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ABSTRACT 

This paper deals with Gelfand and exchange rings A in terms of their spectra, the latter 
understood not in the usual sense as the spaces of prime, or maximal, ideals, but as their 
pointfree counterparts, the/rames RldA of radical ideals and JRldA of Jacobson radical 
ideals. This approach permits a treatment which is independent of any choice principles 
but which still leads to the same kind of results as those obtained in the classical choice­
dependent setting. Further, the present results are more general; they imply the classical 
ones. 

In particular, Gelfand rings A are characterized by the normality of RldA, and we show 
that: 

- a ring A is an exchange ring iff it is Gelfand with zerodimensional JRldA; 

- a ring is Gelfand iff it is the ring of global elements of what we call a well-supported 
local ring in the topos of sheaves on a compact regular frame; and 

- a ring is an exchange ring iff it is the ring of global elements of a local ring in the 
topos of sheaves on a compact zerodimensional frame. 

In addition, we provide an analysis of the choice principles required in some previous 
work in this area. 
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GELFAND AND EXCHANGE RINGS: 

THEIR SPECTRA IN POINTFREE TOPOLOGY 


Pointfree topology deals with particular complete lattices, called frames, which may be regarded as abstractly 
defined lattices of open sets of topological spaces. Apart from the fact that a considerable number of results 
in classical topology turn out to be consequences of results in this pointfree setting, frames have the important 
feature that certain kinds of spaces often have their useful properties only by virtue of some choice principle 
whereas the corresponding frames of open sets, which may serve various purposes just as well as the spaces, 
already exist independent of such assumptions. 

For the following, the important case in point is that of the prime spectrum PrimA of a commutative ring 
A with unit, familiarly described as the space of prime ideals of A with the Zariski topology given by the basic 
open sets {P E PrimA Ia ¢ P} for each a E A. Now, these spaces will only be useful if one assumes the Prime 
Ideal Theorem that any non-trivial Boolean algebra has a prime ideal: otherwise PrimA may well be empty and 
thus utterly fail to carry any information concerning A. On the other hand, the radical ideals of A, that is, the 
ring ideals J such that an E J implies a E J, form a frame RIdA which constitutes the pointfree antecedent of 
PrimA regardless of any choice assumption. Indeed, if the Prime Ideal Theorem is assumed RIdA is isomorphic 
to the lattice of open sets of PrimA but in many situations the frame RIdA can perform the same function as 
the latter, independent of that isomorphism. The main purpose here is to establish several new results of this 
nature. 

In this vein, this paper presents a strengthened version of the result by Johnstone that a commutative ring A 
with unit is an exchange ring iff it is a Gelfand ring whose maximal ideal space is zero-dimensional [1] in which 
the latter space is replaced by a naturally corresponding frame derived from RIdA by a general construction 
which turns out to be the frame of Jacobson radical ideals of A. In addition, it gives a new characterization 
of exchange rings in terms of a property of their radical ideals and derives some known results of Nicholson [2] 
on exchange rings by way of particularly suggestive proofs made possible by the present approach. Further, it 
provides characterizations of Gelfand and exchange rings as the rings of global elements of local rings in the 
topos of sheaves on certain types of frames which are pointfree analogs of classical results by Mulvey [3] and 
Monk [4]. Finally, it carries out an analysis of the precise role of the choice principles required in some previous 
work in this area. 

The arguments involved here make use of various results in pointfree topology, some specifically proved here, 
others part of the general background, including the relevant refinement of the classical result that the spectral 
spaces are exactly the prime spectra of commutative rings with unit (Hochster [5], Banaschewski [6]). Regarding 
foundations, we are working in Zermelo-Fraenkel set theory (as usually understood: without the Axiom of 
Choice), on the basis of classical logic, but it will be clear that several of the proofs presented here are in fact 
constructively valid in the sense of topos theory. 

1 DEFINITIONS AND EXAMPLES 

All rings in this paper are taken to be commutative and with unit 1. The particular rings to be considered 
here are defined as follows. 

A ring A is called a Gelfand ring if a + b = 1 in A implies that (1 + ar)(l + bs) = 0 for some r, sEA; on the 
other hand, A is called an exchange ring provided that, for each a E A, there exist idempotent u E A such that 
a + u is invertible. 

We illustrate the scope of these notions by a number of examples, mostly familiar but some perhaps new. 
Regarding Gelfand rings, we have: 
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(G1) Exchange rings. If a + b = 1 and u is an idempotent such that u a is invertible then: 


1 

( l+_a ) (1 _b ) = 1 u(u-a 1) = O.b) = (u a)2 u(uu-a u-a (u a)2 

(G2) i-Rings with bounded inversion. Recall that an i-ring is a lattice-ordered ring in which 
(a 1\ b)e (ae) 1\ (be) for all a, b and all c 2: 0, and bounded inversion means that any a 2: 1 has an inverse. Now, 
if a + b = 1 then a V b has an inverse because 

avb aV(l a)=((a-!)v(! a))+!=la !1+!2:!, 

so that we can consider: 

Here the last product is of the form e+e- for e = a - b, and for i-rings this is zero, as a consequence of the fact 
that e+ 1\ e- = 0 in any lattice-ordered ring. 

In particular it follows that the rings C(X) of real-valued continuous functions on topological spaces X are 
Gelfand rings, and it is easily seen that such rings need not be exchange rings: take X = JR. and note the absence 
of any idempotents other than 0 and 1. 

(G3) As an example of function rings which are Gelfand rings but not lattice-ordered rings we have the rings 
COO(X) of all real-valued smooth functions on smooth manifolds X. Let w E COO(JR.) be such that: 

wet) 2: 0 for all t, wet) = 0 for t ::; ~, wet) = 1 for t 2: ! . 

Then, for any a E COO(X), put u = w 0 a so that: 

u(x) = 0 if a(x) ::; ~ and u(x) = 1 if a(x) 2: ! ' 
and define the function r on X by: 

-~ if a(x) # 0
rex) = a(x) 

o if a(x) = o.i 
It follows that r ( x ) o whenever a(x) < ~ and hence r E COO(X); further, 1 + ar is zero on the set 

{xEXla(x)2:!}. 

Now let a + b = 1 in COO(X), r as given above, and s defined analogously for b. Then (1 + ar)(l + bs) = 0 
because a(x), b(x) < ! is excluded since a + b 1. 

(G4) An integral domain A is a Gelfand ring iff, for any a E A, a or 1 a is invertible which is exactly the 
condition that the non-invertible elements of A form an ideal, or equivalently that A has a largest proper ideal, 
saying that A is a local ring. 

The following are examples of exchange rings, supplying further examples of Gelfand rings in view of (G 1). 

