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G.K. Beg and M.A. El-Gebeily 

A GALERKIN METHOD FOR SINGULAR TWO POINT LINEAR 
BOUNDARY VALUE PROBLEMS 

1. INTRODUCTION 

Many problems in physics and engineering give rise to second-order differential expression of the form: 

1 
ley) =--(py')' +qy on (0,1), (1.1) 

w 

with boundary conditions. In general, one would be interested in solving the equation: 

ley) =I, (1.2) 

where y satisfies the boundary conditions. These equations may be regular or singular at each point of the 
interval (0,1). 

In the regular case, problem (1.2) is well understood and its numerical analysis has been extensively studied. 
Very successful software has been written for solving regular equations, of which we mention the programs 
SLEIGN [1] and D02KEF [2]. Apart from a limited number of special cases, the errors involved in approximating 
singular problems are not yet well understood (see [3] p. 1665). In this work we provide some error estimates 
for approximating such problems. The trade-off between the roughness of the data and the rate of convergence 
of the numerical solution will be illustrated. (See also [4]). 

Singular problems of the form (1.2) appear in many areas of applied mathematics; in transport processes [5], 
in the study of electrohydrodynamics [6], in the theory of thermal explosions [7], and in the separation of variables 
in partial differential equations [9]; just to name a few fields. The cod~ SLEIGN2 [8] is written to compute the 
eigenvalues of the Sturm-Liouville problem in some singular cases. The Galerkin method for singular problems 
was considered in [10-12]. Special finite difference methods were considered in Chawla et al. [13]. The reader is 
referred to the references cited in the aforementioned articles for more details. 

In this article the questions of existence, uniqueness, and regularity of sulutions of a class of singular two­
point boundary value problems will be invest.igated to the extent needed for the error estimates of the numerical 
approximation. The variational setup of the problem will also be considered as well as the equivalence between 
the solution of the variational problem and the solution of the boundary value problem. Then we will investigate 
a Galerkin method, with special patch functions (considered earlier by Ciarlet et al. [10]), for the numerical 
approximation of the solution. We will derive error estimates in various energy and uniform norms and show 
how the accuracy of the approximation is affected by the norm in which we study convergence or, equivalently, 
by the regularity of the data. Extending these results to nonlinear problems will be the subject of a later paper. 

2. PRELIMINARIES 

For r ~ 0 on I = (0, 1) we let Lr (1) denote the weighted Hilbert space with the inner product 

(y, z)r =1y(x)z(x)r(x)dx. (2.1) 
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We also let Vp be the Hilbert space consisting of functions u E L~ (1) which are locally absolutely continuous on 
I, u(1) = 0 and u' E L~(I). The inner product on the space Vp is defined by 

(y, z)VI' = 1y'(x)z'(x)p(x)dx. (2.2) 

The notation Lloc(I) is used to denote the space of functions y E L[a, p] where [a, P] is any compact subinterval 
of I. 

Throughout this paper we assume that the real valued functions p, q, w satisfy 

q,w E L1(1) (2.3) 

p-l E Lloc(I), p-l ¢ Lloc([O, a)) for any a > 0, (2.4) 

p,w > 0, l'p-I E L~(O, 1), and (2.5) 

hw(.,)d., = oimplies hP{.,)d., =0 for E ~ I measurable. (2.6) 

Additional assumptions will be specified when needed. Assumption (2.4) means that £ is singular and 0 
is a singular point for £. See [14]. Under the above assumptions it can be shown [15] that the boundary 
condition at 0 may be taken as lim:t'_o(PY')(x) =O. For q =0, assumptions (2.3),(2.5) allow for limit circle (LC)

(J:p-l E L~(0,1)) as well as a class of limit point (LP) cases for the operator £ [15]. Our goal is, thus, to 

investigate the problem (1.2) together with the boundary conditions 

(py')(O+) =0 } 
(2.7)

y(1) = 0 

both theoretically and numerically. Finally, we will make use of the operator L : 

D(L) = {Y E L!(I) : £(y) E L!(1), y(1) = lim (py')(x) =O}.
:t'-O 

It is known that L is self-adjoint [15]. 

