
SYNTACTIC MONOIDS AND WORD PROBLEMS

Duncan W. Parkes

Department ofMathematics and Computer Science

University ofLeicester

Leicester LEl 7RH, England

E-mail: dwp4@mcs.le.ac.uk

and

Richard M. Thomas*

Department ofMathematics and Computer Science

University ofLeicester

Leicester LEl 7RH, England

E-mail: rmt@mcs.le.ac.uk

L.....~I ·,Il.i~~ ,-IIWI~ I.:.', & ''1~ t.:.:· b ·l':II..:"LbL:i'i1 . ~ .llo.::u :'-li:;~ t~,.,... -~ _~'" r..>' _~~ J::"'" ,~~!.»' ~

wi ..:"l.iJJ ~ ~~~~'" ·r)1 ~ 4:~1 ~WI",~I (~I ..:"I~",) ..:"I~~~I Y. ~

. ..:"l.iJJ1 ~ .j~I", ~1.>J~4llit:il1 ~ ~1..:,,1~~~I4:~~~ ~.>o", ,~I ~I~~~~

• ~I ..:,,~~~ ~ J~j ~~~ i~i",

ABSTRACT

The purpose of this paper is to discuss some intriguing connections between group
theory and formal language theory, The main topics considered here are syntactic monoids
and word problems in groups. We will talk about the extent to which languages can be
characterized by their syntactic mono ids and relate the theory of syntactic monoids to that
of insertions and deletions in languages. We finish off by drawing some of these themes
together.

Key Words and Phrases: Disjunctive Subsets, Formal Languages, Insertions and
Deletions, Syntactic Monoids, Word Problems.

AMS Mathematics Subject Classification:

Primary 20F 10, 68Q70.

Secondary 20FOS, 20MOS, 20M3S, 68Q4S.

*To whom correspondence should be addressed.

December 2000 The Arabian Journalfor Science and Engineering, Volume 25, Number 2C 81

mailto:rmt@mcs.le.ac.uk
mailto:dwp4@mcs.le.ac.uk

D. W Parkes and R. M. Thomas

SYNTACTIC MONOIDS AND WORD PROBLEMS

1 INTRODUCTION

The purpose of this paper is to discuss some intriguing connections between group theory and formal language
theory. The main topics considered here are syntactic monoids and word problems in groups; we will explain these
terms in Sections 2 and 3 respectively. We will talk about the extent to which languages can be characterized
by their syntactic monoids (see Section 4 in particular) and relate the theory of syntactic monoids to that of
insertions and deletions in languages (see Section 5). We finish off by drawing some of these themes together in
Section 6.

This paper is intended to be reasonably self-contained; we will introduce the concepts from formal language
theory we need and only assume some standard results from group theory. For further information about formal
language theory, the reader is referred to [1-4], and, for group theory, to [5-8]. For some other papers surveying
connections between group theory and formal language theory from a variety of perspectives, see [9-13]. Another
interesting connection (which we will not explore here) between formal language theory on the one hand and
groups and semigroups on the other is that of automatic groups and semigroupsj see [14-21] for example.

2 PRELIMINARIES

Let E be a finite set or alphabet. The set of all finite words (or strings) over E (including the empty word A)
is denoted by E*; to put this another way, E* is the free monoid on the set E. The set of all non-empty strings
over E (i.e. the free semigroup on E) is denoted by E+. The subsets of E* are known as languages over E. We
shall denote the complement in E* of the language L by LC.

If v and ware words over an alphabet E then we shall use the expression v == w to mean that v and w are
identical as strings of symbols. We shall write Iwl for the length of the word w.

A (non-deterministic) finite automaton M is a quintuple (Q,E,d,S,F), where Q is a finite set of states, E
is a finite set of input symbols, the transition relation d is a subset of Q x (E U {A}) x Q, the start state s
is a special element of Q, and the set F of accept states is a subset of Q. We will abbreviate the expression
"non-deterministic finite automaton" to NFA.

The transition relation d may be extended inductively from a subset of Q x (E U {A}) x Q to a subset d* of
Q x E* x Q in the following obvious way:

let (q, A, q) be in d* for each q E Q;

if (ql,X,q2) Ed then let (qllX,q2) be in d*;

if (ql,w,q2) E d* and (q2,x,q3) Ed then let (ql,WX,q3) be in d*.

An element of d of the form (q, A, q') is known as an empty transition.

We say that M accepts a word w E E* if (s, w, f) E d* for some f E F. The set of words from E* which are
accepted by M is denoted by L(M), and this is known as the language accepted by M. A language is said to be
regular if it is accepted by an NFA. We denote the class of regular languages by 'Reg.

A finite automaton is said to be deterministic if there are no empty transitions and if d is a partial function
from Q x E to Q (i.e., for each pair (q, x) E Q x E, there is at most one state q' in Q such that (q, x, q') Ed).
We write DFA for "deterministic finite automaton". We say that a DFA is complete if d is a (total) function
from Q x E to Qj it is well known that we may assume, without loss of generality, that our DFA is complete.
It is also a standard result that any language which can be accepted by an NFA can be accepted by a DFA. In
addition, given a regular language L, there is (up to isomorphism) a unique complete DFA M accepting L such

82 The Arabian Journal for Science and Engineering. Volume 25. Number 2C December 2000

D. W Parkes and R. M. Thomas

that M has the minimum number of states amongst all complete DFA's accepting L; M is known as the minimal
automaton of L.