(El) Boolean rings. The fact that a Boolean ring has only one invertible element, namely 1, is conveniently 
counteracted here by the fact that every element is idempotent so that the trivial identity a + (1 - a) = 1 proves 
the point. 
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(E2) Regular rings. For any element a, if a = a2b by regularity then 1 - ab is idempotent and 

(a+I ab)(I+ab(b I))=a+I-ab+a(b 1)=1 

since a2 b = a and (1 - ab)ab = O. 

(E3) The rings C(X) for zero-dimensional compact Hausdorff (that is: Boolean) spaces X. For any a E C(X), 

compactness and zero-dimensionality provide open-closed U ~ X such that: 


{x E X Ia(x) O} ~ U ~ {x E X Ila(x)1 <!}, 

and for the characteristic function U E C(X) of U, a +u is never zero and consequently invertible in C(X). Note 

that C(X) is regular iff all cozero sets are open-closed (Gillman and Jerison [7], 14.29); hence any Boolean space 

not of this type, such as the classical Cantor set, determines an exchange ring which is not regular. Furthermore, 

such rings are also Jacobson semisimple (in the sense that a = 0 whenever alII +ab are invertible). The existence 

of exchange rings of this kind played a role in the early history of this subject; the examples provided at the 

time were obtained by ad hoc constructions (Monk [4], Nicholson [2]) while here we see that such rings actually 

occur quite naturally. 


(E4) An indecomposable ring is an exchange ring iff it is local: any local ring is obviously an exchange ring, 

and any indecomposable ring of that kind must be local, 0 and 1 being its only idempotents. 


By way of general construction principles we add that, for either type of ring, any homomorphic image or 
directed union of rings of this kind is again of this kind. The same holds for any finite products in general, and 
for arbitrary products provided the Axiom of Choice is assumed. 

Regarding the history of these notions, Gelfand rings were introduced by Mulvey [3], albeit with a somewhat 

different definition and dealing with general, not necessarily commutative, rings. In the commutative case, the 

same kind of ring, but again with a different definition, was already studied earlier by De Marco and Orsatti [8]. 

In either case, the motivation for singling out these particular rings was that they were perceived as a class of 

rings which in many ways resemble the function rings C(X). The precise relation between the definition adopted 

here and those used by these earlier authors will be discussed in Section 5. 


While the Gelfand rings have a very straightforward origin, the history of exchange rings is considerably more 

involved: it is deeply rooted in module theory, connected with the problem of finding isomorphic refinements 

of direct decompositions of a given module. Thus, a module M over a ring R (not necessarily commutative) is 

called exchangeable if, for any R-module K, K = Al EB ... EB An and K = NEB P where N ~ M implies that 

K = NEB BI EB· •. EB Bn for suitable submodules Bi of Ai, and R is called an exchange ring if it is exchangeable as 

a module over itself (Warfield [9]). In due course, it turned out that the latter property could be characterized 

by various first order conditions on the ring (Monk [4], Nicholson [2]), and specifically in the commutative case 

this led to the condition used here. 


Finally these two notions of such disparate origins were placed in interesting juxtaposition by Johnstone [1] 

who established the following remarkable result: 


A ring A is an exchange ring iff it is Gelfand and its maximal ideal space MaxA is zero-dimensional. 

Given that the properties of the space involved here depend on choice principles, as indicated by the fact 

that M axA :j; 0 for every Gelfand ring A iff the Prime Ideal Theorem holds, the question arises whether there 

is a choice-independent antecedent of this, and one of the present purposes, as already indicated, is to show 
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this is indeed the case. As an additional feature of the proof presented below in Section 4 we note that it is 
entirely direct and does not depend on the Grothendieck sheaf representation of rings used as the main tool 
in [1]. Moreover, it shows that some very general facts in pointfree topology form the ultimate basis of this 
particular subject. 

2 THE FRAME OF RADICAL IDEALS 

Recall that a frame is a complete lattice L in which 

a A VS = V{a A tit E S} 

for all a ELand S ~ L, and a frame homomorphism is a map h: L -+ M between frames preserving all finitary 
meets, including the unit (= top) e, and arbitrary joins, including the zero (= bottom) O. 

As basic examples we note the frames DX of open subsets of topological spaces X on the one hand and the 
complete Boolean algebras on the other. A frame isomorphic to some DX is called spatial; natural non-spatial 
examples of frames are the non-atomic complete Boolean algebras. General references to frames are Johnstone 
[1] and Vickers [10]. 

Of particular interest in the present context will be the following frame properties which extend familiar 
topological notions. A frame L is called: 

compact if e = VS implies e = VT for some finite T ~ Sj 

regular if a V{x ELI x -< a} for each a E L, where x -< a means that a V x* = e for the pseudo complement 
x* = V{y ELI y A x = O} of x; 

zero-dimensional if every element of L is a join of complemented elements, that is, of elements c E L for 
which c V c* e; 

normal if a V b = e in L implies there exist c, dEL such that a V c = e = b V d and cAd = O. 

Further, an element c E L is called compact if c ~ VS implies c ~ VT for some finite T ~ S, and a frame L 
is called coherent if every element of L is a join of compact elements and the meet of any finitely many compact 
elements is compact, where the latter is equivalent to saying that L is compact and cAd is compact for any 
compact c and d. 

Concerning regularity, we note that any subframe of a frame which is generated by some regular subframes 
is itself regular, and consequently any frame L has a largest regular subframe RegL. 

Regarding rings, recall that a radical ideal of a ring A is a ring ideal J such that an E J implies a E J for 
any a E A and exponent n. In particular, for each a E A, 

[a] = {x E A Ixn E Aa for some n} 

is a radical ideal, the principal radical ideal generated by a, and [a] n [b] = lab] for any a, bE A. Note that a E [0] 
iff an = 0 for some n and hence [0] = {OJ means A is semiprime; further, A/[O] is the semiprime reflection of A, 
that is, the quotient map A -+ A/[O] is the universal homomorphism from A to semi prime rings. 

The radical ideals of a ring A, partially ordered by inclusion, obviously form a complete lattice RIdA: meet is 
intersection. Further, RldA is distributive and directed join is given by union - which makes it a frame. Finally, 
the compact elements of RIdA are exactly the finitely generated radical ideals, that is, the: 

for some al, ... ,an E A, and since [a] n [b] = lab] it follows that RIdA is coherent. 
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For any ring A, I dpA will be the Boolean algebra of its idempotents, with the familiar operations: 

u " v uv, u V v = u + v - uv, 1 - u = complement of u , 

for any u, v E I dpA. On the other hand, for any frame L, its Boolean part BL will be the Boolean algebra of its 
complemented elements, with its lattice operations induced from L. Then we have: 

Lemma 1. For any ring A, the map IdpA -t B(RldA) taking u to [u] is an isomorphism. 

