocal, then all n-distributive left R-modules are n-Bezout and all noetherian n-distributive 
left R-modules are n-noetherian. 

(2) 	 If R is left perfect, then all w-distributive left R-modules are w-noetherian. 

Proof. (1) Let RM be an n-distributive module. By Lemma 4.1 and Corollary 6.10, for any finitely generated 
submodule A of M, the corresponding left R/J(R)-module A/J(R)A is n-distributive, semisimple and (n - 1)­
generated. Therefore, by the Nakayama Lemma, A is (n - I)-generated. 

(2) Consider any submodule A in an w-distributive module RM. Applying Lemma 4.1 and Corollary 6.10, we 
observe that the left R/J(R)-module A/J(R)A is w-distributive, semisimple and u-generated, for some cardinal 
{! < w. Therefore A is u-generated by the generalized Nakayama Lemma [1, Theorem 43.5]. 0 

6.15 Remark. Lemma 6.14 generalizes the following results from [15]: 

- over any semilocal ring all distributive left modules are Bezout; 

- over any left perfect ring all distributive left modules are fully cyclic. 

6.16 Example. Let P denote the set of all prime numbers. Then the semisimple .z-module E9p .zp, where 
.zp = .z/p.z, is distributive (and hence No-distributive) by Lemma 5.1(5), however it is not No-~ezout (and not 
noetherian). Therefore for infinite cardinality the analogue of Corollary 6.13 is not true in general. Moreover we 
observe that the left perfectness of the ring R is essential in the statement of Lemma 6.14(2). 

6.17 Theorem. For any module RM and w ~ 2, consider the conditions 

(1) 	 M is w-noetherian; 

(2) 	 M is homogeneously w-noetherian; 

(3) 	 M is w-Bezout; 

(4) 	 M is homogeneously w-Bezout; 
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(5) M is w-distributive; 

(6) M is w-hyperdistributive; 

(7) M is w-thick. 

Then the following assertions hold: 

(i) If R is a left quasi-invariant left perfect ring, then (1)-(5) are equivalent. 

(ii) If R is a local perfect ring, then (1)-(7) are equivalent. 

(iii) If R is a left perfect ring and w is infinite, then (1)-(7) are equivalent. 

(iv) If R is a left quasi-invariant semilocal ring and w is finite, then (3)-(5) are equivalent. 

(v) If R is a local ring and w is finite, then (3) -(7) are equivalent. 

Proof. First observe that the implications (1) =>(2), (3) =>(4), (I) =>(3), (2) =>(4), (7) =>(6) =>(5) hold true for 
any ring R. 

(i) (4) =>(5) by Theorem 6.11; (5) =>(1) by Lemma 6.14(2). 

(ii) The equivalence of (1)-(5) follows from (i); (5) =>(7) by Corollary 5.11. 

(iii) (3) =>(7), (4) =>(5) by Corollary 6.5; (5) =>(1) by Lemma 6.14(2). 

(iv) (4) =>(5) by Theorem 6.11; (5) =>(3) by Lemma 6.14(1). 

(v) The equivalence of (3)-(5) follows from (iv); (5) =>(7) by Corollary 5.11. o 

6.18 Corollary. For a left noetherian local ring Rand n ~ 2, the following are equivalent: 

(a) R is left n-noetherian; 

(b) R is left n-distributive; 

(c) R is left n-thick. 

Proof. (a)=>(b) by Theorem 6.11; (b)=>(a) by Lemma 6.14(1); (b)<=?(c) by Theorem 6.17{v). o 

6.19 Remarks. From Theorem 6.11 it is easy to see that a semilocal ring is generalized left quasi-invariant if 
and only if it is left quasi-invariant. Moreover it is clear that left quasi-invariant semilocal are in particular those 
rings R, for which the factor ring RjJ(R) is isomorphic to a finite product of skew fields. The question of the 
existence of generalized left quasi-invariant rings which are not left quasi-invariant remains open. 

Theorem 6.17 generalizes known results about distributive modules ([15, Proposition 2]; [16, Lemma 18]) and 
about No-distributive modules (see [3, Lemma 5]). 

In [61, Corollary 6.18 is shown for left noetherian local rings R under the additional assumptions that R is 
commutative or n:l J(R)i = O. 