3. THE MAIN RESULTS 

We study the theoretical and numerical aspects of the problem (1.2),(2.7) first for the case q == 0 and 
then introduce the function q with nonzero values as a perturbation of the former case and strive to keep the 
assumptions on q minimal. This way we hope to be able to illustrate the effect of q on the analysis, the regularity, 

the error estimates, etc. 

The operator L is real in the sense that Lf = L7 V f E D(L) as can be readily checked. Since the data 
functions we consider are all real valued, this means that it is enough to consider only real inner products. 
Therefore we will drop the conjugation overbars for the rest of this paper. 
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3.1. Existence, Uniqueness, and Regularity of the Solution 

Various results about the existence, uniqueness, and regularity of the solution of (1.2),(2.7) are needed in 
order to obtain error estimates for the Galerkin method. We will state and discuss these results here. We will 
also have some comments about the conditions required for such results to follow. In particular we will discuss 
applicability of the boundary condition u'(O) = 0 which is most frequently used in the literature. The results 
listed below are organized into two categories: q =0 and q 1:- o. 

Theorem 3.1 (LC, q =0) For every f E L~(O, 1) the unique solution u of (1.2 ),(2.7) is absolutely continuous 
on [0,1]. The operator 1-1 : L~(O, 1) ~ e[O, 1] is compact. 

Remark 3.1 It follows from (2.3) that e[O, 1] is continuously embedded in L~(O, 1). As a corollary of this and 
Theorem 3.1 we get that I-1 : L~(O, 1) ~ L~(O, 1) is also compact. This is a well known result in the limit 
circle case. 

Theorem 3.2 (a) If f E L~(O, 1) then (1.2)'(2.7) has a unique solution which is absolutely continuous on [0,1]. 
(b) If f E L~(O, 1) then (1.2)'(2.7) has a unique solution which is absolutely contip,uous on (0,1]. 
(c) The operator I-1 :L~(O, 1) ~ e[O, 1] is compact. 

Theorem 3.3 (LP1, q = 0) For any u E D (I) we have u' E L~(O, 1). 

Remark 3.2 1. In general, the result of Theorem 3.3 cannot be sharpened in the sense that we may not have 
continuity of u' on [0,1]. For example, if in (1.2)'(2.7) we take p(x) = x, w(x) = 1, q(x) =0, and f(x) = In x 
which is a limit circle case, then the solution u(x) = -2 - x In x +2x has an unbounded derivative at x O. 
2. If p(x) = w(x), p is monotone increasing and f E L~(O, 1) then the boundary condition at x = 0 may be 
stated as u'(O) =O. In particular this is true for p(x) =w(x) =xa which is the case considered in the literature. 
3. In the first part of Theorem 3.2, the condition f E L~(O, 1) cannot be relaxed to f E L~(O, 1). For example, 

3if in (1.2), we take p(x) x3 ,w(x) =x /
2 ,q(x) =0, and f(x) = 4~' then the solution to (1.2) is u(x) ,*-1 

which is unbounded at x =o. 
4. Theorem 3.3 means that the space vp defined in Section 2 is the natural space to consider for the derivation 
of the solution and consequently for the set up of the Galerkin method. 

The results for the case q 1:- 0 will be obtained through the variational formulation of the problem (1.2),(2.7): 

Find u E Vp such that 

B(u,v) = (f,v)w for all v E vp (3.1) 
where 

B(u, v) = (u, v)vp + (qu, v)w. (3.2) 

The following conditions are imposed on the function q(x): 

C, := 10' Iq(xll ([ p~:J w(xldx < 00, (3.3) 

(3.4) 

qu E L~(O, 1) for all u E Vp. (3.5) 

82 The Arabian Journal/or Science and Engineering, Volume 22. Number 2e. December 1997 



G.K. Beg and M.A. EI-Gebeily 

Theorem 3.4 Under the conditions (3.3),(3.4), the variational boundary value problem (3.1) has a unIque 
solution u E Vp i.e., (1.2),(2.7) has a unique weak solution. 