Proof. These [u] are obviously complemented in RldA, with complement [l-u], and the map u t-t [u] is clearly a 
homomorphism, one-one since [u] = [0] evidently implies u = O. To see that it is onto consider any J E B(RldA) 
so that J V H = [1] and J n H = [0] for some H E RldA. Then also J + H = [1] and hence a + b = 1 for some 
a E J and b E H where ab E [0] so that (ab)n = 0 for some n. It follows that: 

1 = (a + b)2n = anc+bnd, 

for some c and d, and then u = anc and v = bnd are complementary idempotents. Now, for any x E J, 
x = xu + xv and since xv E J n H there exist m such that (xv)m = O. As a result, xm = xmu E [u] so that 
x E [u], showing that J s:; [u] and therefore J = [u]. 0 

As a first, familiar instance of the way in which RIdA encodes important ring properties we note the following: 

Corollary. A semiprime ring A is regular iff RIdA is zero-dimensional. 

Proof. (:;.) If a = a2b then [a] = [u] for the idempotent u = ab, and [u] is complemented by the lemma; since 
RIdA is obviously generated by the [a] this proves the claim. 

({::) For any a E A, [a] is compact in RIdA and hence complemented by zero-dimensionality so that [a] [u] 
for some idempotent u by the lemma. Consequently, u = ab and an uc for some b, c E A and exponent n. 
Now, the latter implies (a(l - u))n = 0, and since A is semiprime this shows a = au = a2b, as desired. 0 

In a similar vein, we now have the following chacterization of Gelfand rings. 

Proposition 1. A ring A is Gelfand iff RIdA is normal. 

Proof. (:;.) If J V H = [1] in RldA then also J + H = [1] so that a + b = 1 for some a E J and b E H. Now, if 
r, sEA are such that (1 + ar)(l + bs) = 0 then: 

J V [1 + ar] = [1] = H V [1 + bs], 

since ar E J and bs E H, and [1 + ar] n [1 + bsl = [(1 + ar)(l + bs)] [0]. 

({::) If a + b = 1 in A then [a] V [b] = [1] in RIdA and by normality there exist J, H E RIdA such that: 

[a] V J = [1] = [b] V Hand JnH = [0]. 

It then follows from the first part that: 

ao+c=l=bo+d, 
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for some ao E [a], c E J, bo E [b], and d E H. In particular, a~ = ax and b{f = by for suitable exponents n, m 
and x, yEA, and hence (*) implies: 

ax+co = 1 = by+do , 

with new Co E J and do E H. Further codo E [0] so that: 

for some k, and multiplying out these powers then shows there exist rand S for which (1 + ar)(1 + bs) = 0, as 
desired. 0 

3 COMPACT NORMAL FRAMES 

In view of Proposition 1, it is clear that these frames will playa central role in our context. 

To begin with, for any compact frame L, one considers the map S L : L -+ L such that: 

SL(a) V{x ELI x V y = e implies a V y = e}. 

The x E L occurring here are called a-small; they clearly form an ideal in L, and by compactness sL(a) itself 
is a-small and hence the largest a-small element. Furthermore, S L is a closure operator such that S L (a A b) = 
sL(a) A sL(b) which makes it a nucleus, with the effect that SL = Fix(sL) is a frame and the map SL : L -+ SL 
a frame homomorphism. Finally, SL is codense, that is, sL(a) = e implies a = e, as a result of which SL is 
compact, and SL : L -+ SL is the unique smallest codense quotient of L (Banaschewski and Harting [11]). 

For any ring A, the frame S(RldA) has a very concrete significance: the radical ideals J of A such that 
SRldA(J) = J are exactly the Jacobson radical ideals of A, understood in the sense that any a E A for which 
all 1 + ab are invertible modulo J belongs to J. This, incidentally, hinges on commutativity: in general, the 
condition SRldA(J) = J characterizes the Brown-McCoy radical ideals (Banaschewski and Harting [11]). In the 
following, we refer to S(RldA) as the frame JRldA of Jacobson radical ideals of A. 

We now specifically turn to compact normal frames L. 

The first result is from Banaschewski [12]; we include the proof for the sake of convenience. 

Lemma 2. SL is compact regular. 

Proof. For any x < a in SL there exist bEL such that x V b < e = a V b by the definition of SL, and the 
normality of L then supplies c, dEL such that a V c = e b V d and cAd = O. It follows that d --< a in L but 
d 1:. x and for y = S L (d) this implies that y --< a· in S L ,but Y 1:. x. As a consequence, a is the join of all z --< a in 
SL, showing that SL is regular. 0 

There is another special map on L, r L : L -+ L defined by: 

For arbitrary frames not much can be said about this but in the present situation we have: 

Lemma 3. rL is a homomorphism providing a retraction of L to RegL; further, SLrL SL and rLSL = rL. 
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Proof. It is obvious by the definition of -< that rL preserves 0, /\, and e. Further, rL(V D) = VrL[D] for 

updirected D follows immediately by compactness, and r L(a Vb) = r L(a) V r L(b) is an easy consequence of 

normality: if x -< a V b so that a V b V x* e then there exist disjoint u and v such that a V u = b V x* V v e, 


and we have further: 

b V w e = x* V v V z , 

with disjoint wand z. As a result, v -< a, z -< b, and: 

x = x /\ (x* V v V z) = (x /\ v) V (x /\ z) ~ rL(a) V rL(b), 

which proves the non-trivial part of the desired identity. In all this shows r L is a homomorphism. 

Next, r'i, = rL. If x -< a then also x -< y -< a for some y by normality and hence x -< rL(a) so that 

x ~ rL(rL(a))i this shows that rL(a) ~ rL(rL(a)) and hence equality, the reverse inequality being automatic. 


As a result, Im(rL) = Fix(rd is regular: 

and x -< a implies rL(x) -< rL(a). It follows that Im(rL) ~ RegL, but the reverse inclusion is trivial: for any 

a E RegL, 


a = V{x E RegL Ix -< a in Reg L} 


implies rL(a) = a since x -< a in RegL implies x -< a in L. 

Regarding the relations between r Land sL, X -< s L (a) implies x -< a by the definition of s L and consequently 

rL(sL(a)) ~ rL(a), the non-trivial part of the desired equality. On the other hand, a is rL(a)-small because 

a V y = e implies rL(a) V rL(y) = e and hence also rL(a) V Y = e, showing that sL(a) ~ sL(rL(a)) while the 

reverse inequality is again trivial. 0 


Corollary. SL induces an isomorphism RegL --+ SL with inverse effected by rL. 