We can think of a finite automaton M as a device with a collection of states and an input tape which contains
the word Q. If we have a transition (q, a, r) in 8, then M may move from state q to state r whilst reading the
symbol a on the input tape; if a A, then we do not read an input symbol. We start with M in the start state
with the read head positioned over the leftmost cell of the input tape, and the word a is accepted if we can be
in an accept state once all the input has been read.

We now extend the concept of a finite automaton by adding a "stack": the resulting machine is known as a
"pushdown automaton".

A pushdown automaton (PDA) M is a septuple (Q, r,8,s,~,F), where Q is a finite set of states, E is a
finite set of input symbols, r is a finite set of stack symbols, the transition relation 8 is a subset of

Q x (E U {A}) x (r U {A}) x Q x (r U {A}),

the start state s is a special element of Q, the start symbol ~ is a special element of r, and F ~ Q is the set of
accept states.

As with a finite automaton, we have an input tape, but we now also have a stack, which is a tape with a
leftmost cell but which is of unbounded length to the right. Initially the stack contains the special symbol ~
on the leftmost cell, with the head positioned over that cell, and with the rest of the stack blank. The idea
here is that the head is positioned over the rightmost non-blank cell of the stack at any stage. We may delete
the contents of this cell and move the head left (provided that we are not scanning the leftmost cell of the
stack); alternatively, we may move the head one cell to the right and write a new symbol in that cell; or we can
combine these two operations together (so that we delete the contents of the current cell and replace it with a
new symbol). If we have a quintuple (q, a, g, r, h) in 8, then, if we are in state q reading a symbol a on the input
tape with a symbol 9 on the rightmost cell of the stack, we read a, we delete 9 from the stack, we write h 011 the
stack, and we move to state r. We do not read a symbol if a = A, we do not delete a symbol from the stack if
9 A, and we do not write a symbol to the stack if h = A.

As with a finite automaton, a word a is accepted by a PDA M if we can be in an accept state once all the
input has been read (we do not specify what the contents of the stack should be at the end of the computation).
The set of words accepted by M is denoted by L(M), and a language is said to be context-free if it is accepted
by some PDA. We shall denote the class of context-free languages by CF.

If M is a PDA such that, for any configuration of M, there is at most one possible transition that can be
executed (in particular, 8 must be a partial function from Q x (E U { A}) x (r U { A}) to Q x (r U { A}), although we
need more than this), then M is said to be a deterministic pushdown automaton (DPDA), and L(M) is then said
to be a deterministic context-free language. The class of deterministic context-free languages will be denoted
by VCF. It is well known that there are context-free languages that are not deterministic context-free and there
are deterministic context-free languages that are not regular, so that we have Reg c VCF c CF.

We now come to the notion of a "Turing machine"; we will consider the deterministic model, although (as
with finite automata) one does not increase the range of languages accepted if one allows non-determinism.
As with the other types of automaton defined above, there are several variations in the definition of a Turing
machine, and the following is one of the many that can be found in the literature.

A deterministic Turing machine (DTM) M is a sextuple (Q,E,r,8,s,h) where Q is a finite set of states, E
is a finite set of input symbols, r is a finite set of work tape symbols (including ~ and Ll, where Ll is the "blank
symbol"), the transition function 8 is a partial function

Q x (EU {~,<J}) x r --t Q x {L,R,N} x r x {L,R,N},

and the start state s and halt state h are two special elements of Q.

December 2000 The Arabian Journal/or Science and Engineering, Volume 25, Number 2C. 83

D. W. Parkes and R. M Thomas

Our Thring machines have a read-only input tape which, for an input of length n, consists of n + 2 tape cells,
the first of which contains the "left-end-of-tape" marker r>, the last of which contains the "right-end-of-tape"
marker <l and such that the cells in-between hold the input word. They also have a work tape on which we
perform the computation. The work tape initially contains r> in its leftmost cell, is blank everywhere else and is
unbounded in length to the right. We may move freely over the work tape and read from, and write to, the cells
as we wish. Initially, the work head is positioned over the leftmost cell of the work tape (the cell initially holding
the symbol r» and the input head is positioned over the cell adjacent to the leftmost cell of the input tape (the
cell holding the first symbol of the input string, if the input string is non-empty, or over the cell holding the
symbol <l otherwise).

If 6(q,x,g) = (r,d},g',d2), we imagine that, when M is in state q reading a symbol x on the input tape and
g on the work tape, then M erases g and writes g' in its place, changes state to r, moves the input head in the
direction indicated by d1 (left if d1 L, right if d1 = R, and not at all if d1 = N), and moves the head on
the work tape in the direction indicated by d2 • If ever M attempts to move left on either tape when" reading
the leftmost cell then M crashes, as it does if ever it attempts to move the input head right when reading the
rightmost cell of the input tape; there is no transition defined from the halt state. If M is set up in the start
state s with input word it, then it is said to be accepted if M reaches the halt state h and rejected otherwise (i. e.
if the machine either crashes or else runs indefinitely without entering the halt state). The language L(M) of M
is the set of all words accepted by M; we say that a language L is recursively enumerable if L = L(M) for some
DTM M. We let R£. denote the class of recursively enumerable languages.