HOM-FUNCTOR AND w-DISTRIBUTIVE MODULES 

Let RM and RU be fixed modules and E = EndR{U), Consider the functors 

hU = HomR(U, -) : R-Mod -+ E-Mod, and 

hu = HomR{ -, U) : R-Mod -+ Mod-E. 
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For the investigation of the relationships between w-distributivity of M and properties of the modules hU (M) 
and hu(M) it is convenient to refer to the canonical maps: 

1m N 

C(hU(M)) ~ C(M) ~ C(hu(M)), 
Q Ke 

defined by the conditions: 

Q(A) = {<p E hU(M) I Im<p ~ A}j 1m I = L<pEI 1m <Pj 

N(A) = {'l/J E hu(M) IKe'l/J;2 A}j Ke J = n""EJ Ke 1/J. 

Recall some definitions from [24]. The module U is called M -finitely generated if 1m <P is finitely generated 
for any <p E hU(M). Dually, U is called M -finitely cogenerated if 1m 'l/J is finitely cogenerated for any 1/J E hu(M). 
The module U is called M -intrinsically projective if every diagram: 

U 

t 
urn -T A -T 0, 

where m is a natural number, A E C(M), and the row is exact, can be extended commutatively by some 
homomorphism U-Turn. Dually, U is called M -intrinsically injective if every diagram: 

o -T MIA -T urn 

t 
U 

where m is a natural number, A E C(M), and the row is exact, can be extended commutatively by some 
homomorphism urn -T U. The module U is called intrinsically projective (intrinsically injective) if U is 
U-intrinsically projective (respectively U-intrinsically injective). The module U is called an M -generator if 
U generates any submodule of M. Dually, U is called M -cogenerator if U cogenerates any factor module of M. 

We recall properties of the canonical mappings Q, N, 1m, Ke which will be indispensable for our investigation. 

7.1 Lemma. For any modules RM and RU we have: 

(1) Q and 1m establish a Galois correspondence between C(M)* and C(hU(M)). 

(2) Nand Ke establish a Galois correspondence between C(M) and C(hu(M)). 

(3) Q(nA A,\) = nA Q(A,\), Q(LA A,\) ;2 LA Q(A,\), 

N(LA A,\) = n AN(A,\), N(nA A,\) ;2 LA N(A,\), 

for any family {A,\}A of submodules of M. 

(4) If U is M -projective, then Q is a lattice homomorphism. 

(5) If U is M -injective, then N is a lattice anti-homomorphism. 

(6) If U is M -intrinsically projective then Q(Im I) = I, for all finitely generated submodules I ~ hU(M). 

(7) If U is M -intrinsically injective, then N(Ke J) = J, for all finitely generated submodules J ~ hu(M). 
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(8) 	 If U is finitely M -generated and M -intrinsically projective, then Q(Im I) = I, for all submodules 

I r; hU (M). 

(9) 	 If U is finitely M -cogenerated and M -intrinsically injective and M is an AB5* module, then 
N(Ke J) = J, for all submodules J r; hu(M). 

Proof. The assertions (1)-(3) are well-known and obvious. (4), (5) are shown in [26, Proposition 5.4]. (6)-(9) 

are proved in [24, Theorem 2.10, 2.10*, 2.17, 2.18]. 0 


For the dualization of some assertions about w-distributive modules we need the following definitions. We call 

a lattice £ w-codistributive if the dual lattice £* is w-distributive. A module M is called w-codistributive if the 

lattice £(M) is w-codistributive. Since any modular lattice £ is n-codistributive if and only if £ is n-distributive 

(by [5, Proposition 3.1]) we have: 


7.2 	Lemma. For a module RM and n 2:: 2, the following are equivalent: 

(a) 	M is n-distributive; 

(b) 	M is n-codistributive. 

Before explaining what w-codistributivity of a module means for w 2:: No we recall that the following lemma 

was proved in [3]. 


7.3 	Lemma. Each AB5* module is w-distributive, for any infinite w. 

Since any module satisfies the AB5 condition we have, dually to Lemma 7.3, the following. 

7.4 	Lemma. Every module is w-codistributive, for any infinite w. 

The following lemma generalizes the arguments used in [14, Lemma 2.7]. 