Proof. SL is codense and any codense homomorphism h on a regular frame is one-one because h(a) = h(b) and 

x -< a implies h(b V x*) = h(a V x*) e so that b V x* = e and hence x ~ b. On the other hand, SL maps RegL 

onto SL because SLrL = SL. Finally, for a E RegL, rLsL(a) = rL(a) = a, showing that rL induces the inverse 

of the isomorphism RegL --+ SL given by SL. 0 


Remark. The above map r L : L --+ L is obviously defined for any frame L but need not be a homomorphism. 

In fact, for compact L, rL is a homomorphism iff L is normal: if a V b = e in L implies rL(a) V rL(b) e then 

also x V y = e where a V x* e = b V y* by compactness, and here: 


x* /\ y* = (x V y)* = e* = 0 , 

showing normality. 

For the following, recall that a cover of a frame L is any subset C of L such that Vee, and a cover B 

refines a cover C if each element of B is below some element of C; further, a partition of L is a cover by pairwise 

disjoint elements, meaning: any two distinct elements have zero meet. 


A frame L will be called weakly zero-dimensional if every finite cover of L is refined by a finite partition. 

Note this is equivalent to the weaker condition that whenever a V b e in L there exist c and d in L such that 

c ~ a, d ~ b, c V d e, and c /\ d = O. Given this, the general case follows by induction: if ao Val V ... V an = e, 

take a partition {b I, ... , bn} such that bi ~ ao Val and bi ~ ai for i = 2, ... , n by induction hypothesis and 
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then di ~ ai V IJ..z v ... V bn (i = 0,1) such that do V d l = e and do A d l o to obtain the desired partition 
{do A b},d1 A b1 ,b2 , •.• ,bn }. 

It is clear that any compact zero-dimensional frame is weakly zero-dimensional but not conversely as the 
product 2 x 3 of the two-element with the three-element chain shows. 

Lemma 4. For any compact frame L, the following are equivalent: 

(1) L is normal and S L is zero-dimensional. 

(2) L is weakly zero-dimensional. 

(3) For each a E L, the homomorphism L -+ ta, x t-t x V a, maps BL onto B(ta). 

Proof. (1) => (2). If a V b e in L then also rL(a) V rL(b) e in RegL ~ SL, and hence there exist c $ rL(a) 
and d ~ rL(b) such that c V d = e and cAd = 0; since RegL is a subframe of Land rL(x) ~ x for all x E L this 
proves the claim. 

(2) => (3). For any bE B(ta), if c E ta such that b V c = e and b A c = a accordingly, and further x ~ band 
y :::; c in L for which x V y e and x A y = 0 by hypothesis, it follows that: 

x V a ~ b = (b A x) V (b A y) ~ x Va, 

and hence b = x V a, as required. 

(3) => (1). If a V b = e in L then a E B(t (a A b») trivially and hence a = x V (a A b) for some x E BL. It 
follows that a V x'" = e = b V x, showing that L is normal. Similarly, if x -< a in L and hence a V x'" = e there 
exist z E B L such that a = z V (a A x"'), and consequently: 

x = x A a = x A (z V (a A x"'») ~ z ~ a. 

Thus, for any a E L, r L (a) = V{x ELI x -< a} is a join of complemented elements of L, and since these 
themselves belong to RegL it follows that S L ~ RegL is zero-dimensional. 0 

Remark. A compact frame L with zero-dimensional SL need not be normal. Thus, for any finite L, 

S L ~ t m = {a ELI a 2: m} for the meet m of all maximal elements of L and hence SL is Boolean, but 
clearly not all finite distributive lattices are normal. 

We close with an observation concerning the spectrum of SL for a compact normal frame L. 

Recall that the spectrum of any frame L is the space EL of prime elements pEL (meaning: p < e and if 
a A b ~ p then a ~ p or b ~ p) with the open sets Ea = {p E EL I a 1:. p}, a E L. As is familiar, this may also be 
described as the space of all frame homomorphisms e : L -+ 2, with the sets {e Ie(a) = I}, a E L, as the open 
sets, but in the present context, the first description seems preferable. 

Note that any maximal (= maximal less than e) element of a frame is prime; on the other hand, in a regular 
frame, any prime element p is maximal: if p < a then x 1:. p for some x -< a, and since x A x'" = 0 ~ p it follows 
that x'" ~ p, hence also x'" ~ a, and therefore a = a V x'" = e. 

Now we have: 

Lemlna 5. For any compact normal frame L, E(SL) is the space of maximal elements of L. 
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Proof. By Lemma 2, the points of E(SL) are the maximal elements of SL. Now, any such element u is also 

maximal in L since u < a in L implies u < sL(a), hence sL(a) = e, and therefore a = e. On the other hand, 

any maximal element v of L belongs to SL because v :::; SL(V) < e implies v = SL(V). Regarding the topology 

of E(SL), it is clear that this is the same as the subspace topology induced from EL: for any maximal u E L, 

a 1:. u iff S L (a) 1:. u since a V u = e iff S L (a) Vue, for any a E L. 0 


Corollary. For any Gelfand ring A, E(JRldA) is the space MaxA of maximal ideals of A. 

Proof. As noted earlier, S(RldA) is the frame JRldA of Jacobson radical ideals of A, and the maximal ideals 

of A are clearly the maximal elements of RIdA. 0 


Note that, for Gelfand rings, this identifies J RIdA as the pointfree version of M axA, as indicated earlier. 

4 EXCHANGE RINGS 

We are now able to establish the desired pointfree form of the characterization of exchange rings referred to 

in Section 1 as well as a new characterization directly in terms of radical ideals. 


Proposition 2. The following are equivalent for any ring A. 

(1) A is an exchange ring. 

(2) RIdA is weakly zero-dimensional. 

(3) A is Gelfand and J RIdA is zero-dimensional. 

Proof. (1) => (2). If I V J = [1] in RldA, take a E I and bE J such that a + b = 1 and further an idempotent u 

for which u - b is invertible with inverse c. Then 


auc = (1 - b)uc = (u b)uc = u 

and 
b(u 1)c=(b-u)(u-1)c 1-u, 

showing that u E I and 1 u E J and therefore [u] ~ I and (1 u] ~ J which proves the claim by Lemma 1. 

(2) => (3). Immediate by Lemma 4 and Proposition 1. 