However, with this notion, we may never know if the input word lies outside L as M may run indefinitely on
some inputs. We can modify our definition of a Thring machine so as to have two halt states hy and hn, and
then insist that such a machine halts if it enters either of these states. We also insist that, for any input it, the
machine necessarily reaches one of these two states. We define the yes-language Y (M) of such a Thring machine
M to be the set of all input words such that M reaches hy (and the no-language N(M) = E'" - Y(M) of M to
be the set of all input words such that M reaches hn) and we call such a machine a decision-making DTM. We
say that a language L is recursive if L = Y(M) for some decision-making DTM M. It is a standard result that
a recursive language is necessarily recursively enumerable, but not conversely. We let Rec denote the class of
recursive languages.

One possible restriction on our model is where we limit the work tape to having the same number of cells as
the input tape. Here, if we have an input of length n, so that the input tape has n + 2 cells, then the work tape
also consists of n + 2 cells, the first of which contains r> and the last of which contains <l and such that the cells
between them are initially blank. Such a machine is called a linear bounded automaton (LBA), and a language
accepted by an LBA is said to be context-sensitive. We denote the class of context-sensitive languages by CS,
and we have that

Reg c 'DC:F c C:F c CS c Rec CR£'.

The chain Reg C C:F c CS c R£. is known as the Chomsky Hierarchy.

Let :F be a family of languages; then :F is said to be closed under inverse homomorphism if

L ~ n"', L E:F, 4>: E'"-t n'" a monoid homomorphism :::::} L4>-l E :F.

We say that :F is closed under intersection with regular languages if

L ~ E"', L' ~ E"', L E:F, L' E Reg :::::} L n L' E :F.

There is a useful table showing which of the classes of languages we have mentioned here are closed under
various operations at [3, pages 280-281].

The syntactic congruence'"L of a language L ~ E'" is the coarsest congruence on E'" such that L is a union
of congruence classes; we shall denote the congruence class of a word w under the syntactic congruence by [w].

84 The Arabian Journal/or Science and Engineering. Volume 25. Number 2C. December 2000

D. W Parkes and R. M. Thomas

The syntactic monoid ML of L is the quotient of E* by f'.I L, and the syntactic morphism 11L is the natural
homomorphism from E* onto ML, i.e. 11L maps W to [wJ. We will summarize some properties of the syntactic
congruence; proofs may be found, for example, in [4].

The following is a well known alternative characterization of the syntactic congruence (which is sometimes
taken as the definition):

Proposition 2.1 Let L be a language over E; the syntactic congruence f'.IL is given by

(WI f'.IL W2) ~ \/U, v E E*(UW1V E L ¢:} UW2V E L).

Since any congruence on E* which has L as a union of congruence classes must also have LC as a union of
congruence classes, the following observation is clear:

Proposition 2.2 The syntactic monoid of a language L ~ E* is equal to the syntactic monoid of its comple­
ment LC.

The syntactic monoid M L is, in a sense, the smallest monoid M onto which there is a homomorphism such
that the images of Land L C are disjoint.

We say that a monoid M recognizes a language L ~ E* if there is a homomorphism <j) : E* -+ M such that
L = A<j)-1 for some subset A of M. It is clear that a language is recognized by its syntactic monoid, since
L (L11L)11[;1,

In fact we can say something more here. We first need another definition. If M1 and M2 are mono ids then
M1 is said to divide M2 if MI is a homomorphic image of some submonoid of M2. We then have the following
result:

Proposition 2.3 Let L ~ E* be a language and M be a monoid; then M recognizes L if and only if ML
divides M.

The minimal complete DFA accepting a regular language L is closely related to MLi see [4] for details. One
important point in all this is the following result:

Theorem 2.4 A language is regular if and only if it has finite syntactic monoid.

Another way of stating this result is to say that a language L is regular if and only if the syntactic congruence
11L has finitely many congruence classes. In fact, we have the following generalization of this:

Proposition 2.5 If L ~ E* then L is regular if and only if there is a congruence f'.I on E* such that f'.I has
finitely many congruence classes on E* and L is a union of congruence classes.

A lot of very interesting work has been done on classifying various subclasses of the regular languages by means
of their syntactic monoids (including Schiitzenberger's beautiful result in [22J that the "star-free" languages are
precisely those that have finite syntactic monoids with no non-trivial subgroups), but we shall not look at this
here. The reader is referred to [4, 23, 24J, for example.

If M is a monoid then a subset A of M is said to be disjunctive (or syntactic) if there is no nontrivial
congruence on M such that A is a union of congruence classes; in particular, the image of a language in its
syntactic monoid is disjunctive. We then have:

December 2000 The Arabian Journal for Science and Engineering. Volume 25, Number 2C. 85

3

D. W Parkes and R. M. Thomas

Proposition 2.6 If L is a language over E, M is a monoid, A is a disjunctive subset of M, and <jJ : E* -+ M
is a surjective homomorphism such that L A<jJ-I, then M is isomorphic to the syntactic monoid of L.

WORD PROBLEMS

A set X, where each x E X represents an element of a group G, is said to be a monoid generating set for G if
every element of G is represented by a word from X*. Let X-I be a new set of symbols {X-I: x E X}, where

represents the inverse of the element represented by x (we tend to identify the symbol x with the element of
G it represents); then X is said to be a group generating set for G if X u X-I is a monoid generating set for G.
Given a word W over X U X-I, we define w- l in the obvious way.

Given a monoid generating set X for a group G, the word problem Wx(G) of G with respect to X is the set
of all words from X* which are equal to the identity in G. The word problem W{(G) of G with respect to a
group generating set X is then WXUX - 1 (G).

