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ABSTRACT

In this paper, the performance of a Code Division Multiple Access (CDMA) cellular
communication system in the presence of narrowband interference is investigated when
an interference canceller is employed. The interference canceller consists of an adaptive
transversal filter whose coefficients are determined by using linear prediction and the
least mean kurtosis (LMK) algorithm, which is an adaptive algorithm based on higher
order statistics (HOS).

The standard LMK algorithm is very responsive to large values of prediction errors; it
may quickly become unstable unless a very small adaptation gain parameter is employed.
In this study, we first show that the LMK algorithm can simply be viewed as a variable
step size least-mean square (LMS) algorithm where the step size adjustment is controlled
by the square of prediction error and its variance. Second, we provide a modification to
the LMK algorithm to ensure that the mean-square error of the algorithm remains bounded.
Simulation results are presented to demonstrate the effectiveness of the use of such an
adaptive filter in mitigating narrowband interference in direct sequence spread spectrum
(DS-SS) systems. Speed of convergence, signal-to-noise ratio improvement (SNRI), and
error rate performance of a receiver that employs the modified LMK algorithm are
examined. In addition, the results obtained by the modified LMK algorithm are compared
with the results obtained by the commonly-used LMS algorithm.
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SUPPRESSION OF NARROW-BAND INTERFERENCE IN CDMA CELLULAR RADIO
TELEPHONE USING HIGHER ORDER STATISTICS

oy

INTRODUCTION

Code-division multiple-access implemented with direct-sequence spread spectrum (SS CDMA) signaling is among the
most promising technologies for cellular telecommunications services, such as personal communications, mobile
telephony, and indoor-wireless networks [1-3]. The advantages of direct-sequence spread spectrum techniques for these
services include superior operation in multipath environments, flexibility in the allocation of channels, the ability to
operate synchronously, privacy, and increased capacity in burst or fading channels. Also among the attractive features of
SS CDMA is the ability of spread spectrum systems to share bandwidth with narrowband communication systems
without undue degradation of either system’s performance.

i The processing gain of a direct sequence SS system provides some degree of protection against narrowband
interference (NBI). When the processing gain does not provide sufficient improvement due to bandwidth restriction, the
performance of the system can be further improved by using some form of interference rejection. The most techniques
used for NBI rejection are provided by using adaptive transversal filter. Not only does active suppression improve error-
rate performance, but it also leads to increased CDMA cellular system capacity [2].

An excellent review of interference suppression methods developed prior to 1988 can be found in a survey paper
uthored by Milstein [4]. A number of authors have explored the performance of such narrowband interference
pppression filters for spread spectrum communications signals. These studies have concentrated on quantifying a SNRI
the filter output and have also obtained the bit-error-rate (BER) performance by using tone interference [5], and for
rder one autoregressive (AR) interference [6]. Fixed and adaptive linear prediction filters were first used to suppress
gnificant portions of the interference. Interpolating linear filters were found to give even greater interference
ippression [5-7].

v YO8 n oW

In 1991, Vijayan and Poor proposed nonlinear methods of predicting the narrowband signal that led to significant
improvement in the SNR due to filtering [8]. This nonlinear method was derived from a system model that takes into
account the non-Gaussian distribution of the observation noise (from the point of view of predicting the interferer, the
observation noise consists of additive white Gaussian noise (AWGN) plus the data signal). The nonlinear filter
effectively introduces soft decision feedback into conventional filtering, essentially removing the data signal, and
reducing the filter adaptation to one in Gaussian white noise. Results were extended to environments with impulsive
noise [9].

An overview of the nonlinear methods of predicting the interference is presented by Poor and Ruch [10]. This review
paper addressed also the situation in which the NBI is a digital communication signal. In this case, multiusers detection
techniques {11] can be used to give quite significant improvement in performance.

i A more recent survey of interference rejection techniques is that by Laster and Reed [12]. This paper has surveyed

aldvances in NBI rejection for DS systems, wideband interference rejection for CDMA systems, and interference
rejection for frequency hopping systems. Another very recent nonlinear method for NBI rejection is proposed by
Kﬂshnamunhy [27], and combines a recursive hidden Markov model estimator, Kalman filter, and the recursive
@xpectation maximization algorithm.