(3) => (1). For any a E A, apply the map r = rRldA of Lemma 3 to the relation [a] V [1 + a] [1] in RldA 

and use the given zero-dimensionality of Reg(RIdA) ~ J RIdA together with Lemma 1 to obtain idempotents 

u E r([a]) and v E r([l + a]) such that [u] V [v] = [1]. Then also u +v - uv 1 and we may assume that u +v 1 

and uv = O. Now, since r([xD ~ [x] for any x E A, u = ab and v = (1 + a)c for suitable b, c E A, and then 


(a + v)(ab2 + (1 + a)c2 
) = u + a(l + a)c2 + v(l + a)c2 

u + a(l + a)c2 + (1 + a)c2 u + v = 1, 

showing that a + v is invertible. o 

Remark 1. Specifically, the above equivalence (1) == (3) is the choice-free characterization of exchange rings 

corresponding to the result of Johnstone [1] mentioned in Section 1. Indeed, by (1) => (3), any exchange ring is a 
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Gelfand ring with zero-dimensional M axA because the spectrum of a zero-dimensional frame is zero-dimensional 
and MaxA E{JRldA) for any Gelfand ring A by the corollary of Lemma 5. On the other hand, though, a 
Gelfand ring A with zero-dimensional M axA need not be an exchange ring: in the absence of the appropriate 
choice principle the latter property will not be strong enough to ensure this. We refer to Section 5 for the details. 

Remark 2. It is implicit in the proof of Proposition 2 that a ring A is an exchange ring iff a +b = 1 in A implies 
there exist c, d E A such that ac + bd = 1 and acbd = O. That exchange rings have this property is also shown 
by Nicholson [2]. 

Recall the familiar terminology by which idempotents are said to lift modulo an ideal J of a ring A whenever 
the natural homomorphism A -+ AIJ maps I dpA onto I dp{ AIJ). With this, we have the following variant of a 
result of Nicholson [2] as an easy consequence of Lemma 4 and the present proposition. 

Corollary 1. A ring A is an exchange ring iff idempotents lift modulo every radical ideal of A. 

Proof. By the results referred to, A is an exchange ring iff, for each H E RIdA, the frame homomorphism 
RldA -+ t H taking J to J V H maps B{RldA) onto B(t H). On the other hand, the isomorphism of Lemma 
1 provides a commuting square 

IdpA Idp(AI H) 

B{RldA) --+ B(Rld{AIH)) 

for each H E RIdA where the horizontal maps are induced by the natural homomorphism v : A -+ AIH. It 
follows that the top map is onto iff this holds for the bottom map, and in view of the obvious isomorphism 
RId{ AIH) ~ t H also induced by v this proves the claim. 0 

Remark. Formally this corollary is partly stronger and partly weaker than the original result of Nicholson [2J 
that A is an exchange ring iff idempotents lift modulo every ideal of A but, actually, the two conditions are a 
priori equivalent, as an easy consequence of the fact that, in any ring, two idempotents are equal whenever they 
are equal modulo [0]. 

The following is a further result of Nicholson [2] which has a very suggestive proof in the present context. 
Regarding notation we let (0) SRldA([O]), the Jacobson radical of A. 

Corollary 2. A ring A is an exchange ring iff AI (0) is an exchange ring and idempotents lift modulo (0). 

Proof. (:::}) Any homomorphic image of an exchange ring is an exchange ring, and idempotents lift modulo every 
ideal of A. 

({:::) Note first that the natural homomorphism v : A -+ AI (0) reflects invertibility: if ab - 1 E (0) then 
lab 1] + [ab] = 1 implies [ab] 1 since (0) is [OJ-small, and hence abc = 1 for some c. Now, for any a E A, if 
v(a) +u is invertible for some idempotent u of AI(O) then u = v(w) for some idempotent wE A so that v{a+w) 
is invertible, and as noted this makes a + w invertible. 0 

In a very different vein, we further have: 
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Corollary 3. Any Gelfand ring A for which RIdA is finite is an exchange ring. 

Proof. For any finite normal frame L, S L is a finite regular frame, hence Boolean and consequently zero­

dimensional. 0 


5 THE ROLE OF CHOICE PRINCIPLES 

Formulated for the rings under consideration here, the condition Mulvey [3J introduced was that, for any 

distinct maximal ideals P and Q of the ring A, there exist r rf. P and s rf. Q such that r s = O. As a property 

of RIdA, expressed for a general frame L, this says that for any distinct maximal elements u and v of L there 

exist a, bEL for which a 1::. u, b 1::. v, and a 1\ b = O. We shall call a frame of this kind weakly normal and a ring 

A with weakly normal RIdA weakly Gelfand. 


On the other hand, De Marco and Orsatti [8] were dealing with rings in which every prime ideal is contained 
in a unique maximal ideal and called these pm-rings. Accordingly, a frame L will be called a pm-frame whenever 
each prime element of L is below a unique maximal element. 

Note that any compact normal frame L is both weakly normal and a pm-frame. For the first part, u V v e 

for any distinct maximal u, vEL, and normality then provides the required a, bEL. The second assertion 

is an immediate consequence of the fact that s L (p) is maximal for any prime element pEL (Banaschewski 

[12], Remark 1.4) which is seen as follows: if SL(p) < a then SL(p) vb < e = a V b for some b, and if further 

a V c e b V d where c 1\ d = 0 then d 1::. p because SL(p) V b < e so that c ::; p and hence a = a V c e. 


Now, one of the main features of either of the above ring notions was that, given the Axiom of Choice, they 

imply RIdA is normal, that is, A is Gelfand in the sense of the definition adopted here. In the following we shall 

determine the exact extent to which this conclusion is choice dependent. 


For this purpose, we first derive appropriate results in the context of frames and then transfer them to rings 

by the general principle that, 


for any coherent frame L there exist rings A such that RIdA S:! L. 

This was originally proved by Hochster [5J in terms of prime spectra and spectral spaces, with corresponding 

dependence on choice principles, but a subsequent refinement of the arguments involved showed that the result 

holds in this pointfree form independent of the latter (Banaschewski [6J). 


Regarding weak normality we now have 

Lemma 6. (1) The Axiom of Choice implies that every weakly normal compact frame is normal. 

(2) If the Axiom of Choice fails there exists a coherent weakly normal frame which is not normal. 

Proof. (1) is proved in 2.7 of Banaschewski [13]. 

(2) We show there exists a non-normal coherent frame without maximal elements which is then weakly normal 

vacuously. 


First, a general observation. For any complete partially ordered set S with compact unit e, let 2l be the 
bounded sublattice of the lattice of all downsets U of S - {e} (x ::; y E U implies x E U) generated by t.he 
downsets S - ta = {x E S I a 1::. x}, a E S, and A : S --+ 2l the map taking a to S tao Then 2l consists of all 
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A ( a1) n ... n A ( an) for aI, ... ,an in S, and Ais a partial order embedding preserving all joins, the latter because 
a VX in S implies: 

ta n{tsI SEX}. 

Further, for any non-void U, V E 2l, °E un V and hence the zero 0 of 2l is prime. In particular, this implies 
that 2l is not normal whenever there exist a, b E S - {e} such that a V b = e: normality would imply that: 

A(a) U U = A(e) = A(b) U V and U n V = 0, 

for some U, V E 2l, but then U = 0 or V 0 so that a = e or b e, a contradiction. 