7.5 	Lemma. For any module RM and w 2:: 2, the following assertions hold true: 

(1) 	 M is w-codistributive if and only if 

An :L B>. = :L(A n :L Bp.), 
>'EA >'EA p.EA \ {>.} 

for any cyclic submodules A, B>. r; M, A E A, IAI = w. 

(2) 	 M is w-distributive if and only if 

A + nB>. = n(A + n Bp.), 
>'EA >'EA p.EA \ {>.} 

for any w-generated submodules A, B>. r; M, A E A, IAI = w. 

Proof. (1) The necessity is obvious. Let us prove the sufficiency. For this we verify that 

C n:L D>. = :L(C n :L Dp.), 
>'EA >'EA p.EA \ {>.} 

for any submodules C, D>. r; M (A E A). 
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Indeed, if a E C n E~EA D~, then a = b~l + ... + b~m E C for some b~i E D~i' Putting b~ = 0 for ..\ E 

A\{"\., ... , ..\m}, A = Ra ~ C, and B~ = Rb~ ~ D~ (..\ E A), we easily obtain that a E E~EA(CnE~EA\P} D~). 
So we have 

cnLD~~L(Cn L D~). 
~EA ~EA ~EA\P} 

The converse inclusion is obvious. 

(2) The necessity is clear. We prove the sufficiency. Since the converse inclusion is obvious it only remains 
to verify that 

C + nD~ ;2 n(C + n D~), 
~EA ~EA ~EA\P} 

for any submodules C, D~ ~ M (..\ E A). 

Indeed, if x E n~EA(C -: n~EA\0 D~), then for every ..\ E A, there exist a~ E C and b~ E n!'EA\p} D~, 
such that x = a~ + b~. Puttmg A = 2..,;~EA Ra~ ~ C and B~ = E~EA\{~} Rb~ ~ D~ (..\ E A), we easIly conclude 
that x E C + E~EAD~. 0 

7.6 Lemma. Let w ~ 2, and let RM, RU be modules such that U is M -intrinsically projective and M -projective. 
Then: 

(1) 	 If M is w-codistributive, then the left EndR(U)-module HomR(U, M) is w-codistributive. 

(2) 	 If M is w-distributive and U is M -finitely generated, then the left EndR(U)-module HomR(U, M) is 
w-distributive. 

7.7 Lemma. Let w ~ 2 and RM, RU modules such that U is M-intrinsically injective and M-injective. Then: 

(1) 	 If M is w-distributive, then the right EndR(U)-module HomR(M, U) is w-co-distributive. 

(2) 	 If M is w-codistributive and AB5* and U is M -finitely cogenerated, then the right EndR(U)-module 
HomR(M, U) is w-distributive. 

In view of the duality of Lemma 7.6 and 7.7 it suffices to give the proof of Lemma 7.7. 

Proof. (1) As shown in Lemma 7.4, we may assume, without loss of generality, that w is finite. By Lemma 7.5(1), 
it suffices to verify that 

InLJ~~L(In L J~), 
~EA ~EA ~EA\P} 

for any cyclic submodules I, J~ ~ hu(M) (..\ E A, IAI = w). By Lemma 7.1(7), for suitable A, B~ E C(M) 
(..\ E A), we have 1= N(A) and J~ = N(B~) (..\ E A). Therefore, applying Lemma 7.1(3), we conclude that 

InLJ~~N(A+ nB~). 
~EA ~EA 

By distributivity of M and Lemma 7.1(3),(5) we obtain the desired inclusion. 

(2) We prove that 

I + nJ~ = n(I + n J~), 
~EA ~EA ~EA\P} 
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for any submodule I, J).. ~ hu(M) (A E A, IAI = w). Since by Lemma 7.1(9), I = N(A) and J).. = N(B)..), for 

some A, B).. E .c(M), we conclude by Lemma 7.1(3),(5) that 


I + nJ).. = N(A n L B)..). 
)..EA )..EA 

To complete the proof it remains to make use of the w-codistributivity of M and Lemma 7.1(3),(5). 

7.8 Remark. In view of Lemma 7.4 the assertions (1) in Lemma 7.6 and 7.7 only hold for finite w. The 

assertions (2) in Lemma 7.6 and 7.7 can only be used for infinite w, since by Lemma 7.2, for finite cardinality 

they are weaker than the corresponding assertions (1). 