+ Almost all of the existing adaptive filtering algorithms operate by iteratively minimizing a mean-squared error cost
function, due to the mathematical ease it provides. The most common algorithms used in practice are the LMS algorithm
dnd its derivatives [13]. A new fourth order statistics-based adaptive interference canceller is introduced by Shin and
Nikias [14] to mitigate interference in environments when a reference signal which is highly correlated with the
interference is available.

This paper will consider the suppression of NBI in the case of multiple users served by a CDMA network operating
over a multipath Rayleigh fading channel when no reference signal is available. A transversal filter will be introduced in
the CDMA receiver. Such a filter forms a linear prediction based on a fixed number of past samples. This estimate is
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subtracted from the received signal to obtain the error signal. The filter coefficients are determined adaptively using the
recently introduced LMK algorithm. This algorithm is a stochastic gradient approach, which minimizes a cost function
defined in terms of fourth-order statistics. The algorithm is simple to implement and is applicable to a wide range of
adaptive filtering problems. Furthermore, it has been found to be noise-robust to a large class of noise signals such as
impulsive, periodic, uniformly distributed, Gaussian distributed, etc. [15]. An investigation of an LMK algorithm-based
transversal filter is also addressed to suppress NBI in a CDMA system operating in a cellular radio environment. This
investigation is based on computer simulation results of the SNRI, BER, and system mismatch (SM). These performance
measures have been calculated for two models of interference: namely, multitone and autoregressive interferences, with
a wide range of values for the system parameters. These parameters included processing gain, filter length, number of
active users of the CDMA, interference power-to-signal ratio (J/S), number of tones and interference bandwidth.
Moreover, these new results of LMK filter are compared with those using second order statistics, i.e., LMS filter.

2. SYSTEM AND CHANNEL MODEL
Consider a CDMA system operating in a cellular radio channel as shown in Figure 1.

Let K denote the number of active users. The transmitted signal from the kth user in a CDMA system takes the form:
S, (1) =N2Pb(t)c, (t)cos[ Wyt + Oy ] 0))

where:  P,w, are the transmitter power and carrier frequency,
O is the phase angle introduced by the kth PSK modulator,
b is the kth source information sequence with rate 1/7,,
() is the spreading sequence with a rate 1/T,

Each data bit has a duration of T, seconds, while the chip of the spreading sequence has duration T, seconds, and the
processing gain is defined as G = T, /T, . Therefore, the spread spectrum system bandwidth (B;) equals 27, .

We assume that the channel between the kth transmitter and the corresponding receiver at a base station is a frequency
nonselective Rayleigh fading channel, and is characterized by three random variables, By, T;, and p,, which are
respectively, defined as the gain, delay, and phase of the kth signal at the receiver. The gain B, is an independent
Rayleigh random variable with parameter p=p, = E[Bf 1/2 for all £, while the delay T;,also independent for each signal,
has a uniform distribution in [0, T,]. Further, we assume that the phase L, is an independent random variable, uniformly
distributed in [0,21]. For kK CDMA users, the received signal R(z) consists of the independently fading CDMA signals,
the interfering narrowband I(7), and the thermal noise N(¢). That is,

Narrowband Interference

CDMA
Y Base
User K
Y Rayleigh

vy vyl

Figure 1. A CDMA environment with multiple users and fading channel.
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K
R()= Y [BSi(t =TI+ () +N (), %))

k=1

where N(?) is additive white Gaussian noise with a two-sided power density N,/2. At the receiver, as shown in Figure 2,
the CDMA signal is coherently demodulated, sampled at the chip rate 1/7,, filtered, and then despread, to produce the
decision statistic. Without loss of generality, we assume that user 1 is the reference user. We, thus, have:

R,=F,+I,+N, , (3)

K
here {F,}, {I,}, and {N,} are the discrete-time sequences from F(t)= ZBkSk (t -1 ), I(r), and N(r) respectively.
k=1

k]

This study considers two types of narrowband interference; namely Multitone interference and Autoregressive (AR)
interference. The modeling of these two interference signals is discussed below.