N ext, let 9J1 be any maximal ideal of the lattice 2l. Then U = VA-I [9J1] is a maximal element of S - {e}. 
First, U < e by the compactness of e since U = e implies al V ... Van e for some ai E S such that A(ai) E 9J1, 
but then also A(e) E 9J1, a contradiction. Secondly, 9J1 ~ ..j,. A(U) since 9J1, being prime, is generated by the 
A(a) E 9J1; hence 9J1 ..j,.A(U), showing that U = v whenever U ::; v < e in S. 

We apply these considerations as follows. For any onto map <p : X -t E of sets, let S be the set consisting 
of all subsets of X which <p maps one-one, partially ordered by inclusion, together with an added top element e. 
Then S is complete because any subset of S - {e} bounded above in S {e} has a least upper bound in S {e}, 
namely its union. Further, e is compact: for any updirected subset of S {e} the union belongs to S - {e}. 

Now assume that <p : X -t E has no section, exhibiting a violation of the Axiom of Choice. Then, in particular, 
<p is not one-one and for distinct x,y E X such that <p(x) = <p(y), {x}, {y} E S - {e} and {x} V {y} e in S. 
As a result, the bounded distributive lattice 2l associated with S as above is not normal. On the other hand, 
the maximal elements of S - {e} are obviously the A ~ X which <p maps one-one onto E and which therefore 
provide a section. Hence, by our earlier observation, 2l has no maximal ideals. As a result, the ideal lattice of 2l 
is a coherent frame without maximal elements which is not normal. 0 

Remark. We note that the above arguments regarding Sand 2l in connection with <p : X -t E also provide 
a proof of the familiar result of Klimovsky [14] that the Axiom of Choice is equivalent to the Maximal Ideal 
Theorem for bounded distributive lattices. 

Turning now to pm-frames we have 

Lemma 7. The Prime Ideal Theorem holds iff every coherent pm-frame is normal. 

Proof. (=» We show first that, in a coherent frame L, the join of any prime ideal P is a prime element. Indeed, 
let a A b ::; s for s = VP and suppose a 1:. s so that there also exist compact c ::; a such that c 1:. s. Now, for any 
compact d ::; b, cAd is compact by coherence, and since cAd::; s this implies cAd E P so that d E P because 
c ¢ P; it follows that d ::; s for any compact d ::; b, showing that b :::; s. 

Now, let a V b = e in L and assume, by way of contradiction, that the filter F = {x Ay : a Vx = e = bVy in L} 
is proper. Then, as a familiar consequence of the Prime Ideal Theorem, there is a prime ideal P in L disjoint 
from F, and we let s = VP. Now, a V s < e for otherwise a V x e for some x E P and then x E P n F, a 
contradiction. Similarly, b V s < e, and we then have prime elements p and q such that a V 8 ::; P and b V s ::; q, 
again by the Prime Ideal Theorem (Banaschewski [15]). Further, since L is a pm-frame there exist maximal 
U ~ P and v ~ q in L, and since s is prime by the first part of this proof it follows that U = v. Finally, this 
implies a, b :::; U and hence e = a Vb::; u, a contradiction. 

({=) We show that any failure of the Prime Ideal Theorem determines a coherent pm-frame which is not 
normal. Given any non-trivial Boolean algebra B without prime ideals, let A be the sublattice of B x B x B 
consisting of all a (aI, a2, a3) such that aI, a2 ::; a3' Then A is not normal: 

(0, e, e) V (e, 0, e) (e, e, e); 
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but if: 

in A then at = e = b2 , hence a3 e = b3, and therefore a A b ::j::. O. Further, A has nQ prime ideals because B 

has none and B is embedded in A by b ~ (b, b, b). It follows that the ideal lattice of A j~ now the desired frame: 

it is coherent, (vacuously) a pm-frame, and not normal. 0 


Remark. The (=» part of the above proof is a slightly modified version of an argument given by Johnstone [1]. 

As an immediate consequence of these two lemmas and the relationship between coherent frames and rings 

referred to earlier we now have the following. 


Proposition 3. (1) Every weakly Gelfand ring is Gelfand iff the Axiom of Choice holds. 

(2) Every pm-ring is Gelfand iff the Prime Ideal Theorem holds. 

As an analogous result concerning exchange rings we have: 

Proposition 4. Every Gelfand ring with zero-dimensional maximal ideal space is an exchange ring iff the Prime 


Ideal Theorem holds. 


Proof, ({::) It is a familiar consequence of the Prime Ideal Theorem that every compact regular frame is spatial, 

and given the latter the zero-dimensionality of MaxA = E(JRldA) trivially implies that of JRIdA. 


(=» We show that any failure of the Prime Ideal Theorem provides a Gelfand ring A for which M axA 

is empty and hence trivially zero-dimensional but JRIdA is not zero-dimensionaJ., A~jJ1, the approach is to 

construct an appropriate coherent frame. For this, let M be the ideal lattice of ~ I).on.... trjvj,q.l 13o01ean algebra 

without prime ideals, making it a non-trivial compact zero-dimensional frame witb e:r;nptr spe.ctp~m, and N any 

compact regular frame which is not zero-dimensional such as the frame of open s.ets Qf t~ real unit interval (or 

its pointfree counterpart, as in IV, 1.2 of Johnstone [1]). Then the compact regular fr~me K M ED N clearly 

also has empty spectrum. Further, the ideal lattice JK of K is a normal coherent fra.me, by the normality of 

compact regular frames, and since the homomorphism JK -+ K taking the ideal~ 9f K to their joins in K is 

onto trivially and co dense by compactness it follows that S(JK) s:t K. Finally, by (A3) jn th.e Appendix, K is 

not zero-dimensional because N is not zero-dimensional. Altogether then this provid~s a norIQ.£l,1 coherept frame 

L such that S L has empty spectrum but is not zero-dimensional, as required. 0 


6 SHEAF REPRESENTATIONS 

In this section it will be convenient to change notation and use .c, rot, ... for frames, U, V, ... for their elements, 

with 0 and E for zero and unit, respectively. A sheaf (of sets) on a frame ,C is then defined in verbatim the same 

way as it is for a topological space X (the case ,C = DX), as a presheaf satisfying the familiar separation and 

patching conditions. If S is any sheaf on a frame 'c, SU will be the set it assigns to U E 'c, and the notation for 

the restriction map SU -+ SV, V ::; U, will be x ~ xiV. 