Theorem 3.5 Under the conditions (3.3)-(3.5) we have 
(1) The unique solution u of (3.1) is also the solution of (1.2),(2. 7). 
(2) (LC) If f E L~(O, 1) then u is absolutely continuous on [0,1]' 
(3) (LP1) If f, q E L~(O, 1) then u is absolutely continuous on [0,1]' 

Remark 3.3 1. In the case (LC), (3.5) holds if q E L!(O, 1). (3.3) also holds in that case (because of (2.3)). 
In the case (LP), (3.3), (3.5) hold if q E L~(O, 1). 
2. In the case (LP), if q E L~ (0,1) and q ~ 0 then all conditions (3.3)-(3.5) are satisfied. In particular this is 
trueforp(x) =w(x)=xo, a~O. 

4. THE GALERKIN APPROXIMATION AND CONVERGENCE RESULTS 

Let 7T' : 0 = Xo < Xl < ... < XN+1 = 1 be a mesh on the interval [0,1] and for i = 1,2"" N define the patch 
functions 

if Xi-1 ~ X ~ Xi,f Ti{x) 

if Xi ~ X ~ Xi +1, ( 4.1) T.{X) =1~t{X) 
otherwise, 

where 
r1(x) = 1, 

x 1 dIXi-l PW S
ri(x) = 

I Xi i=2,3,···,N
1 ds' 

Xi-l PW 
and 

1,2"" ,N. 

The above patch functions have been used by Ciarlet et al. [10]. Next we define the discrete subspace VN of 

Vp by 

The discrete version of the weak problem (3.1) reads: 

GFind u E VN such that 

(4.2) 

It follows from (3.1) and (4.2) that 

Note that condition (3.4) implies that the bilinear form B(u, v) is coercive which guarantees the existence of the 
uGsolution uG of (4.2). is called the Galerkin approximation of (3.1) (and consequently of (1.2) ,(2.7)). We can 

now state our results on the convergence of the Galerkin solution uG to the weak solution u of (3.1). 
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Theorem 4.1 (LC,LP1) If the function q satisfies (3.3) and f E L~(O, 1), then 

where C depends only on the data and i(7rN) is given by 

(4.3) 


Theorem 4.2 (LC, LP1) If f, q E L~(O, 1), then 

Theorem 4.3 (LC) If f E L~(O, 1) and q E L!(O, 1), then 

where 

( 4.4) 

Remark 4.1 1. In the case of Theorem 4.2, if the additional assumption q ~ 0 is made, then the order of 
convergence improves to i(7rN). See Remark 5.2. 
2. In the literature most authors treat the case p(x) =w(x) = xO:. In [12}, Jesperson obtains O(h2 ) convergence 
for the L~ norm and O(h log h) convergenc for the LOO norm under more restrictive assumptions on the mesh 
and the function q. Simillar results were obtained by Eriksson et al. [11J. In our case, the order of convergence 
i(7r) reduces to O(h2) in both norms. 
3. In [10} Ciarlet et al. obtain the convergence estimate i(7r) under more general assumptions on q. However, 

in their case the function ~ was assumed integrable on [0,1]. In our case, the loss of integrability of ~ reduces 
p p 

the order of convergence to Ji(7r) as indicated in Theorem 4.1. This result illustrates the effect of the strength 
of singularity on the order of convergence. 
4· Comparing theorems 4.2,4.3 we see that relaxing the conditions on q and f reduces the order of convergence 
from Ji(7r) to Jil(7r). 

5. PROOF OF THE RESULTS 

5.1. Proof of Theorem 3.1 

Our boundary value problem in this case reads 

i(u) = -w-b> (p(x)u'(x))' = f(x), 0 < x < 1 ) 

limx_o+ p(x)u'(x) = 0 (5.1) 

u(1) = 0 
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(5.1) gives the unique solution 

u(",) =1.' ptt) (10' f(s)W(S)dS) dt. (5.2) 

For x > 0 we may integrate by parts to obtain 

u(",) =1.' ptt) dt [ f(t)w(t)dt + 1.' ([ ptt) dt) f(s)w(s)ds. (5.3) 

Using the fact that 

1.' p~t) dt [ f(t)w(t)dt ~ [ ([ ptt) dt) If(s)1 w(s)ds (5.4) 

we obtain 

(5.5) 

where 11·lIw denotes the norm in L~(O, 1). Thus 

u(O) =l' ([ ptt) dt) f(s)w(s)ds 	 (5.6) 

and (5.2) is an indefinite integral. Therefore u is absolutely continuous on [0,1]. 