2.1. Multitone Interference

This signal is modeled as a sum of sinusoids, i.e., I(n) is expressed as:

[
I(n)= ZA,,, cos2nf,n+9,) , 4

m=]

b

here the amplitudes {A,,} are selected to be identical, the phases are uniformly distributed on (0,2n), and {Q} is the
umber of tones. The autocorrelation function of I(n) is:

=

Q
pn) = -;ZA?R cos2nf,n . (5)
m=1

e

rom (5), the total power of interference signal is:

Q0
I, =p(0) =%ZA,2,,. (6)
m=1

[ ]

2. Autoregressive Interference

The other type of interference is modeled as an autoregressive process. We say that the time series u(n), u(n-1), ....,
u{n~M) represents the realization of an autoregressive process (AR) of order M if it satisfies the difference equation:

Rn
R(t) } Suppression EG %
0 | 7 Filter 1 '
T ¢ Despread G
a(n)
2cos(,t)
, 1
; >
< 02 le
H 0

Figure 2. Receiver model of CDMA overlay system.
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u(n)+aun-1)+ayu(n-M)=v(n), N

where ay,a,,....,a) are constants called the AR parameters, and {v(n)} is a white-noise process. The term a,u(n—k) is an
inner product of a; and u(n-k), where k = 1,........ , M. The left side of (7) represents the convolution of the input
sequence {u(n)} and the sequence of parameters {a,}. The transfer function H(z) of the AR model is completely defined
by specifying the locations of its poles, as shown by [13].

H(z)= Sl . ®8)
-z )= Pz ) (l-ppz™)
The parameters p), p,,...., Py are the poles of H(z); they are defined by the roots of the characteristic equation:
l+az +a,z7 %+ +ayz™=0. )

For an AR process of order two, the power can be adjusted using [13]:

;o 1+a, o2 10)
’ l-a, [(1'02)2"012]

where 0\2, is the variance of zero-mean white noise {v(n)}.

3. NARROWBAND INTERFERENCE SUPPRESSION FILTER

One of the most powerful NBI rejection techniques is the method of linear predictive analysis. The importance of this
method lies both in its ability to provide accurate estimates of NBI parameters, and in its relative speed of computation.
In the literature [4-7], the theory of linear prediction and how it can be used in the design of a filter that tends to suppress
the NBI while leaving the SS signal relatively unchanged, is well documented.

Filters used for the above purpose can be fixed or adaptive. The design of fixed filters is based on prior knowledge of
both the signal and interference. Adaptive filters, on the other hand, have the ability to adjust their own parameters
automatically and their design requires little or no prior knowledge of signal or interference characteristics.
Implementation of linear prediction method using LMS and LMK adaptive algorithms is presented in this section.

3.1. Least Mean Square (LMS) Algorithm

The structure of LMS adaptive algorithm is shown in the block-diagram of Figure 3. Basically, it consists of a
combination of two basic processes:
1. An adaptive process, which involves the automatic adjustment of a set of tap weights.

2. A filtering process, which involves (a) forming the inner product of a set of tap inputs and the corresponding set of
tap weights emerging from the adaptive process to produce an estimate of a desired response, and (b) generating an
estimation error by comparing this estimate with the actual of the desired response. The estimation error is in turn
used to actuate the adaptive process, thereby closing the feedback.

During the filtering process, x(n) is supplied along with usual tap inputs at time n. The idea is to fit a filter operating on
the reference signal x(n) to generate X(n) which is considered an estimate of the NBI. The design involves on-line
estimation of the filter parameters by minimizing the mean square error defined as:

e(n) = x(n)—x(n)
M
= x(n)—Zwix(n—i). (11)
i=1

Let w(n) denote the value of the tap-weight vector at time n. The expanded form of the tap-weight vector is described
by:

wT(n) = [w (1), Wy (1., Wy ()] (12)
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Allso, let X,, denote the tap-input vector at time n, That is,