For infinite cardinality we obtain the following immediately from Lemma 7.7(2) and 7.4. 

7.9 Corollary. If w is infinite, RM is an AB5* module, and RU is M -finitely cogenerated, M -intrinsically 

injective and M -injective, then the right EndR(U)-module HomR(M, U) is w-distributive. 


7.10 Proposition. If RM is an AB5* module and RU is M -finitely cogenerated, M -intrinsically injective and 

M -injective, then the right EndR(U)-module HomR(M, U) is an AB5* module. 


Proof. Let us prove that hu(M) satisfies the condition 

I +n J ).. = n(I +J)..), 
A A 

for all submodules I and inverse systems {J)..}A of submodules. 

Putting A = KeI and B).. = Ke J).. (A E A), we obtain a submodule A ~ M and a direct system {B)..}A of 

submodules of M. Since I = N(A) and J).. = N(B)..) (A E A) by Lemma 7.1(9), we easily deduce by Lemma 

7.1(3),(5) that 


1+ nJ).. = N(A n LB)..). 
A A 

To complete the proof apply the AB5 condition and Lemma 7.1(3), (5). o 

7.11 Lemma. For modules RM and RU, the following assertions hold: 

(1) If U is M -projective then hU (AI B) ~ Q(A)/Q(B), for any subfactor AlB of M, where B ~ A ~ M. 

(2) If U is M -injective then hu(AIB) ~ N(A)/N(B), for any subfactor AIB of M, where B ~ A ~ M. 

Proof. In view of the duality of (1) and (2) it is enough to prove (2). For this apply the functor HomR( -, U) to 

the exact sequence: 


o~ AlB ~ MIB ~ MIA ~ 0, 

and recall the canonical identification N(A) = HomR(MIA, U). o 

7.12 Lemma. For modules RM, RU, and an (M,A)-family A = (VIB, {A)..IB)"}A) , where B ~ A).. ~ V ~ M 

for all AE A, the following hold: 
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(1) 	 If the (M, A)-family A is independent, then the (hU (M), A)-family 

(Q(V)/Q(B), {Q(A,\)/Q(B)}A) is independent. 


(2) 	 If the (M, A)-family A is weakly coindependent, then the (hu(M), A)-family 

(N(B)/N(V), {N(A,\)/N(V)}A) is independent. 


Proof. In view of the duality of (1) and (2) it suffices to prove (2). Indeed, weak coindependence of the 
(M, A)-family A means that A,\ + nA\{A} Ap. = V for all A E A. Applying to both sides of this equality the 
mapping N and recalling Lemma 7.1(3), we obtain 

N(A,\) n L N(Ap.) ~ N(V). 
A\{A} 

The converse inclusion is obvious by Lemma 7.1(2). 	 o 

7.13 Lemma. Let w ~ 2 and RM, RU modules such that U is M -projective and U generates the simple subfactor 
P of M. If the left EndR(U)-module HomR(U, M) is w-distributive, then M is w-thick relative to SI (P). 

7.14 Lemma. Let w ~ 2 and RM, RU modules such that U is M -injective and U cogenerates the simple 
subfactor P of M. If the right EndR(U)-module HomR(M, U) is w-distributive, then M is w-thick relative to 
SI(P), 

In view of the duality of Lemma 7.13 and 7.14 it is enough to give the proof of Lemma 7.14. 

Proof. Assuming the contrary and recalling Corollary 3.4, suppose that there exists a weakly coindependent 
(M, A)-family (V/B, {A,\/B}A), where IAI = wand V/A,\ ~ P, for all A E A. By Lemma 7.12(2), the (hu(M), A)­
family (N(B)/N(V), {N(A,\)/N(V)}A) is independent. Applying Lemma 7.11(2) we conclude that the submod­
ules N(A,\)/N(V) ~ N(B)/N(V) are non-zero and pairwise isomorphic. By Corollary 3.7, this contradicts the 
w-distributivity of hu(M). 0 

7.15 Lemma. Let RM,R U be modules and K c U a fully invariant submodule. 

(1) 	 If U is quasi-projective, then the lattice of submodules of the left EndR(U / K)-module hU/K(M) and the 
left EndR(U)-module N(U/K) are isomorphic. 