The compactness of L-1 follows from a straightforward argument which uses the Arzela-Ascoli theorem and 
(5.4). 

To complete the proof of Theorem 3.1 we show that u' E L;(O, 1). 

/.1 p lu'l' d:t = 	 lim p(x)u'(x)u(x)l! /.1 (pu')' ud", 


l' 
x-o+ 

f(
'")u(:t)w('" )d'" 

< Ilfllw lIullw' 

where we have used (5.6), (5.1) and the continuity of u. 

Remark 5.1 Since lu'(x)1 :5 ~ (J; w(s)ds)1/21Ifllw ,then if 

1 (/.x )1/2
lim -() w(s)ds < 00 	 (5.7)

x-o+ p X 0 

then lu'(x)1 has a bounded limit at x = O. If the limit in (5.7) is 0, then u'(x) --;. 0 as x --;. 0+. This is the 
2o 1+fcase for example for p(x) = xo, w(x) = x - for any f > O. If f E Loo(O, 1), then we get similar results for 

p(x) =w(x) =xo. However, in general, u'(O) may not be zero. 
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5.2. Proof of Theorem 3.2 

The proofs of (a) and (e) are similar to the limit circle case except that we use Holder's inequality instead of 
Cauchy Schwartz inequality. To prove (b) we note first that (5.3) implies the absolute continuity on (0,1] of u. 
To show that u E L~(O, 1) we estimate the L~(O, 1) norm of the two terms on the right of (5.3). The first term 
is estimated as follows: 

10' ([ /w) 2 ([ ~) 2 wdx < II/II! 10' [ w ([ ~) 2 wdx 

< II/II! 10' ([ ([ ~) w) ([ ~) wdx 

< II/II! (10' ([Dw ) 2 < 00. 

Similarly we can estimate the second term. 

5.3. Proof of Theorem 3.3 

The proof that u' E L~(O, 1) is the same as in the limit circle case. 

5.4. Proof of Theorem 3.4 

Before proving this theorem we state and prove the following lemmas; throughout which we assume that the 
conditions of Theorem 3.4 are satisfied. 

Proof 

10' q(t)w(t)u(t)v(t)dt 

10' q(t)w(t) ([ u'(s)ds) ([ v'(S)ds) dt 

[1 q(t)w(t) ([1 ~Jp(S)U'(S)dS) ([1 ~Jp(S)V'(S)dS)io it V pes) it V pes) 

< IIUllv,IIVllv,1o' Iq(t)lw(t) ([ pts) dS) dt 

= cqllullvpllvllvp,0 

Corollary 5.1 Vp is continuously embedded in L~(O, 1). 
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Proof Putting q == 1 in the previous lemma we obtain 

(u, v)w ~ C11lullvpllvllvp 
and so 

lIull! ~ C1 Ilull~p .0 

It can now be readily checked that the bilinear form B(·,·) given by (3.2) is continuous and Vp-elliptic and that 
f( v) = (I, v)w is a linear bounded functional on Vp. 

Theorem 3.4 now follows from the above lemmas and the Lax-Milgram theorem. 

5.5. Proof of Theorem 3.5 

We begin by collecting some facts about the relationships between the spaces D (I), Vp and L!(O, 1). We 

recall here that assumptions (3.3)-(3.5) are in effect. 

Lemma 5.2 (aJ Vp is continuously and densely embedded in L!(O, 1) 


(bJ If u E D (I) and v E Vp then pu'vl~ ° 

(cJ D (I) is dense in Vp. 


Proof (a) Follows from Corollary 5.1. 

(b) Let u E D (I) and 1 E L!(O, 1) be such that pu' = - J; Iw, then 

l(pu'v)(x)1 = If Iwlll v'l ~ fillwl Iv'l 
< II/l1w IIvllv, (f ([ ~) w) 1/2 

The above inequalities give the desired result. 