It is more traditional to think of the word problem of a group G as being the question as to whether or
not two words WI and W2 over X U X-I represent the same element of G, or (equivalently) whether or not the
word W = WI Wi I represents the identity. If we define the word problem W of G to be the set of words that
do represent the identity, the question reduces to that of determining whether or not the word W lies in W.
This approach (considering the word problem to be a set of words) is more natural if we want to connect word
problems in groups with classes of formal languages.

We can also talk about Wx(M) where M is a monoid which is not a group. It should be noted that, in this
case, knowing how to decide whether or not a word is in Wx (M) does not necessarily give a solution to the
full word problem for M. An extreme case of this is when we have a semigroup S generated (as a semigroup)
by a set Y (i. e. every element of S is represented by a word in Y+), and we add an identity element to S to
form a monoid M. The only word of Y* that represents the identity of M is A, and this clearly tells us nothing
whatsoever about the difficulty of the general word problem in M.

Another related way of thinking of the word problem is the following. Let G be a group and X be a finite
alphabet, and then let <jJ : X* -+ G be a surjective homomorphism; then the image of X in G is a finite monoid
generating set for G (as above, we shall generally just call this generating set X, identifying the set of formal
symbols with their images), and the word problem of G with respect to X is just the kernel of <jJ.

Let :F be a class of languages which is closed under inverse homomorphism, and let M be a finitely generated
monoid. A subset A of M is said to be an :F-subset if, for any alphabet X and surjective homomorphism
<jJ : X* -+ M, we have that A<jJ-l E:F. The independence of this concept with respect to choice of generating
set and surjective homomorphism is provided by the following result from [25, 26] (see also [10]):

Lemma 3.1 Let M be a finitely generated monoid, E and 0 finite alphabets, <jJ : E* -+ M a homomorphism,
and 1j; : 0* -+ M a surjective homomorphism; then there is a homomorphism X : E* -+ 0* such that x1j; <jJ.

Let A be an :F-subset of a monoid M, so that there is a monoid generating set X and a surjective homo­
morphism 1j; : X· -+ M, with A1j;-1 E :F. If Y is another alphabet and <jJ : Y· -+ M is another surjective
homomorphism then, by Lemma 3.1, there is a homomorphism X : Y· -+ X· such that x1j; = <jJ. We then have
A<jJ-l = A1j;- I X- I , so that A<jJ-l is an inverse image of A1j;-t, and thus A<jJ-l E :F by the closure of :F under
inverse homomorphism.

If :F is closed under inverse homomorphism and the word problem of G with respect to a finite monoid
generating set X is in:F then {I} is an :F-subset of G; thus Wy(G) E :F for any finite monoid generating set Y.
In other words, we have:

86 The Arabian Journal/or Science and Engineering. Volume 25. Number 2C. December 2000

D. W Parkes and R. M. Thomas

Proposition 3.2 Let X and Y be finite monoid generating sets for a group G and let F be a class of languages

which is closed under inverse homomorphism; if Wx(G) E F then Wy(G) E F.

In the light of this result, if F is a class of languages which is closed under inverse homomorphism, and the

word problem of a group G with respect to some particular finite monoid generating set X lies in F, then we

may simply say that the word problem of G is in F (and write W(G) E F) without reference to any particular

generating set, and we say that G is an F-group.

4 CHARACTERIZATIONS OF LANGUAGES

As has been noted in [27], it is not possible to give a characterization of the context-free languages solely

in terms of their syntactic monoids (in a similar way as was done for the regular languages in Theorem 2.4)

since languages which are very different in terms of their position in the Chomsky Hierarchy can have the

same syntactic monoid. For example, the context-free languages are not closed under complementation, and, by

Proposition 2.2, a language always has the same syntactic monoid as its complement; therefore there are monoids

which are the syntactic monoids of languages which are context-free and of languages further up the hierarchy.

One can say rather more than this; the following is typical of the sort of result one can prove here:

Theorem 4.1 Let G be a finitely generated group which contains an element of infinite order. Let F be a family

of languages which is closed under inverse homomorphism and intersection with regular languages such that there

exists a language K ~ {a}* with K fj. F; then G = ML for some L fj. F.

Proof. Let a be an element of G of infinite order. Let X be a group generating set for G containing a, let

E = X U X-I, and then let ¢>: E* -t G be the natural homomorphism.

iLet K be a subset of {a}* such that K fj. F, and let I {i: a E K}. If,\ fj. K and K U {'\} E F, then

(K u {,\}) n { a } + = KEF, a contradiction; so, replacing K by K U {,\} if necessary, we may assume that ,\ E K,

and thus that 0 E I. Let S = {ai : i E I} ~ Gj note that, since 0 E I, we must have 1 E S. Let L S¢>-I. If

L E F, then K = L n {a}* E F, a contradiction; so L fj. F.

In order to prove that G = ML we show that there is no non-trivial congruence on G such that S is a union
iof congruence classes. Let f"V be a non-trivial congruence on G. Suppose that a and ai are in S, with i > j, and

that ai aij then ai - i
f"V 1 E S, and so ai - i E S with j - i < 0, a contradiction. 0
f"V

In the light of the problems with using syntactic monoids to classify languages above the regular languages

in the Chomsky Hierarchy, Sakarovitch suggests in [28] the framework of syntactic pointed monoidsj the idea

here is that languages should be classified by the structure of their syntactic monoid and by the image of the

language in that monoid. Sakarovitch showed that, if two languages have the same syntactic monoid M and

the same image in M, then each is the image of the other:. via an inverse homomorphism. It would therefore be

useful to have methods of finding out whether or not a particular subset of a monoid is disjunctive. We will be

particularly interested here in the case where our monoid is a group.