A ring A in the category Sh,C of sheaves on a frame ,C will be called a ring on 'c, and its ring of global 


elements will be the ring AE (in the category of sets). For a given ring A, a sheaf representation of A is any 

ring A on a frame ,C such that A ~ AE. Naturally, of particular interest are the A with some special property 

which improves upon the properties of A. The following general result is of this kind. 
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For any ring A, the assignments: 

[a] H A[a- l ] a[X]/(l aX) 

[a] ~ [b] H A[b- I ] ~ A[a- l ], 

the homomorphism resulting from the fact that 
b becomes invertible in A[a- l ] if some an be, 

define a sheaf on the frame RIdA, providing a ring A on RIdA whose ring of global elements is 
A: A[I] = A[I- I ] = A. Moreover, A is local in the sense that: 

A 1= (V'x)((3y)(xy = 1)) V (3z)((1 - x)z = 1)), and A 1= 7(0 = 1) 

in the internal logic of the topos of sheaves on RIdA, meaning that, for any JERIdA and a E AJ, J = I V H for 
some I and H in RldA such that all and (1 - a)IH are invertible and Olv = l/v only if U = O. For the details, 
see Chapter V of Johnstone [1] except for the fact that it presents A as a sheaf on PrimA but the arguments 
involved can equally well be understood as applying to the pointfree version RIdA of the latter. 

Now, if A is a Gelfand ring let VRA = Reg(RldA) and r rRIdA the retraction RldA ~ VRA considered 
earlier for arbitrary compact normal frames. Then, the restriction to VRA of the ring A on RIdA determined by 
A as above is again local: for any J E VRA and a E AJ, if J = I V H in RldA such that all and (1 - a)IH are 
invertible then also J r(I) V r(H) in VRA, and alr(I) and (1 - a)lr(H) are invertible since r(G) ~ G for all 
G E RIdA. As a result, any Gelfand ring has a sheaf representation by a local ring on a compact regular frame. 
It is our aim to make this more precise in order to obtain an actual characterization of Gelfand rings. 

The following notion will be crucial for this purpose. For any local ring A on a frame ..c, we define the support 
map spt : AE ~ ..c by 

spt(a) = V{U E ..c IalU is invertible in AU}. 

This does indeed have the properties suggested by the name. Trivially spt(O) = 0 and spt(l) = E, the identity 
spt(ab) = spt(a) A spt(b) is similarly obvious, and the inequality 

spt(a + b) :::; spt(a) V spt(b) 

holds exactly because A is local: if (a + b)IU is invertible and consequently (aiU + blU)c 1 for some c E AU 
then U = V V W where (aIV)(cIV) and (bIW)(cIW) are invertible since A is local, and as this makes alV and 
blW invertible it follows that V :::; spt(a) and W :::; spt(b), proving U :::; spt(a) V spt(b). Incidentally, as a familiar 
consequence of this, there is a frame homomorphism a: Rld(AE) ~ ..c such that a(J) = V{spt(a) Ia E J}. 

A local ring A on a compact regular frame ..c will be'called well-supported whenever 

(WS1) Each U E ..c is the join of all spt(a), a E AE, for which there exist b E AE such that ab = 0 and 
U V spt(b) E. 

(WS2) If spt(al) V .00 V spt(an) = E for some all 00., an in AE then there exist rI!o •. , rn in AE such that 
airl + .. 0 + anrn 1. 

Note here that ab 0 implies spt(a) A spt(b) = 0, and if also U V spt(b) E it follows that spt(a) -< U.; 
Hence (WS1) should be viewed as a strengthened form of regularity of ..c, appropriately involving A. 

Now the desired characterization is as follows. 
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Proposition 5. The Gelfand rings are exactly the rings of global elements of well-supported local rings on 

compact regular frames. 


Proof. (=» Given our earlier observation concerning any Gelfand ring A, it only has to be shown that the 

restriction to rolA of the associated ring A on RIdA is well-supported. 


To begin with, note that the support in rolA of any a E A is r([a]) where r, as earlier, is the retraction 

RldA -+ rolA. For any e E A, al[e] is invertible in A[e] = A[e- I

] iff [e] ~ [a] : al[e] is invertible iff there exist 

polynomials p(X) and q(X) in A[X] such that: 


1 - ap(X) = q(X)(1 - eX), 

and a simple calculation based on comparison of coefficients proves the claim. As a result alJ is invertible, for 

any JERIdA, iff [e] ~ [a] for all e E J, that is, iff J ~ [a]. Now, for J E rolA, this holds iff J ~ r([a]), and this 

proves the claim. 


Next, by the definition of the retraction r, 

J V{[a] I [a] -< J}, 

in RldA for any J E rolA. On the other hand, [a] -< J means J V [a]'" = [1] and this holds iff J V [b] = [1] for 

some b E [a]"'. Now the latter says that [a] n [bj = [OJ, hence ab E [0], and therefore (ab)n = 0 for some n; finally, 

since [a] = [an] and [b] = [bn] we may assume ab = O. In all, this shows, for any J E rolA, that: 


J V{[a] lab = 0 and J V [b] = [I]), 

in RldA, and by acting r and noting that J V [b] [1] iff J V r([b]) = [1] we obtain (WS1). 

Regarding (WS2), if r([aiD V ... V r([anD = [1] in rolA then also [aI] V ... V [an] = [1] in RldA, hence 

bl + ... + bn = 1 for some bi E [ail, and this implies that alrl + ... + anrn = 1 for suitable ri E A. 


(<=) Let A be any well-supported local ring on a compact regular frame ..c and a + b = 1 in AE. Then 

U V V = E where alU and blV are invertible since A is local, and by compactness it follows from (WSl) that 

there exist ai, ... ,an, ab ... ,an and bb' .. ,bm , bl , ... ,bm in AE such that: 


spt(ai) S U, U V SPt(ai) = E, aiai = 0 

spt(bd s V, V V spt(bj ) E, bjbj = 0 

Vspt(ai) V Vspt(bj ) E. 

Next, the first two of these conditions imply that: 

U V spt(a) E = V V spt(b), 

for a = al ... an and b = bl ... bm , by the properties of supports. On the other hand, by the third condition and 

(WS2): 


Eairi + Ebjsj = 1 


with suitable ri and Sj, and since aia = 0 and bjb 0 it follows that ab = O. Finally, because U :5 spt(a) and 
V 	:5 spt(b), (*) and (WS2) imply that: 


ar + af 1 = bs + bs 


and hence (1 ar)(1 bs) = afbs = 0, showing that AE is Gelfand. 	 o 

Remark 1. This characterization of Gelfand rings may be viewed as a pointfree relative of the one given by 

Mulvey [3] in that the latter deals with sheaves of rings on compact Hausdorff spaces for which, again, the global 
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elements are tied to the space by some separation requirements. It should be pointed out, however, that the 
direct transfer of the present characterization to the spatial setting does not yield that of [3], and whether there 
are alternatives to our conditions (WSl) and (WS2) for which this is the case remains to be investigated. 