(c) Let v E Vp be such that (u, v)vp = 0 for all u E D (I) .Then 

, , "'" 
0= 10' pu'v' = pu'vl~ 10' (pu')' v = o 

1 

(pu) v = (Lu, v)w.10 

Since I is surjective, then v = 0 a.e.w. Hence by assumption (2.6) v = 0 a.e.p. Therefore D (I) is dense in 

Vp.o 

It thus follows from the Lax-Milgram theorem that (3.1) has a unique solution. To show that the weak 
solution is also the classical solution of (1.2) we introduce the operator S defined by 

D(S) {u E Vp : v I--+- B(u,v) is continuous in L!(O, I)} 


Su 1 where 


B(u, v) (/,v)w V v E Vp. 


December 1997 The Arabian Journal/or Science and Engineering, Volume 22, Number 2e. 87 



G.K.Beg and M.A. EI-Gebeily 

A standard argument (e.g. see [16]) may now be used to show that S = Z+q and the equivalence of the weak and 
the classical solutions. This proves part (1) of Theorem 3.5. To prove part (2) we notice that by the boundedness 

of the operator (Z + q) -1 on L!(O, 1) and assumption (3.3) it follows that the solution u of (Z + q) u =f is in 

D (Z) .The desired result follows in the LC case from equations (5.2) and (5.6). Part (3) follows from the fact 

that Z-l: L~(O,l) -jo C[O,l] is compact (Theorem 3.2) and that adding the L~ function q does not alter the 
domain of Z. We then recall (5.2) and (5.6) again. 

5.6. Proof of Theorem 4.1 

Standard proofs of theorems of the type of Section 4 usually use the Aubin-Nitsche trick and inequalities 
like Hardy's inequality. In our case either of these techniques can be used because either the solution u does 
not have enough smoothness properties or the inequalities are not sharp enough for our purposes. Our proofs 
will hinge on the knowledge of the closed form of the inverse of the matrix A = (B(ri,rj)) (with q = 0). To 
prove Theorem 4.1 we proceed by introducing a special interpolant uI of the solution u of (3.1) (known as the 
VN-interpolant of the solution [10]) . The error of the Galerkin approximation is compared to the error of the 
interpolant. Then the order of the error of the interpolant is worked out. This is done in Lemma 5.4. Theorem 
4.1 will be a direct consequence of the aforementioned lemma. 

We begin by introducing the VN-interpolant uI of the solution u 

N 

uI (x) =L:Uiri(X) (5.8) 
i=l 

where Ui = u( Xi) and ri is given by (4.1), i = 1, ... , N. We note here in passing that uI is the orthogonal 
projection of u with respect to the inner product (-, ')v

p 
: 

(5.9) 


for all vN E VN . The following two relations are also easily checked 

(5.10) 

and 

(5.11) 


for all vN E VN . 

GLemma 5.3 Let u be the Galerkin approximation and uI be the VN-interpolant of the solution u of (3.1). Then 

(5.12) 


where Cq and, are given by (3.3) and 3.4). 

Proof 

G IIn (5.10) put VN = u - u and note that IB(u, v)1 ~ (1 + Cq ) Ilullvp Ilvllvp and IB(v, v)1 ~ (1 + ,) Ilvll~p 
"Iv E Vp.D 
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Lemma 5.4 Let 9 = f - qu where u is the solution of {3.1}. Then 

Proof For x E [Xi, Xi+d, i = 0, ... N we use the fact that L~l ri(x) =1 and integration by parts together with 
(5.2),(5.6) to obtain: 

1 r:( [' dt ) [:&;+1(1:&·+1 dt )
u(x) - u (x) = rt(x) l:&; l:&, p(t) g(s)w(s)ds + ri+l(x) l:& , p(t) g(s)w(s)ds. (5.13) 

Then: 

= [' p(l",) ([ g(S)W(S)dS) 2 d", + 

:& (1' dt ) 1:&;+1 (1:&;+1 dt) }2-() gwds - -() gwds dx{1:&i :&i P t :&, P t 

< [' p(~) ([ g2(S)W(S)dS) ([W(S)dS) d", + 

N (l:&i+l dS) -2 :&'+1 1 (1:& l' dt ) 2L 2 . (s) , (x) . . (t) g( s )w( s )ds dx + 
i=l :&, P 1:&, P :&,:&, P 