For every congruence on a group G, there is a normal subgroup N of G such that x y if and only if f"V f"V

N x = N Yj conversely, if we have a normal subgroup N of G, then defining in this way yields a congruence. f"V

A subset A of a group G is disjunctive if and only if there is no non-injective homomorphism ¢> from G onto

a group K such that A is the full inverse image of a subset B of K. As a consequence, we have the following

result:

Proposition 4.2 Let G be a group, and A be a subset of G; then A is a disjunctive subset of G if and only if

A is not the union of cosets of a non-trivial normal subgroup of G.

December 2000 The Arabian Journal/or Science and Engineering, Volume 25, Number 2C 87

D. W. Parkes and R. M. Thomas

Proof. Assume A is not a disjunctive subset of G, so that there is a non-trivial congruence rv on G with A a
union of rv-classes. If N is the associated normal subgroup of G, then N consists of all those elements n such
that n rv 1; since rv is a non-trivial congruence, we have that N =f:. {I}. Recall that x rv y if and only if x and y
lie in the same coset of N; since A is a union of rv-classes, A is a union of cosets of N.

Conversely, assume that A is a union of cosets of a non-trivial normal subgroup N of G. Define the non-trivial
congruence rv on G by x rv y if and only if N x = Ny. Since A is the union of cosets of N, A is a union of
rv-classes, and so is not disjunctive. 0

In the case where our subset A is a subgroup, we get the following immediate consequence:

Corollary 4.3 Let G be a group, and H be a subgroup of G; then H is a disjunctive subset of G if and only if
it contains no non-trivial normal subgroup of G.

An immediate consequence of Corollary 4.3 is the following well-known observation:

Proposition 4.4 A group is the syntactic monoid of its word problem.

Proof. Let G be a group and </> be a homomorphism from }:* onto G. Let L = {I}</>-1, so that L is the word
problem of G. Now {I} is a subgroup of G which obviously contains no non-trivial normal subgroup of G; by
Corollary 4.3, {I} is a disjunctive subset of G, and so G is the syntactic monoid of L by Proposition 2.6. 0

This gives us another proof of the following result from [29]:

Corollary 4.5 The groups with regular word problems are exactly the finite groups.

Proof. A finite group G is the syntactic monoid of its word problem which must therefore be regular by
Theorem 2.4. Conversely, if G has regular word problem then it is the syntactic monoid of a regular language
and hence is finite, again by Theorem 2.4. 0

We can say rather more here. Suppose that G is a group and that A is any finite subset of G such that
A E 'Reg(G), say </> : X* -t G is a surjective homomorphism such that L = A</>-1 is regular. If A is disjunctive
then G is the syntactic monoid of L by Proposition 2.6 and so G is finite by Theorem 2.4. If A is not disjunctive,
then A is the union of cosets of a non-trivial normal subgroup N of G by Proposition 4.2. Choose N to be a
maximal such normal subgroup; since A is finite, N is also finite. We have a homomorphism 8 : G -t GIN; if B
is the finite set A8, then B is disjunctive in GIN. We have a surjective homomorphism X = </>8.: X* -t GIN and
L = BX-1 ; so GIN is the syntactic monoid of the regular language L and therefore GIN is finite by Theorem 2.4,
giving that G is finite.

If G is a finite group, A is any subset of G and </> : X* -t G is a surjective homomorphism, then we have a
congruence rv on X* defined by a: rv f3 if and only if a:</> = f3</>. Since rv has finitely many congruence classes and
A</>-l is a union of classes, A</>-l is regular by Proposition 2.5, and so A E 'Reg(G). So we have proved:

Theorem 4.6 Let G be a finitely generated group, and let A be a finite non-empty subset of G such that
A E 'Reg(G); then every finite subset of G is regular.

88 The Arabian Journal for Science and Engineering, Volume 25, Number 2C December 2000

5

D. W Parkes and R. M. Thomas

Some important contributions by Herbst to the theory of F-subsets may be found in [30] and [31]. In
particular, he proved the following result:

Theorem 4.7 Let G be a finitely generated group and let A be a finite non-empty subset of G such that
A E CF(G); then every finite subset of G is deterministic context-free.

So we have the analog of Theorem 4.6 for context-free (and for deterministic context-free) languages. In
the case where G is residually finite, this result had previously been established by Sakarovitch in [28]. It is
particularly interesting that, if the word problem of a group is context-free, then it is deterministic context-free;
see [32-34] for more details. Moreover, Herbst also proved the following two results:

Theorem 4.8 Let G be a finitely generated group, and let A be a finite non-empty disjunctive subset of G such
that A E CS(G); then every finite subset of G is context-sensitive.

Theorem 4.9 Let G be a finitely generated group, and let A be a finite non-empty disjunctive subset of G such
that A E n£(G); then every finite subset of G is recursively enumerable.

It is not clear whether the hypothesis that A is disjunctive can be dropped in Theorems 4.8 and 4.9.

INSERTIONS AND DELETIONS

Given a language L ~ X·, the word problem of the syntactic monoid ML of L (with respect to the the
generating set X) is the set of words in X· which are equal to the identity in M L , i.e. the congruence class [A]
of the empty word under the syntactic congruence 1]L.

