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ABSTRACT 

Images can be processed by integrating diffusion-based differential equations. Generally 
diffusion smoothes edges and comers, thereby blurring important visual information. 
Patterns can be stabilized by incorporating reaction tenns into the differential equations. 
This paper shows a way how to design the parameters of the reaction -diffusion equation 
such that specific modes become stable. 
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IMAGE PROCESSING AND TURING BIFURCATION 

1. INTRODUCTION 

Traditionally, differential equations were not of primary interest in the field of computer science. Especially, 
partial differential equations (PDEs) seemed to be invented for classical science areas such as physics. This 
situation has changed significantly. For a mathematician, it is a pleasure to observe how PDEs have gained the 
recent attention of researchers in computer vision and image processing. Diffusion-type PDEs have features that 
match several of the aims of image processing. The basic procedure is as follows: The initial image serves as an 
initial state for the PDE. Integrating the PDE is then equivalent to processing the initial image. Depending on 
the type of PDE, the elements in the image may be attenuated or lost, or may be enhanced. Different aims of 
computerized vision call for specifically designed PDEs. 

This paper will show how the two topics, differential equation and bifurcation, can work together in image 
processing. The first part of the paper presents a brief introduction, and a rudimentary review of PDE-based 
image processing. One approach is to use the classical linear diffusion equation, which is perfect for noise 
elimination, and has many advantageous features, but suffers from some limitations. Hence the interest will 
focus on nonlinear PDEs. Nonlinearity will become the main concern in the second part of the paper, when we 
describe 'lUring instability and bifurcation. A bifurcation analysis may reveal what kind of structure in the initial 
image is enhanced. The goal is parameter engineering: We shall attempt to design the PDE in some optimal 
way. Recent preliminary results based on reaction-diffusion equations will be included. 

2. DIFFUSION-BASED IMAGE PROCESSING 

Let a two-dimensional initial image be described by a real-valued function uo defined on a rectangular domain: 

o::; Xl ::; L 1 , 0::; X2 ::; L2 ; 

(Xl, X2) is the Cartesian location in the image. The values UO(X1' X2) may represent the grey level function. 
In case of a colored image we have several of these scalar functions given. The processed values of the initial 
image Uo will be denoted: 

The parameter t ("time") is the scale parameter, which describes a "distance" between the current version of 
the processed image, and the initial version Uo given for t = O. Hence we require the initial condition: 

U(X1' X2, 0) = UO(X1' X2) for all Xl, x2. (1) 

This sets the stage for a PDE. Throughout this paper we define u( xl, X2, t) as solution of a PDE 

auat = F(t, Xl, X2, U, \7u, ... ) (2) 

with initial condition (1), and with appropriate boundary conditions. In Equation (2) ~~ denotes differentiation 
with respect to t; \7u is the gradient operator: 

The dots in (2) refer to possible higher-order spatial derivatives. The boundary conditions, and the construction 
of the PDE-model F are chosen such that the transformation from uo(.,.) to u(.,., t) has meaningful features. 
Along the boundary, Neumann conditions: 

ntr\7u = 0, (3) 
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are prescribed, where n is a vector normal to the boundary; tr means the transposed vector. The Neumann 
boundary conditions in (3) can be justified by seeing the image Uo as part of a larger image into which the image 
Uo extends. 

The main remaining question is how to choose the PDE-model F. Here we briefly list a few aims relevant 
for image processing, namely: 

(Q') smoothing and damping of perturbations in noise-corrupted images; 

(13) detecting edges; and 

(,) locating corners. 

(For an introduction into image processing see, for instance, [1].) We begin with aim (Q'). Later our intention 
will be to satisfy all of the three aims simultaneously. 