N (1:&.i+l dS) -2 :&;+1 1 (1:&H1 1:&·+1 dt ) 2E2 -() -() -()g(s)w(s)ds dx. 
i=l :&, P S 1:&i P X :& , P t 

Each term under the first summation can be majorized as follows: 

[:&.+1 ds ) -2 [:&i+l 1 ([:& [' dt ) 2

(l:&. p(s) l:&. p(x) l:&. l:&. p(t)g(s)w(s)ds dx 

2 
~ ([:&'+1 d(s))-2 ([:&'+1 d(t))2 [:&HI _(1) ([:& g(S)W(S)dS) dx

l:&i P s l:&; p t l:&; p x l:&, 


= {'+' p(~) ({ g(S)W(S)dS) 2 d", 


< {'+> p(~) ({ g2(S)(S)W(S)dS) ({ W(S)dS) d", 
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< ([+. g2(S)W(S)dS) [H p(~) ({ W(S)dS) dx 

and each term under the second summation can be majorized as follows: 

Xi+1 dS) -21
xi+1 

1 (lxi+1(jXi+l dt ) '\) 2
-() -() -() g(s)W(SJds dx(lXi P S Xi P X X $ P t 

< ({i+' p~:)) -2 [+. plx) ([H g2(S)W(S)dS) ([+. ([+. p~:JW(S)dS) dx 

< ({;+. g2(S)W(S)dS) ({;+. p~:)) -1 [+. p(~) [+. ([+. p~:)) w(s)dsdx 

~ ({;+. g2(S)W(S)dS) (1~'+' p~:)) -1 [+. ([+. p~:)) w(s)ds ([+. p(~)dX) 

= ({;+. l(S)W(S)dS) {;+. ([H p~:)) w(s)ds. 

Therefore, 

N (lX'+l ) l X'+l (lX+1 d )4 ~ r.' g2(s)w(s)ds r.· r' p(:) w(x)dx 

x'+l (lx+l d ) ) N l x'+l< 4 (O~fN r;' r' p(:) w(x)dx ~ r;' g2(s)w(s)dsl 

Xi+1(lxi+l dS)= 411gll! m,ax -() w(x)dx.O
O~,~N lXi X P S 

Theorem 4.1 now follows from (3.3), Lemma 5.4 and the boundedness of the operator (L + q) -1 . The last 

statement follows from the inequalities: 

= (Lu, u)w + (qu, u)w = lIull~ (1 + (qu, ~)w )
p lIull vp 
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5.7. Proof of Theorem 4.2 

Proof For any x E [Xi! Xi+1], i = 0,1, ... N 

where 9 = f - quo To see this we consider two cases: i = 0 and i ~ 1. 

For i =0 i.e., for x E [0, xd we have 

[Xl 1 [! 
= lx p(s) 10 g(t)w(t)dt ds 

[Xl ds [X [Xl f. Xl dt 
= lx p(s) 10 g(s)w(s)ds + lx g(s)w(s)! p(t) ds 

[X f.XI dt [Xl f.XI dt 
< 10 Ig(s)lw(s)! p(t) ds + lx Ig(s)lw(s)! p(t) ds 

[Xl f.Xl dt 
= 10 Ig(s)l! p(t) w(s)ds. (5.14) 

For i = I, ... ,N, by (5.13) we have 

< ([i+' p~:)) [ Ig(s)lw(s)ds + [;+' {+' p~:) Ig(s)lw(s)ds 

Xi 1 Xi 1 
< [X Ig(s)lw(s) f. + d(t)dS + [XHI f. + d(t) Ig(s)lw(s)ds

lx; P t lx ! P t! 

l
Xi+1 f.Xi+1 dt 

= Ig(s)1 -()w(s)ds (5.15) 
Xi ! P t 

The result follows again from the boundedness of the operator (L + q) -1as an operator on e[O, 1]. See Theorem 

3.2 part (3) and the proof of part (3) of Theorem 3.5. 0 
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In (5.11) taking VN =ri for i =1", . ,N, we obtain 

N 

=> 	 L(aj - Uj )(rj, ri)vp = di. 
j=l 

This gives a system of equations 

Ae=d 

where A =(aij) =((ri, rj )vp ) is a symmetric and tridiagonal matrix given by: 

1 
all = 

i= 2,···,N, 

1 
i=1, .. ·,N-1 

e =(ei) =(as - Ui) and d =(dd is given by: 

illl fill2 h(s )w(s) J:iII2 dt ds 
d - h( ) ( )d + ill 1 3 i>'li1'1 - S W S S Jill 2 dt/.ill0 	 ill1 i>'li1' 

and 

where h(s) stands for q(s)(u(s) - uG(s)). The inverse of the matrix A, denoted by B 
written as: 

if i ~ j 

b'j = { 
if i ~ j. 