XF = [x(n=Dseoeeeen x(n = M)]. (13)
Therefore, we can write:
e(n) = Elle(m)P]
= E[x(n) - wT(n)X, % (14)

Hjere, we use the method of steepest descent for finding the minimum point of €(n). This method is an iterative procedure
that has been used to find extrema of nonlinear functions. According to the method of steepest descent, the update value
of the tap-weight vector at time n +1 is computed by using the simple recursive relation.

w(n+1) =w(n) +%u[— Ve(n))

a 1 | de(n)
=wm+ 2 H{ aw(n):l

= w(n)+pE[mX,]. (15)

A practical limitation with this algorithm is that the expectation E[e(n)X,] is generally unknown. Therefore, it must be
replaced with an estimate. One possible choice is to approximate &(n) by its instantaneous value ¢%(n). Then, at each
iteration of the adaptive process, we have a gradient estimate of the form:

de*(n)

ow(n)

= 2e(n)X,. (16)

Ve(n) =

x(n) 4 |x(o-1) . x(n-M+1) 4 x(n-M)

w,(n) ¥ W, (n)m wy(n) y

—T

v
b

Adaptive
control
algorithm

Figure 3. Structure of adaptive transversal filter.
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With this simple estimate of the gradient, we can now specify a steepest descent type of the adaptive algorithm. From
(22) and (23), we have:

w(n +1) = w(n) + pe(m)X,, . (1

This is the Least Mean Square (LMS) algorithm. In this algorithm, the choice of step size W is critical. The parameter p
controls the stability and rate of convergence of the algorithm. If it is too small, then the convergence can be
unacceptably slow. On the other hand, if p is just below the upper limit which is given later in (18), this means that the
algorithm converges quickly with the presence of fluctuations in the adaptive filter coefficients during steady state
operation. The choice of p involves a trade-off between speed of convergence and the desire to keep the variance of
coefficients small. To guarantee convergence in the mean-square sense, it is shown in [13] that the step size parameter p
must satisfy the following condition

O<P<Hmax» (18)
where

2
= . 19
Hmax =3l input power (19)

Here, the total input power refers to the sum of the mean square values of the individual inputs: x(n-1), x(n-2),....,
x(n—M). Therefore,

Hmax =m . 20)

3.2. Least Mean Kurtosis (LMK) Algorithm

There is considerable amount of research activity dedicated to adaptive algorithms that use non mean-square cost
functions. Important applications are in blind equalization [13] and system identification [17]. In blind equalization, cost
functions with higher order moments of the equalizer output are used in order to correctly identify the phase
characteristics of the channel. Many significant contributions exist but we would like to mention the work by Shalvi and
Weinstein [18, 19] which uses the same Higher Order Statistical measure; the kurtosis, that the LMK algorithm is based
upon.

Unlike the LMS algorithm which minimizes the mean square value €, the LMK algorithm minimizes the negated
kurtosis of the error signal:

J(m)A3E*(e* (n)} - Ee* (n)) . @1

The LMK algorithm is a steepest descent procedure. The gradient vector corresponding to (21) is [20]:

VJ(n)= 9 _ —4E[(E(e(n)}e(n)-e*(n)X,,]. (22)
ow(n)

For algorithm construction, E{e%(n)} in (22) must be replaced with an approximation that can be computed in real-time.
For this purpose, we define the alternative gradient vector:

VJ (n) = -4E[B6? (me(m) - (m)X,, |, (23)
where the variance of the prediction error; Gf (n) satisfies the relation,
62(n)=PBol(n-1)+(1-B)e*(n) 0<P<1, (24)

and P is the forgetting factor that controls the memory of the error power estimator. Therefore, the gradient descent
based update equation of the LMK algorithm is:

w(n+1) = w(n)+4E(362(n) - X (n))e(m)X, (25)
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where W is the adaptation gain. This algorithm requires four extra multiplications and two extra additions compared to
the LMS.