It is natural to look into the realm of physics for suitable smoothing mechanisms. The classical diffusion or 
heat equation: 

au 
at div (c'Vu) = 'V . (c'Vu), (4) 

comes to mind. Whether Equation (4) is linear or nonlinear depends on the function c. In case of isotropic 
diffusion (c = constant), Equation (4) is written as: 

(5) 


We use the notation 'V2 for the Laplacian .6. = p8
2 + p8

2 

Applying the linear diffusion of Equation (5) with • 
Xl X 2 

e.g. c = 1 dampens the influence of noise or perturbations. The resulting solution u(.,., t) of (1), (3), (5) can be 
also obtained by convolution of Uo with the Gaussian kernel: 

G ._ 1 (xi+x~)
O'.-~exp - 40" 

Note that G(Xl, X2, t) = Gt solves the heat Equation (5) for c = 1. Isotropic Gaussian linear filtering - or linear 
diffusion - at increasing scales t not only smooths homogeneous regions corrupted by noise but also gradually 
smooths relevant image structures such as edge contours. This is demonstrated in Figure 1, where a synthetically 
generated initial image with N x N pixels (N = 128) is subjected to the heat equation. The smoothing still 
allows for edge detection by calculating zero-level curves of 'V2u; see [2, 3]. 

1.0 1.0 

0.0 0.0 

Figure 1. Left: A 10% Noise-Corrupted Test Image Uo, N = 128. 


Right: Processed Version u(xl, X2, t): Linear Diffusion, Equation (5), c = 1, t = 4. 
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Malik and Perona [4] have suggested nonlinear diffusion to maintain edges and contrasts. To this end these 
authors turn diffusion off in case of steep gradients - that is, choose c ~ a when l\7ul is large. For example, 
this aim is achieved by PDE (4) with: 

l\7uI2) . h }" 100c=exp -~ ,wIt e.g. \. = . (6)( 

The features of the Malik and Perona approach and numerical results are described in the literature; see, for 

instance, [5]. 

A different approach to smooth the image, and simultaneously preserve edges to some extent, is to allow 
diffusion only parallel to the edges of contours. This aim can be expressed as a one-dimensional diffusion, 

8u 82 u 
(7)

8t = 8e2 ' 

where eis the coordinate in the direction of an edge, with angle 1/J, which is orthogonal to the gradient \7u. Some 
analytical manipulations based on U = U(Xl + ecos 1/J, X2 + esin 1/J) show that Equation (7) is equivalent to: 

8u 1 2 2at = l\7ul2 (UX1X1 U X2 - 2UX1X2 U X1 UX2 + UX2X2 U X1 )· 

This can be expressed by curvature K" 

as 

c;;: = l'Vul" = l'Vul div C~:I) (8) 

This equation is called the mean curvature motion (MCM) diffusion model. 

The features of MCM diffusion, and of related models, have been discussed repeatedly. For an illustration of 
MCM diffusion see Figure 2. The diffusion causes a level curve to move into the direction of its inner normal. 
Alvarez et al. [6] have shown for the class of PDEs Ut = F(t, Xl, X2, U, \7u, \72 u), assuming certain reasonable 
features (causality, invariance, regularity), that F must be of the form: 

F = l\7ulf(K" t), f monotonically growing in K,. 

1.0 

0.0 

Figure 2. Left: A 50% Noise-Corrupted Test Image, N = 128. 


Right: Processed Version: MCM, Equation (8), U(Xl' X2, t) for t = 10. 
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MCM is one prominent example of this class of diffusion equations, with f(K, t) = K. A smoothing feature of 
shapes bounded by level curves (u = constant) has been discussed in [7]. Diffusing the derivatives of u rather 
than u has been postulated in [8]. The MCM approach has been modified to control the speed of diffusion, see 
[9]; for numerical results see also [10]. 

As the results in Figure 2 indicate, corners are rounded for increasing values of t, and will be lost for coarse 
scales. Edges, lines, and corners are not stable under MCM. Ultimately, an amorphous state US of medium grey 
will take over, 

lim U(Xb X2, t) = us. 
t .... oo 

In order to stabilize the structure in the image with its corners and edges, a structure-generating "force" will be 
needed, and/or non-continuous u must be considered. A natural approach to allow for discontinuous u, where 
discontinuities represent edges, is to start from a variational problem instead of a PDE. For related regularization 
and minimization problems refer to, for example, [11-13]. Whereas the schemes described above utilize a closed
form framework, the biologically motivated FACADE theory [14] segregates mechanisms of contrast and contour 
processing from those of restoration of invariant features in homogeneous regions. Here, processes of feature 
diffusion are controlled by activations generated in the parallel contour system. Basically, the diffusion coefficient 
is reduced at locations of high contrast activity, see [15-17], and the references cited therein. In our framework 
of studying PDEs, stabilizing activity can be produced by extending the diffusion by some reaction mechanism. 
Reaction-diffusion as a means to process images has been suggested, for example, in [18, 19]. The remaining 
part of the paper is devoted to the discussion of stabilizing features of reaction-diffusion. 