Let F be a family of languages that is closed under inverse homomorphism. We are interested in exploring
which groups can be syntactic mono ids of languages in F. The following observation essentially allows us to
assume that our alphabet contains inverses:

Lemma 5.1 Let F be a class of languages which is closed under inverse homomorphism, and let L ~ X· be
a language in F. If the syntactic monoid ML of L is a group G, then G is also the syntactic monoid of a
language K over the generating set ~ = X U X-I with KEF.

Proof. Let S be the image of L in G under the syntactic morphism 1]L (recall that L = S1]L -1). Let 4> be the
monoid homomorphism from ~. to G which maps each x E X to X1]L, and each X-I E X-I to (X1]L)-I. Since
1]L is surjective, 4> must also be surjective.

Let K be the inverse image of Sunder 4>. Since S is a disjunctive subset of G, we know that G is the syntactic
monoid of K. By Lemma 3.1, we must have that KEF. 0

Let L be a language over an alphabet ~. Then INS(L) is defined to be the set of words which, when inserted
at any point into a word from L, always result in another word from L, i.e.

INS(L) = {w E ~. : uv E L => uwv E L}.

Let sUB(L) be the set of all subwords of words of L, so that

sUB(L) = {w E ~. : uwv E L for some u,v E ~.}.

December 2000 The Arabian Journal for Science and Engineering. Volume 25. Number 2C. 89

D. W Parkes and R. M. Thomas

Then DEL(L) is defined to be the set of words in sUB(L) which, when they are deleted from any word in L, the
resulting word always lies in L, i.e.

DEL(L) = {w E SUB(L) : uwv E L =} uv E L}.

The subsets INS(L) and DEL(L) are defined and studied in [35].

It is interesting to note the following characterization of the word problem of the syntactic monoid of a
language:

Lemma 5.2 Let L be a language over an alphabet X. Then the word problem W of the syntactic monoid of L
is INS(L) n DEL(L).

Proof. We observe that W = [AJ, and so, by Proposition 2.1,

U E W 	 ¢:=:} (WIW2 E L ¢:} WIUW2 E L)

¢:=:} (WIW2 E L =} WIUW2 E L) and (WIUW2 E L =} WIW2 E L)

¢:=:} U E INS(L) and U E DEL(L),

which is exactly what we wanted. 0

For two languages Ll and L2 over the alphabet E, the dipolar deletion Ll ;:::: L2 is defined by the equation:

{x E E*: there exists U E Ll and v E L2

such that U == ox(3 and v == o(3}.

The following result from [35] gives the relationships between INS(L), DEL(L) and Ll ;:::: L2:

Proposition 5.3 Let L be a language over E. Then

i.INS(L)=(LC;::::Lt;

ii. DEL(L) (L;:::: Lct n sUB(L).

Suppose that E = X U X-I and define -I : E* --+ E* in the obvious way. If A and B are subsets of E*, then

{x E E* : 30,(3 E E*(u ox(3 E A and v == 0(3 E B)}-I

{x- l E E* : 30,(3 E E*(u ox(3 E A and v == 0(3 E B)}

= {X-I E E* : 30-1,(3-1 E E*(u- l == (3-1x -Io -1 E A-I

and v-I == (3-1 0 -1 E B-1)}

= {y E E* : 3,,8 E E*(,y8 E A-I and ,8 E B-1)}

= A-I;:::: B-1

90 The Arabian Journal/or Science and Engineering, Volume 25. Number 2C. 	 December 2000

6

D. W Parkes and R. M. Thomas

and
(Ac)-1 = {x E :E* : x rj. A}-1

{x- 1 E:E*:xrj.A}

= {x- l E:E* : X-I rj. A-I}

= {y E :E* : y rj. A-I}

= (A-l)C,

and so we have the following result:

Lemma 5.4 Let A and B be subsets of:E*. Then

i. (A ~ B)-1 A-I ~ B-1;

ii. (AC)-1 = (A-It.

We can now show the following:

Proposition 5.5 Let L be a language over the alphabet :E = X U X-I such that ML is a group G (where X is
a group generating set for G). Let 1= INS(L) and D = DEL(L); then D = I-I INS(L-l).

Proof. We must have aa- l E WE(G) for any a E :E*, so that aa- l E In D for any a E :E* by Lemma 5.2.

Let a E I; then ua- l v E L implies that uaa- l v E L (since a E I), and thus uv E L (since aa- l E D), and
we see that a-I E D.

Let a-I E D; then uv E L implies that uaa- l v E L (since aa- l E I), and thus uav E L (since a-I ED),
and we have a E I.

We now have that D = {a- l E :E* : a E I} = I-I, and thus,

D I-I = [(LC ~ Ltrl [(L- l t ~ (L- l)(= INS(L- l)

by Lemma 5.4 and Proposition 5.3. 0

In particular, given Lemma 5.2, we have:

Corollary 5.6 If L = L -1 is a language over the alphabet :E X U X-I and the syntactic monoid of L is a
group G (where X is a group generating set for G), then WE(G) INS(L) = DEL(L).

WORD PROBLEMS OF SYNTACTIC MONOIDS

Let :F be a family of languages which is closed under inverse homomorphism. One general question which we
shall look at is the following:

Question 6.1 Given a language L E :F such that the syntactic monoid of L is a group, is the word problem of
the syntactic monoid of L in :F?