It is worthnoting that the LMK algorithm, as defined in (25), is very responsive to large values of e(n). It may quickly
become unstable unless a very small adaptation gain parameter is employed. Unfortunately, no convergence analysis has
been yet reported in the literature for the LMK algorithm when it is operated in the linear prediction mode. However, we
provide next, a modification to the LMK algorithm which aims to circumventing the algorithm stability problem.

Let:
on) = 4u(3c’(n) - e*(n)). (26)

Therefore, the update equation of the LMK algorithm can be written in the following compact form:
wn+1)=wn)+a(n)e(n)X, . 27

Comparing (17) and (27), we notice that the LMK algorithm is simply a variable step size LMS algorithm where the step
size adjustment is controlled by the square of prediction error and its variance. Intuitively speaking, a large prediction
error will cause the step size to increase to provide faster tracing while a small prediction will result in a decrease in the
step size to yield smaller misadjustment. It is, however, important to note the increased responsiveness of the LMK
algorithm to large errors impacts on the stability of adaptation.

In what follows, we provide a modification to the LMK algorithm. This modification is based on replacing the variable
step size on) by a clipped version of it to ensure that the mean-square error of the algorithm remains bounded. The
algorithm modified step size Gi(n) is given by:

[ i ) < Pl
an) = (28)

pumax i]c a(n) 2 p“’max ’

where 0 < p < 1 and pp,, is the upper bound of the LMS adaptation gain parameter. Therefore, using (28), the stability
of the LMK algorithm is guaranteed provided that [, is properly selected. The step size (i(n) is now controlled by the
parameter P and W ,,. The constant [ ., is determined using the simple relation (20).

4. SYSTEM PERFORMANCE

In digital communications there are usually two important parameters that reveal the system performance; namely the
bit error rate (BER) and signal to noise ratio improvement (SNRI). Based on these two parameters, the system
performance can be evaluated with and without the presence of the suppression filter. This section addresses these two
measures of performance. In addition, the rate of convergence of the LMS and LMK suppression algorithms is
djscussed.

4.1 Signal to Noise Ratio Improvement

In order to examine the performance of interference suppression filters, we assume the received signal {R,} to be
consisted of a spread data signal {S,}, interference signal {,}, and Gaussian noise {N,}. The SNR improvement factor is
the ratio of the SNR at the filter output over the SNR at the filter input. The improvement in the SNR performance due to
the use of suppression filter in the CDMA receiver can be calculated as follows:

R ___Ells.l’]
at the filter input = I P— 29)
E[”Rn -Sn” ]
SR __Elis.l’]
at the filter output = S — (30)
Elle, - 5.1

where, €,=R,-R,

IQ,, : is the predicted estimate signal, and therefore:
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E[IR, -5.1"]
E[Hen - Sn||2]

This expression is normally used for the evaluation of the suppression filter and in this paper as a measure of system
performance.

SNR Improvement = 3D

4.2 Bit Error Rate (BER)

Except for a few cases, it is generally difficult to arrive at an exact closed form expression for the bit error probability
of a communication system, even under the assumption of white Gaussian noise interference. When the interference is
not modeled as white noise, the analysis is even more difficult. For coherent BPSK, the bit error probability against
white Gaussian noise and over slowly fading channel is given by [16]:

1 n 1
P=2|1- |-t |x— . 32
¢ 2‘: 1+rb} 4r, (32)

where r;, denotes the average signal to noise ratio. The above expression also applies to BPSK/SS communication system
operating over slowly fading channel with the presence of white Gaussian noise.

For CDMA situation, the performance limitation is due to the interference from other similar spread spectrum signals.
However, if the number of chips per bit is large, according to the central limit theorem, the output of a coherent detector
can be shown [21, 22] to be nearly Gaussian. Therefore, the classical expression for BER of an uncoded coherent BPSK
demodulator is additive when white Gaussian noise is applied. When the communication channel is subjected to fading
upper and lower bounds on the average probability of error obtained [23, 24] for such a situation. When a narrowband
interference is applied into the BPSK/SS system and therefore a suppression filter is added into coherent detector the
situation is even more difficult to analyze. Approximate expressions have been developed by a limited number of authors
[7]. For CDMA system with the presence of narrowband interference, no general expression exists for BER or even its
upper bound. However, when the number of active users is large, it is shown in [25] that, according to the central limit
theorem, the sum of internal interference generated by the suppression filter, the narrowband interference terms and the
multiple access interference terms can be approximated by Gaussian random variables. Therefore, the resulting bit error
rate can then be evaluated by the expression in (32), where:

-1
E, J
o - 8] B 2] Brctonns

0 mi,m2

(K-D|2¢ , 1
+T{3§wm+5§wmwm+.] (33)
where:

S . The average CDMA signal power

E, : The average energy per bit of CDMA user = ST,
N, : The power density of additive white Gaussian noise
G : The processing gain

o? : The interfering narrowband correlation function.

The above result was obtained for narrowband interference modeled as BPSK digital signal. In our case, however, the
interference signal is also narrowband but modeled as either a multitone interference or AR signal. The difference
between the models will not affect the general result which was based on the central limit theorem and general
expression given in (32), as long as r,, still denotes the average signal to noise ratio, with “noise” taken to be the sum of
the contributions due to the narrowband interference, the multiple access interference, and thermal noise. The same
approach has been followed in [26], where PSK interference signal has been modeled by a second ARMA process.
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i
4.&. System Mismatch (SM)

Through the adaptive process the coefficients of the adaptive filter go to the optimum values, with certain rate of
convergence. This rate of convergence can be defined as the number of iterations required for the algorithm, in response
tq stationary inputs, to converge *“close enough” to the optimum Wiener solution in the mean-square sense. A fast rate of
convergence allows the algorithm to adapt rapidly to a stationary environment of unknown statistics.

'In our simulation the rate of convergence is described using the expression below which is often called in the literature
[15] as the system mismatch (SM).

SM =10log v~
10

(34

where

w : Adaptive filter coefficients

| Wop : Optimum Wiener solution.

%In this section, some simulation examples together with some numerical results are presented to demonstrate the
pérformance of an LMK algorithm based adaptive suppression filter in CDMA network. This filter performance is
compared against the LMS algorithm. The CDMA system performance is evaluated in the presence of both types of
interference signals models: multitone interference and autoregressive interference.

5, SIMULATION AND RESULTS

The simulated CDMA system handles 10 users, the Interference power to Signal power Ratio (ISR), J/S=20dB, and
h'Es a processing gain of 127 with pseudorandomly generated spreading sequence using Gold codes. All the results

generated by simulation are obtained by averaging over 50 Monte Carlo runs. The performance measures used are SNR
Improvement, BER and the speed of convergence. The fixed step size of both the LMS and modified-LMK algorithms
has been given identical values.

SLL Multiple Tones Interference

\ . . . .
| In order to evaluate the adaptive LMK filter performance under the circumstances of multiple tones interference, we

obtained the SNRI, BER, and system mismatch for the processing gain G=127 and filter coefficients M=5, 10, and 20.
The interference signal has 20dB power equally distributed on the multiple frequencies. The results are shown in Figures

for the five tones interference. Figure 4 shows that the SNRI trend of the two algorithms with E,/N, is the same,
except for a slight difference between the SNRI of the two algorithms for almost all values of E,/N,. This result is
applicable for the tap weights M=5, 10, and 20.

' The BER results (Figure 5) show the same behavior except a shift difference between the LMS and LMK results. The
improvement in speed of convergence of the LMK compared to the LMS algorithms is clearly demonstrated in Figure 6.

or example, the LMS needed 5000 more iterations compared to the LMK to reach its steady state, when the number of
coefficients is M=20.

| The above situation has been repeated for the case of ten tones and number of filter coefficients M =20. The results are
shown in Figure 7. The same conclusions stated above can be easily shown from these results. The improvement of the

MK speed of convergence has even been clearly demonstrated, where 8000 iterations is now the difference between the
LMK and LMS speed under the conditions of the previous example.