Remark 2. A natural weakening of (WSl) would be to require only that the supports of the global elements of 
A generate .c. It would obviously be of interest to know whether this, together with (WS2) as given, is already 
sufficient to make AE Gelfand but this has eluded us so far. 

The following counterpart of Proposition 5 is the pointfree version of the result of Monk [4] (see also Johnstone 
[1], V, 2.7) that the exchange rings are exactly the rings of global sections of sheaf spaces on Boolean spaces 
whose stalks are local rings. 

Proposition 6. The exchange rings are exactly the rings of global elements of local rings on compact zero­
dimensional frames. 

Proof. (=» Obvious by Proposition 2 and the remarks preceding Proposition 5. 

(¢:::) For any local ring A on a compact zero-dimensional frame .c, if a E AE and E = U V V where alU and 
(1 + a)IV are invertible we may assume that U 1\ V = 0 by the properties of 'c. Then take b, c E AE such that: 

It follows that u ab and v (1 + a)c are complementary idempotents and 

(a + v)(bu + cv) = u + acv + cv = u + (1 + a)cv = u + v = 1, 

showing that AE is an exchange ring. o 

Remark. This could also be obtained, in the manner of the original proof by Monk [4], by using the Peirce 
sheaf representation of A on the ideal lattice of the Boolean algebra I dpA, but in the present context this proof 
seems more natural. 

One might expect that the above characterizations of Gelfand and exchange rings are actually the object 
parts of certain category equivalences, partly because that is a frequent feature of representation theorems but 
specifically 'iince this is indeed the case in the classical situations considered by Mulvey [3] and Monk [4]. The 
setting here would obviously be appropriate categories of ringed frames, that is, pairs (A,'c) where A is a ring 
on the frame ,c, with maps (A,.c) -t (8,9J1) given by a frame homomorphism h : .c -t 9J1 together with a 
homomorphism <p : A -t 8h of rings on .c. 

For Gelfand rings, the correspondence A.-+ (AI9J1A, 9J1A), in our earlier notation, is indeed functorial in this 
sense, as a consequence of the functoriality of the basic correspondence A .-+ (A, RIdA) for arbitrary rings. In 
the special case of exchange rings, which involves the ringed frames (A,'c) where A is a local ring and ,c compact 
zero-dimensional, the desired equivalence seems to present no problem but for Gelfand rings in general there are 
some difficulties which have not yet been resolved. In any event, we shall return to this topic at some later stage. 

We close with a comment concerning the role of choice principles in the context of sheaf representations. For 
any local ring A on a topological space (meaning: on a spatial frame ,c) the ring AE has prime ideals: by the 
properties of the support map, {a E AElspt(a) ~ P} is a prime ideal of AE for any prime element P E .c above 
spt (0). As an immediate consequence, any of the following is equivalent to the Prime Ideal Theorem: .. 

(1) Every ring has a sheaf representation by a local ring on a topological space. 
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(2) Every Gelfand ring has a sheaf representation by a well-supported local ring on a compact Hausdorff 
space. 

(3) Every exchange ring has a sheaf representation by a local ring on a Boolean space. 

APPENDIX: COMPLEMENTED ELEMENTS IN A FRAME COPRODUCT 

Recall that, for any nontrivial (meaning e :f. 0) frames Land M, one has their coproduct L EEl M with 
coproduct maps iL : L -7 LEElM and iM : M -7 LEElM which are embeddings such that aEElb = iL(a)AiM(b) = 0 
iff a 0 or b 0, and any element of L EEl M is a join of elements a EEl b. Further, L EEl M is compact whenever L 
and M are compact. 

(A1) For any a EEl b :f. 0 in L EEl M, a EB b is complemented iff a and b are complemented. 

Proof. The "if" part being obvious we only have to consider the "only if" part. For any a EEl b, 

( a EB b) * V { c EEl d I (a A c) EEl (b A d) = O} 

and (a A c) EEl (b A d) = 0 iff a A c 0 or bAd = 0, hence iff c ~ a* or d ~ b* which implies c EB d ~ a* EEl e or 
c EEl d ~ e EB b* and consequently c EEl d ~ (a* EEl e) V (e EEl b*). It follows that (a EB b)* = (a* EB e) V (e EEl b*) and 
hence a EEl b is complemented iff: 

e EB e = (a EEl b) V (a* EB e) V (e EEl b*). 

As an immediate consequence, 

eEBb (eEEle) A (eEElb) (aEElb)V(a*EElb)=(aVa*)EBb 

and since b :f. 0 the quotient frame.} b {x E M I x ~ b} is non-trivial so that passing from L EEl M to L EB .} b 
we obtain that a V a* e, showing a is complemented, and by symmetry the same then follows for b. 0 

(A2) If Land M are compact and M is zero-dimensional then u E L EB M is complemented iff u = (al EB 
b1) V ... V (an EEl bn) with complemented ai and bi . 

Proof. Again, "if" is obvious. For "only if" note first that u = (al EB b1) V ... V (an EEl bn) with complemented bi 

by the zero-dimensionality of M, the compactness of L EEl M, and the fact that any complemented element in a 
compact frame is compact. Further, using the atoms of the (finite!) Boolean subalgebra of M generated by the 

bi ) we may assume that bi A bk = 0 whenever i :f. k. It then follows that (ai EB bd A (ak EEl bk) = 0 for i :f. k and 
consequently each ai EEl bi is complemented, which proves the claim by (AI). 0 

(A3) If Land M are compact, L is regular, and M and L EB M are zero-dimensional then L is also zero­
dimensional. 

Proof. For any non-zero c E L, c V{x ELI 0 < x -< c} and hence also c EB e V{x EEl e I 0 < x -< c}. 
Now, x -< c implies x EEl e -< c EB e and since L EEl M is compact zero-dimensional (A2) implies that there exist 
complemented al, ... ,an in Land b1, ... ,bn in M such that: 

Further, we may again assume that bi A bk = 0 if i :f. k, and of course that all ai and bi are non-zero. Now, for 
b = b1 , taking meet with e EEl b we obtain: 

and since b :f. 0 this implies x ~ al ~ c, showing c is a join of complemented elements, as claimed. o 
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Note Added in Proof (15 December 2000). Regarding Remark 1 following Proposition 5 (p.19), recent joint work 
with J.J.C. Vermeulen has produced equivalent alternatives to our condition (SWl) and (SW2) which quite 
evidently embody the pointfree essence of the condition given by Mulvey [3] and lead to a proof that the sheaves 
of rings considered there in the case of compact Hausdorff spaces X are in fact exactly the well-supported local 
rings on OX. The details will be published in due course. 
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