3. TURING INSTABILITY 

Reaction-diffusion equations explain pattern formation processes of a wide range of biological and chemical 
systems [20-24]. Such patterns range from spots or stripes on animal coats to oscillations of concentrations 
of some chemicals to cardiac arrhythmias. In 1952, Turing laid down a chemical basis of pattern formation, 
or morphogenesis. Turing's celebrated paper [25] suggests a reaction-diffusion mechanism that explains how 
patterns may be formed. 

In an attempt to describe basic ideas we start from a state that is homogeneous in both space and time. 
This is the state "no pattern," or "medium grey" us. For some condition of parameters this state US may be 
destabilized, and a state is activated that is still stationary with respect to time, but nonhomogeneous in space. 
This phenomenon of activating a spatial pattern is called the Turing bifurcation, or Turing instability, or diffusive 
instability. First, we explain the analytical framework of spatial instability. Later we outline how this mechanism 
may be used for image processing. 

4. THE GENERAL ANALYSIS 

Using the notations of [26] we consider a system of PDEs of the reaction-diffusion type 

By 2
m=DV y+f(y,A), (9) 

for a vector function y(x, t). The space coordinate x is one-, two-, or three-dimensionaL The scalar u(x, t) is one 
component of y; other components of y may stand for other channels for processing UQ. The symbol A represents 
all parameters in the reaction term f. Mostly, the matrix D is diagonal with the diffusion constants (> 0) as 
entries. Assume yS is a solution both time-invariant and space-invariant, 

Bysat = 0, Vys = o. 

Consequently, yS satisfies f(yS, A) = O. The state yS stands for a medium grey in image processing. The 
question is whether yS is stable. To answer this question we briefly outline the standard stability analysis. 
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Set y(x, t) =yS +d(x, t); this yields: 

For y close to yS (11dll small) we truncate, 

f(yS + d, A) =0 + fy (yS, A)d +O(lldW), 

after the linear term to obtain the linearized version of (9): 

(10) 

Substituting a separation ansatz hex, t) = el-'tw(x) into (10) leads to the eigenvalue problem: 

which is written: 
(11) 

To study spatial stationary patterns we assume temporal stability - that is, all eigenvalues of the Jacobian 
fy = fy(yS, A) have negative real parts. As outlined in Section 2, the diffusion problems we have in mind are 
best described by zero-flux boundary conditions 

(n· V)w =o. (12) 

(In problems with pattern formation, periodic boundary conditions also make sense.) For zero-flux boundary 
conditions (12) in IR3 

, solutions of (11) consist of eigenfunctions: 

(13) 

In the case of one space variable x E IR, the resulting ODE-eigenvalue problem for 0 ~ x ~ Lis: 

Dw" + (fy - JlI)w =0, w'(O) w'(L) 0, 

with eigenfunctions of the type w(x) Wk(X) = acoskx, and k = Ii, for 1= 0,1,2,3, ... In this context, k is 
called the wave number. The index I is the mode number. 