To see the effect of the number of active users of the CDMA system on the LMS and LMK filters. The approximate
BER results against the number of users have been plotted in Figure 8, for different values of J/S. These curves show that
the number of users has the same effect on both the LMK and LMS, under the same parameters of J/S, and the number of
tones.
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Figure 4. The SNRI against the signal-to-noise ratio E,/N_ with five tones, gain G=127,
and filter coefficients: (a) M=5: (b) M=10: (c) M=20.

Figure 5. The BER against the signal-to-noise ratio E /N  with five tones, gain G=127,
and filter coefficients: (a) M=5; (b) M=10; (c) M=20.
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Figure 6. The SM against the number of iterations with five tones, gain G=127,
and filter coefficients: (a) M=5; (b) M=10; (c) M=20.

Figure 7. System performance with ten tones, gain G=127, and filter coefficients M=20: (a) SNRI; (b) BER; (c) SM.
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5.2. Autoregressive Interference

To examine the effect of the interference bandwidth on the LMK and LMS filter, the autoregressive format is used to
model the interference signal as discussed in Section 2.2. The bandwidth variation of the interference is represented by the
double pole locations (e.g., 0.9 and 0.8) corresponding to a, =-1.8, a, = 0.81, and q, =-1.6, a, = 0.64, respectively.

The SNRI, BER, and system mismatch results are shown in Figures 9 and 10. The same conclusion adopted for the
multiple tone interference is applied again here: meaning that the LMK has a better speed of convergence performance over
the LMS, especially when the interference has a wider bandwidth. For example, the LMK is faster than LMS by 20000
iterations when the poles location is at 0.8, the number of coefficients is 10, and processing gain is 127.

To see the effect of the number of active users of the CDMA system on the LMS and LMK filters when the bandwidth of
interference is varied. The approximate BER results against the number of users have been plotted in Figure 11, for differ-
ent values of J/S. The curves show that the number of users has the same effect on both the LMK and LMS, under the same
parameters of J/S, and the change of bandwidth of interference.

Figure 8. The BER against the number of active user, with gain G=127, and coefficients M=6: (a) five tones; (b) ten tones.
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Figure 9. System performance against AR interference with poles at (0.9), gain G=127,
and filter coefficients M=10: (a) SNRI; (b) BER; (c) SM.

Figure 10. System performance against AR interference with poles at (0.8), gain G=127,
and filter coefficients M-10: (a) SNRI; (b) BER; (c) SM.
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6. CONCLUSIONS

In this paper, we have considered a new adaptive method for NBI cancellation in DSSS systems. The method presented
is based on linear prediction analysis and the least mean kurtosis algorithm. In particular, an investigation of an LMK
algorithm based transversal filter is addressed in the context of NBI suppression in a CDMA system operating in a cellular
radio environment. This investigation is based on computer simulation results of the SNRI, BER, and SM. These performance
measures have been calculated for two models of interference, namely: multitone and autoregressive interferences, with a
wide range of values for the system parameters. These parameters included processing gain, filter length, number of active
users of the CDMA system, interference power-to-signal ratio (J/S), number of tones, and interference bandwidth. Moreover,
these new results of LMK filter are compared with those using second order statistics, i.e., LMS filter.

P

Figure 11. The BER against the number of users, gain G=127, number of coefficient is (M=6),
and poles at: (a) 0.9 and (b) 0.8.
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Simulation results have demonstrated that the LMK algorithm is capable of providing performance comparable to that
of the LMS algorithm. However, an advantage of the LMK algorithm over the LMS algorithm is that the LMK algorithm
converges faster than the LMS algorithm. This improvement in performance of the LMK algorithm compared to the
LMS algorithm is achieved only at a larger number of tones or a wider bandwidth of the interference. The two
algoﬁthms, however, show close by similar performance in terms of the SNRI and BER. This fact has been demonstrated
by numerous simulation tests. These results also are verified when the number of active users is changed. It has been
shown, in this paper, that the LMK algorithm can simply be viewed as variable step size least-mean square algorithm
here the step size adjustment is controlled by the square of prediction error and its variance. A modification to the
K algorithm is provided such that its mean-square error remains bounded. The LMK algorithm is not difficult to
implement. It requires four extra multiplications and two extra additions compared to the LMS algorithm.
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