Therefore, 
N 

leil ~ 	 Lbij\djl 

j=l 


i d N d= E /.1 _s Idjl+ L /.1 _s Idjl
j=l ill, p(s) j=i+1 p(s)ill, 

N ds/.1
~ 2: -()Idjl.

j=l ill, P s 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

= (bij ), can be explicitly 

(5.20) 
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We see that: 

1 d l iC1 11 d riC'J Ih(s)lw(s) J:iC'J at ds 
::; _s Ih(s)lw(s)ds + s iC'J at 8 P(t)JiCl1iC I p(s) iC 0 iC 1 p(S) fiC 1 P(t) 

1
iCl1 d l liC'J d riC'J Ih(s)lw(s) J:iC'J at ds = _s Ih(s)lw(s)ds + s iC'J at 8 P(t)JiCl 

iCl p(s) ico p(s) fiCl P(t)iCl 

l 
::; 11 d(S) liC Ih(s)lw(s)ds + liC'J Ih(s)lw(s) /.iC'J d(t)dS + 

liCl P S liCO liCl P t8 

11 ds liC'J
-() Ih(s)lw(s)ds

iC'J P s iCl 

l 

= 11 d(s) liC Ih(s)lw(s)ds + liC'J Ih(s)lw(s) /.1 d(t)dS
liCl P s liCO liCl 8 P t 

l

iC1 

dt
/.1 dt liC'J /.1::; Ih(s)lw(s) -()ds+ Ih(s)lw(s) -()ds. 
ico 8 P t iCl 8 P t 

Also for j = 2, ... , N, by a similar approach, we have: 

l iCj11 ds 11 ds 

l~ -()Idj / ::; liCj p(s) liCj_1 Ih(s)lw(s)ds + 
iCj P s 

iCj iCj 
< l Ih(S)/W(S)/.1 d(t)dS+ l +l 1h(S)lw(s)/.1 d(t)dS.

liCj_1 P t liCj 8 P t8 

Substituting these two inequalities in (5.20), we obtain: 

iCN iCN/.1 l + /.1 dtdt 
1 

Ih(s)lw(s) -()ds + Ih(s)lw(s) -(t)dsl ico 8 P t iCl 8 P 

~ 2[lh(S)IW(S) [ p~:)ds 

= 2[lq(s)(u(s) - uG(s»lw(s) [ p~:) ds. 
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Let u - uG =v. Then: 

1~'fN I"; - u;1 < 2[lq(S)II[ v'(t)dtl [ p~) w(s)ds 

< 2[IQ(s)1 ([ p1v(12) 1/2 ([ p~:)) 1/2 [ p~:) w(s)ds 

< 2l1vllv, [lq(s)lw(s) ([ p~:)) 3/2 ds 

(5.21) 


Now: 

(5.22) 


1 (1)3/2where C' = fo Iq(s)1 f, ifu w(s)ds. Since q E L~(O, 1) for the LC case then C' < 00. For the LP1 case 

1 (1 ) 3/2 1 3/2fo f, 'ifu w(s)ds < 00 if f, ~ E Lw (0,1). The result of the theorem, therefore, follows from Theorem 4.1 

and Lemma 5.5. 

Remark 5.2 If as in Remark 4.1 we assume that q ~ 0, then ( 5.16) can be written in the form 

(A + Q)e =h 

where the elements aij of the matrix A are given by ( 5.17)-(5.19), Q is a tridiagonal matrix whose elements 

qij = (qrj, ri)w are nonnegative, h is a vector with elements bi given by 

and e is the vector (ed = (O'i - ud. It is not hard to show that A is an M-matrix (see Ortega[17j), qij ::; -aij 
(i :f. j) for sufficiently small mesh size and that A + Q is an M-matrix with (A + Q)-1 ::; A -1. Thus lei ::; 
A -1 Ihl. A proof along the same lines of Theorem 4.2 would give 

1r 11 dtleil ::; 2 10 Iq(s) (u(s) - uI(s)) I IS p(t) w(s)ds. 