(2) 	 If U is quasi-injective, then the lattice of submodules of the right EndR(K)-module hK(M) and the right 
EndR(U)-module Q(K) are isomorphic. 

Proof. In view of the duality of (1) and (2) it is enough to prove (2). Using the full invariance of the submodule 
K C U it is easy to verify that Q(K) is a submodule of the right EndR(U)-module hu(M). Considering Q(K) 
as a right EndR(U)-module we define mappings: 

~ : £(hK(M)) ~ £(Q(K)) : 7], 

putting: 

~(I) = {fi I f E I} and 7](J) = {f E hK(M) I fi E J}, 


where I E £(hK(M)), J E £(Q(K)) and i : K -t U is the natural inclusion. 
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Notice that by the full invariance of K ~ U, any a E EndR(U) induces some f3 E EndR(K). Because of the 

quasi-injectivity of U the converse is also true: any (3 E EndR(K) induces some a E EndR(U). In both situations 

we have a commutative diagram: 


K !!.r K 

i-J.. ~i 


U ~ U 


Now it is easy to see that the mappings ~ and TJ are well-defined, isotone and inverse to each other. o 


7.16 Theorem. For any module RM and w ~ 2, the following are equivalent: 

(a) 	M is w -distributive; 

(b) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any M -finitely generated, M -intrinsically 
projective, M -projective RU; 

(c) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any finitely generated projective module RU; 

(d) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any finitely generated quasi-projective module 
RU which has a projective cover; 

(e) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any module RU from some class U of left 
R-modules with the properties 

(i) 	U generates all simple subfactors of M; 

(ii) 	 every U E U is M -finitely generated, M -intrinsically projective and M -projective. 

If w is finite these conditions are equivalent to: 

(I) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any M -intrinsically projective, M -projective 
module RU; 

(g) HomR(U, M) is an w-distributive left EndR(U)-module, for any projective module RU; 

(h) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any quasi-projective module RU which has a 
projective cover; 

(i) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any module RU from some class U of left 
R-modules with the properties 

(i) 	U generates all simple subfactors of M; 

(ii) 	 every U E U is M -intrinsically projective and M -projective. 

If the ring R is semiperfect then (a)-(e) are equivalent to: 

(j) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any finitely generated quasi-projective module 

RU; 

(k) 	HomR(U, M) is an w-thick left EndR(U)-module, for the projective cover RU of any simple left R-module; 

(I) 	 HomR(U, M) is an w-thick left EndR(U)-module, for the projective cover RU of any simple subfactor of 
M; 

(m) 	for any primitive idempotent e E R, the left eRe-module eM is w-thick; 

If the ring R is semiperfect and w is finite, then (a)-(m) are equivalent to: 

(n) 	HomR(U, M) is an w-distributive left EndR(U)-module, for any quasi-projective module RU. 
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Proof. (a)=}( b) follows from Lemma 7.6(2). 

(c)=}( d) Any finitely generated quasi-projective module with a projective cover is isomorphic to the factor 
module of some finitely generated projective module by a fully invariant submodule [1, 19.10 (i)]. It remains to 
apply Lemma 7.15(1). 

(e)=}( a) From (e) we obtain immediately that for every simple subfactor P of M there exists a module U E U 
which generates P. It remains to apply Lemma 7.13 and 1.4. 

(a)=}(J) follows from Lemma 7.6(1) and 7.2. 

(g)=}(h) As in the proof of the implication (c)=}( d), it suffices to apply [1, 19.10(7)( i)] and Lemma 7.15(1). 

(i ) =} ( a) is shown similarly to the implication ( e) =} ( a) . 

(j/,)=}(k) follows from well-known properties of the projective cover of simple modules [22, Proposition 17.19] 
and Corollary 5.11. 

(k)¢:}(m) is clear by the obvious semilinear isomorphism between the left EndR(Re)-module HomR(Re,M) 
and the left eRe-module eM, where e is an idempotent of the ring R. 

It remains to notice that the implications (b)=}( c)=}( e), (d)=}( c), (J)=}(g)=} (i), (h)=}(g), (k)=}(Q=}( e) and 
the equivalences (d)¢:}(j), (h)¢:}( n) are obvious. 0 

A similar proof yields the following theorem. 