More generally, we have:

December 2000 The Arabian Journal/or Science and Engineering, Volume 25, Number 2C 91

D. W. Parkes and R. M. Thomas

Question 6.2 Given a language L from F, what can we say about the word problem of ML?

Of course, the answers to these questions will depend on precisely which family F of languages we are considering.
As Question 6.1 implies, we will be interested in the case where the syntactic monoid is a group. Lemma 5.1
tells us that, when trying to answer Question 6.1 in this situation, we may assume (without loss of generality)
that the alphabet ~ contains inverses.

In the case where F is the class of regular lang ages , the answer to Question 6.1 is clear. If L is a regular
language with syntactic monoid M, then {1}1JL1 is recognized by the finite monoid M, and so is regular.
Theorem 4.7 gives a partial positive answer to Question 6.1 in the case of context-free languages:

Proposition 6.3 Let L be a context-free language with syntactic monoid a group G. If the image of L in G is
finite then G has a context-free word problem.

Proof. Assume that L #- 0; then the image of L in G is a finite non-empty context-free set, and, by Theorem
4.7, all finite subsets of G are context-free; in particular {1} E CF(G). If L is empty then its syntactic monoid
is the trivial group, which obviously has context-free word problem. 0

In general, however, the word problem of a group which is the syntactic monoid of a context-free language
need not be context-free; a particular example from [36] is the following:

Example 6.4 Let ~ = {a, b, c, d}, and let

Then L is a context-free language with syntactic monoid ML isomorphic to the free abelian group Coo x Coo of
rank 2, but the word problem of ML is not context-free.

In the case of deterministic context-free languages, the answer to Question 6.1 appears to be unknown. We
have the following question from [30]:

Question 6.5 Let L ~ ~* be a deterministic context-free language with syntactic monoid a group G; is the word
problem of G necessarily context-free?

Question 6.5 reduces to Question 6.1 for deterministic context-free languages, since, as we noted in Section 4,
if the word problem of a group is context-free, then it is always deterministic context-free. In general, we say
that a monoid M is deterministic if every context-free l~nguage whose syntactic monoid is isomorphic to M is
deterministic context-free, and there is at least one such language. Sakarovitch conjectured in [25, 37] that the
thin syntactic monoids are exactly the deterministic monoids (a monoid is said to be thin if it is the union of
subsets of the form uv*w with u, v, w EM). It is noted in [30] that, if the answer to Question 6.5 is positive,
then this would lead to a proof of Sakarovitch's conjecture in the special case of groups.

ACKNOWLEDGEMENT

The second author would like to thank Hilary Craig for all her help and encouragement.

92 The Arabian Journal for Science and Engineering, Volume 25, Number 2C. December 2000

D. W Parkes and R. M. Thomas

References

[1] 	 S. Eilenberg, Automata, Languages and Machines, Volumes A and B. New York: Academic Press, 1974.

[2] 	 M.A. Harrison. Introduction to Formal Language Theory. New York: Addison \Vesley, 1978.

[3] 	 J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. New York: Addison
Wesley, 1979.

[4] 	 J.M. Howie, Automata and Languages. Oxford University Press, 1991.

[5] 	 D.L. Johnson, "Presentations of Groups", London Mathematical Society Student Texts, 15. Cambridge University
Press (1997).

[6] 	 R.C. Lyndon and P.E. Schupp, "Combinatorial Group Theory", Ergebnisse der Mathematik und ihrer Grenzgebiete,
89. Berlin: Springer-Verlag (1977).

[7] 	 W. Magnus, A. Karass, and D. Solitar, Combinatorial Group Theory. New York: Dover Publications, 1976.

[8] 	 J.J. Rotman, Introduction to the Theory of Groups. Berlin: Springer-Verlag, 1995.

[9] 	 R.H. Gilman, "Formal Languages and Infinite Groups", in Geometric and Computational Perspectives on Infinite
Groups. ed. G. Baumslag, D.B.A. Epstein, R.H. Gilman, H. Short, and C.C. Sims. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 25. American Mathematical Society, 1996, pp. 27-51.

[10] 	 T. Herbst and R.M. Thomas, "Group Presentations, Formal Languages and Characterizations of One-Counter
Groups", Theoret. Comput. Sci., 112 (1993), pp. 187-213.

[11] 	 K. Madlener and F. Otto, "Groups Presented by Certain Classes of Finite Length-Reducing String Rewriting Sys­
terns", in Rewriting Theory and Applications (Bordeaux, 1987). ed. P. Lescanne. Lecture Notes in Computer Science,
256. Berlin: Springer-Verlag, 1987, pp. 133-144.

[12] 	 S.E. Rees, "A Language Theoretic Analysis of Combings", in Groups, Lan9uages and Geometry. ed. R.H. Gilman.
Contemporary Mathematics, 250. American Mathematical Society, 1999, pp. 117-136. .

[13] 	 I.A. Stewart and R.M. Thomas, "Formal Languages and the Word Problem for Groups", in Groups St Andrews 1997
in Bath, Volume 2. ed. C.M. Campbell, E.F. Robertson, N. Ruskuc, and G.C. Smith. London Mathematical Society
Lecture Note Series, 261. Cambridge University Press, 1999, pp. 689-700.

[14] 	 G. Baumslag, S.M. Gersten, M. Shapiro, and H. Short, "Automatic Groups and Amalgams", J. Pure Appl. Algebra,
76 (1991), pp. 229-316.