Thus 
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Therefore, 

Ilu - uGlloo < Ilu u11100 + IluG- u11100 

I< lIu - u II + 2 max lUi - ad 
00 19:'5N 

The rate of convergence f(7rN) now follows from Lemma 5.5. 

Remark 5.3 In the special case p =wand p is increasing we can easily show that the method is O(h2) where 
h = maxO:'5i:'5N (Xi+l - Xi). 

5.8. Proof of Theorem 4.3 

We first need the following lemma: 

Proof. The proof follows from (5.14), (5.15) and the use of Cauchy-Schwartz inequality. 0 

The proof of the theorem is a direct consequence of this lemma, (5.22) and Theorem 4.1. 

6. EXAMPLES 

In this section we give some numerical examples to illustrate the generality of the method as well as verify 
the theoretical findings of the foregoing sections. In all these examples we take a uniform mesh size h = t+al 
where a 0 and b = 1. In Example 1 we take a LP 1 case where the function p( x) is not of the form xO: which 
is widely used in the literature. In this example I, q are continuous and u'(O) = O. In Example 2 we take again 
a LP1 case with u'(O) ;j:. 0 while I, q are continuous. In Example 3 we take a limit circle case with I E L!. In 
Example 4 we take a LP1 case with w(x) =0 on a set of positive measure. Finally in Example 5 we take a LP1 
case with I E L! such that the solution is unbounded at the singular point x = O. In all the examples except 
the last one the relative errors in the uniform norm are given. In the last example the relative error in Vp-norm 
is given. The theoretical order of convergence ( Jf(7rN) or Jf1(7rN» is also calculated for different values of h 
for each example. 

Example 1 (LPl) 
1p(x) = -e-x 

w(x) = 1.0 

q(x) = x 

I(x) = _x3 + X + 2xe-x - 2e-x + 2 

u(x) = 1- x2 

0.91671 X 10-2 when h = 0.1 

{ 0.91863 x 10-4 when h = 0.01 
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= { 0.3202 when h =0.1 

0.10013 when h =0.01 

Example 2 (LP1) 
p(x) = x2 

w(x) = x 

q(x) = -x 

f(x) 

u(x) = 3x2 
- 4x + 1 

= { 0.37051 when· h = 0.1 

0.039708 when h = 0.01 

0.22361 when h =0.1 

= { 0.070711 when h = 0.01 

Example 3 (LC) 
p(x) = 	 x 

w(x) = 1 

q(x) = x 

f( x) = x2 In x - In x - 2 

u(x) = x Inx 

0.62537 when h =0.1 

= { 0.12518 when h = 0.01 

0.44721 when h =0.1 
= { 0.14142 when h =0.01 

Example 4 (LP1) 

p(x) = x, q(x) = 0.0, f(x) = 10.0 

1 if 0 ~ x ~ i, 
w(x) = 	 0 if i < x < i, (6.1) 

1 ifi~x~l.1 
96 The Arabian Journal/or Science and Engineering, Volume 22, Number 2e. 	 December 1997 



G .K. Beg and M.A. El-Gebeily 

I
-lOX + 20 + 10 In (.1) 

u(x) = 	 - 13
0 In X + 13

0 + 2~ In (~) if ~ ~ x ~ ~, (6.2) 

13
0 In X + 1O( 1 - x) if ~ ~ x ~ 1. 

333 if 0 ~ x ~ ~, 

Ilu - uGlloo 
0.04371 when h =0.0333= lIulioo 

JI!,(7rN) 	 = 0.18257 when h =0.0333 

Example 5 (LPl) 
x3p(x) = 
~w(x) = 	X 2 

Xq(x) = 

/(x) 	 Vx-x+-4x 
3 

1u(x) = 	--1
Vi 

Ilu-uGllvp 
0.05773, 	 h =0.01lIull vp 

JI!,(7rN) 	 = 0.28284, h =0.01. 
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