7.17 Theorem. For any module RM and n ~ 2, the following are equivalent: 

(a) 	M is n-distributive; 

(b) HomR(M,U) is 	an n-distributive right EndR(U)-module, for any M-intrinsically injective M-injective 
module RU; 

(c) HomR(M, U) is an n-distributive right EndR(U)-module, for any injective module RU; 

(d) HomR(M,U) is an n-distributive right EndR(U)-module, for any quasi-injective module RU; 

(e) HomR(M,U) is 	an n-thick and n-Bezout right EndR(U)-module, for the injective envelope RU of any 
simple subfactor P of M; 

(J) 	 HomR(M, U) is an n-distributive right EndR(U)-module, for any module RU from some class U of left 
R-modules with the properties 

(i) 	U cogenerates all simple subfactors of M; 

(ii) 	 every U E U is M -intrinsically injective and M· injective. 

7.18 Remark. Theorem 7.17 is obtained by dualizing the part of Theorem 7.16 which is related to the case 
of finite w. This does not apply to the part for infinite cardinality in Theorem 7.16 for the following reasons. 
Firstly, for w ~ No, by Lemma 7.7(2), we have to assume that M is an AB5* module. Secondly, for w ~ No, 
according to Lemma 7.4, the w-codistributivity of the module is trivial and so the dualization of Theorem 7.16 
leads to an assertion which contains nothing new in comparison with Lemma 7.7(2). 

Observing that any quasi-projective (quasi-injective) module is intrinsically projective (intrinsically injective) [24, 
Lemma 2.1] we obtain the following from the Lemmata 7.6,7.7, 7.13, 7.14, Proposition 7.10, and the Theorems 
7.16,7.17. 
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7.19 Corollary. For a module RU with endomorphism ring E = EndR{U), w ~ 2, and n ~ 2 we have: 

(I) 	If RU is n-distributive and quasi-projective, then E is left n-distributive. 

(2) 	 If RU is w-distributive, finitely generated, and quasi-projective, then E is left w-distributive. 

(3) 	 If RU is quasi-projective and generates all its simple subfactors, then 

(i) 	 if E is left w-distributive, then RU is w-distributive; 

(ii) 	 RU is n-distributive if and only if E is left n-distributive. 

(4) 	 If RU is finitely generated, quasi-projective, and generates all its simple subfactors, then RU is 
w-distributive if and only if E is left w-distributive. 

(5) 	 If RU is n-distributive and quasi-injective, then E is right n-distributive. 

(6) 	 If RU is an w-codistributive, finitely cogen erat ed, quasi-injective AB5* module, then E is a right 
w-distributive right AB5* ring. 

(7) 	 If RU is quasi-injective and cogenerates all its simple subfactors, then 

(i) 	 if E is right w-distributive, then RU is w-distributive; 

(ii) 	 RU is n-distributive if and only if E is right n-distributive. 

(8) 	 If R is left n-distributive and RU is injective, then UE is n-distributive. 

(9) 	 If R is a left w-codistributive and left AB5* ring, and RU is finitely cogenerated and injective, then UE 

is an w-distributive AB5* module. 

(10) If RU is an injective cogenerator in R-Mod, then 

(i) 	 if UE is w-distributive, then R is left w-distributive; 

(ii) 	 R is left n-distributive if and only if UE is n-distributive. 

7.20 Remark. The Lemmata 7.6,7.7,7.13,7.14, the Theorems 7.16,7.17 and Corollary 7.19 generalize many 
known results about distributivity of modules ([11, Lemma 4], [12, Lemma 3], [16, Theorem 2], a.o.). 

7.21 Remark. For any module RM and n ~ 2, the class of all modules RU for which HomR(M, U) is a right 
n-distributive right EndR(U)-module is closed under direct products and direct summands. In view of Lemma 
1.1 this can be shown in the same way as [16, Lemma 11], where this is proved for n = 2. It is also straightforward 
to show the dual assertions about the class of all modules RU, for which HomR(U, M) is an n-distributive left 
EndR{U)-module. These assertions give the possibility to extend the list of equivalent conditions in the Theorems 
7.16, 7.17 and Corollary 7.19. 
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