[15] 	 C.M. Campbell, E.F. Robertson, N. Ruskuc, and R.M. Thomas, "Direct Products of Automatic Semigroups", J.
Austral. Math. Soc., 69 (2000), pp. 19-24.

[16] 	 C.M. Campbell, E.F. Robertson, N. Ruskuc, and R.M. Thomas, "Automatic Semigroups", Theoret. Comput. Sci.,
250 (2001), pp. 365-391.

[17] 	 A.J. Duncan, E.F. Robertson, and N. Ruskuc, "Automatic Monoids and Change of Generators", Math. Proc. Cam­
bridge Philos. Soc., 127 (1999), pp. 403-409.

[18] 	 D.B.A. Epsteill, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston, Word Processing in
Groups. London: Jones and Bartlett (1992).

[19] 	 F. Otto, "On s-Regular Prefix-Rewriting Systems and Automatic Structures", in Computing and Combinatorics,
Proceedings COCOON'99. ed. T. Asano, H. Imai, D.T. Lee, S. Nakano, and T. Tokuyama. Lecture Notes in Computer
Science, 1627. Berlin: Springer-Verlag, 1999, pp. 422-431.

[20] 	 F. Otto, "On Dehn Functions of Finitely Presented Biautomatic Monoids", J. Autom. Lang. Comb., 5 (2000),
pp. 405-420.

[21] 	 F. Otto, A. Sattler-Klein, and K. Madlener, "Automatic Monoids versus Monoids with Finite Convergent Presenta­
tions", in Rewriting Techniques and Applications - Proceedings RTA '98. ed. T. Nipkow. Lecture Notes in Computer
Science, 1379. Berlin: Springer-Verlag, 1998, pp. 32-46.

[22] 	 M. Schiitzenberger, "On Finite Monoids Having only Trivial Subgroups", Information and Control, 8 (1965), pp. 190­
194.

[23] 	 J.-E. Pin, "Finite Semigroups and Recognizable Languages: an Introduction", in Semigroups, Formal Languages and
Groups. ed. J. Fountain. NATO ASI Series C, 466. Dordrecht: Kluwer, 1995, pp. 1-32.

[24] 	 J.-E. Pin, "Syntactic Semigroups", in Handbook of Formal Languages, Volume 1. ed. G. Rozenberg and A. Salomaa.
Berlin: Springer-Verlag, 1997, pp. 679-746.

December 2000 	 The Arabian Journal for Science and Engineering. Volume 25. Number 2C 93

D. W. Parkes and R. M. Thomas

[25] 	 J. Sakarovitch. "Monoi'des syntactiques et langages algebriques", These 3eme cycle math., UniversiM Paris- VII,
Paris, 1976.

[26] 	 J. Sakarovitch, "Syntaxe des langages de Chomsky", These Sc. Math. UniversiM Paris- VII, Paris, 1979.

[27] 	 J.-F. Perrot and J. Sakarovitch, "A Theory of Syntactic Monoids for Context-Free Languages", in Information
Processing 77 (Proc. IFIP Congr., Toronto, Ont., 1977). ed. B. Gilchrist. IFIP Congr. Ser., 7. Amsterdam: North
Holland, 1977, pp. 69-72.

[28] 	 J. Sakarovitch, "An Algebraic Framework for the Study of the Syntactic Monoids: Application to the Group Lan­
guages", in Mathematical Foundations of Computer Science (Gdansk, 1976). ed. A. Mazurkiewicz. Lecture Notes in
Computer Science, 45. Berlin: Springer-Verlag, 1977, pp. 510-516.

[29] 	 A.V. Anisimov, "Some Algorithmic Problems for Groups and Context-Free Languages", Kibernetica, 2 (1972),
pp.4-11.

[30] 	 T. Herbst, "On a Subclass of Context-Free Groups", RAIRO Inform. Theor. Appl., 25 (1991), pp. 255-272.

[31] 	 T. Herbst, "Some Remarks on a Theorem of Sakarovitch", J. Comput. System Sci., 44 (1992), pp. 160-165.

[32] 	 J.M. Autebert, L. Boasson, and G. Senizergues, "Groups and NTS Languages", J. Comput. System Sci., 35 (1987),
pp. 243-267.

[33] 	 D.E. Muller and P.E. Schupp, Groups, "The Theory of Ends, and Context-Free Languages", J. Comput. System Sci.,
26 (1983), pp. 295-310.

[34] 	 D.E. Muller and P.E. Schupp, "The Theory of Ends, Pushdown Automata, and Second-Order Logic", Theoret.
Comput. Sci., 37 (1985), pp. 51-75.

[35] 	 M. Ito, L. Kari, and G. Thierrin, "Insertion and Deletion Closure of Languages", Theoret. Comput. Sci., 183 (1997),
pp.3-19.

[36] 	 J. Sakarovitch, "Sur les groupes infinis, consideres comme monoides syntaxiques de langages formels", in Seminaire
d'Algebre Paul Dubreil, 2geme annee. ed. M.P. Malliavin. Lecture Notes in Mathematics, 586. Berlin: Springer-Verlag
(1977), pp. 168-179.

[37] 	 J. Sakarovitch, "Sur une propriete d'iteration des langages algebriques deterministes", Math. Systems Theory, 14
(1981), pp. 247-288.

Invited Paper Received 5 December 2000.

94 The Arabian Journal/or Science and Engineering. Volume 25. Number 2C. 	 December 2000