The following analysis is identical for 1D, 2D, or 3D problems. Because of the applications in visualization we 
concentrate on the 2D scenario in the rectangle 0 ~ Xl ~ L l , 0 ~ X2 ~ L 2 . Accordingly we have wave numbers 
kl' k2' and mode numbers 11 ,/2, Substituting (13) into (11), and using the notation [{2 ki + k~, we realize 
that eigenfunctions w(x) and eigenvalues Jl exist in case: 

det( _[{2D + fy - JlI) = O. (14) 

Note that this equation is invariant of the space dimension. The scalar Equation (14) defines an eigenvalue Jl for 
each mode (/1,/2), In case Re(Jl) > 0 the mode may be activated. The equation Jl 0 defines a hypersurface 1-£ 
in the parameter space that is formed by L l ,L 2, D, A. Each mode (11,/2) has its own hypersurface, 1-£ = 1-£1 1 h' 

5. SPECIAL CASE n 2 

In what follows, we simplify the analysis by assuming n =2 (the smallest dimension of interest). We use the 
notation 

~,) , B:= A 
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Then, the vanishing determinant in Equation (14) is simply the quadratic equation 

/-l2 /-l trace B +detB = 0, 

with solution 

/-l = ~ ( trace B ± J( trace B)2 - 4 det B) . (15) 

Since I{ is part of B, the eigenvalues /-l = /-lK depend on kl, k2, and thus on 11,/2. The Equation (15) is called 
dispersion relation. 

After these technical preparations we come back to the question, how the stability of the "no-pattern state" 
yS may get lost. Note that in the absence of diffusion, Dl = D2 = 0, system (9) reduces to the ODE system 
y = f(y, A). Recall that we assume all eigenvalues of A have negative real parts. This criterion for temporal 
stability in the n =2 setting is equivalent to the two requirements: 

trace A < 0, det A > O. (16) 

Assuming (16) means that any loss of stability of the no-pattern state yS must be due to diffusion. The steady 
state yS is unstable ("Turing unstable") if for some /{ 

for /-l from (15). The spatial instability can only happen when trace B > 0 or det B < o. Clearly, trace B > 0 
is not possible because trace B = trace A - /{2(Dl + D2), trace A < 0, and D1 + D2 > O. Thus, spatial 
instability of yS within the domain of temporal stability is equivalent to det B < 0, or to: 

Clearly, Jl E lR for det B < O. For further analysis, denote the left-hand side of inequality (17) as S s(I{2), 

s:= detA - /{2(D1a22 + D2all) + /{4DlD2. 

Then, for n = 2, the spatial instability of yS, /-l > 0, is equivalent to s < O. It remains to discuss the parabola 
s(/{2). This function takes its minimum for: 

(18) 

Equation (18) implies the necessary criterion for spatial instability (Dla22 + D2all) > O. In case S(/{!in) < 0, 
there are zeroes Rll R2 such that S(/{2) < 0 for the excitable band Rl < /{2 < R2. The zeroes are: 

The threshold values /{2 = R l , and /{2 = R2 correspond to bifurcation values because they are zeroes of the 
stability-defining function s. Since the wave numbers ki depend on the mode numbers Ii via ki = Ii Ii' each 

mode (1 1 ,/2) may have its own bifurcation. For instance, for 12 = 0, we obtain from Ir~ =Rl and Ir~ = R2 
1 1 

the two relations: 

Such a formula defines a relation among the parameters that fixes a hypersurface in the parameter space where 
stability of yS can get lost. The parameters include L l , L 2 , Dl, D 2 , and reaction-dependent parameters A on 
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which A is based. In particular those modes may be activated with f{ close to f{min, see (18). This defines for 
each pair (It, 12 ) a further hypersurface via the relation: 

2 ( 	 Ir I~ ) _ ~ (a22 au) (19)
1r L~ + L~ - 2 D2 + D1 . 

6. 	PATTERN FORMATION 

For parameters near the hypersurface (19), one or more modes in 

(20) 

have a positive Jl, and may be activated by perturbations in y$. In case L1, L2 are prescribed fixed values we 
must assume that s( f{!in) < 0 is small enough such that at least one of the discrete values of f{2 is inside the 
excitable band R1 < 1{2 < R2 . Note that the exponential growth in (20) for some Jl > 0 has been derived by 
a linear analysis. Thus its validity is local the exponential growth is restricted to a short-time period and to 
a small neighborhood of y$. The activated modes will eventually be dominat..~d and bounded by the nonlinear 
terms. Ultimately the nonlinearities and initial perturbations will decide which of the modes within the excitable 
band are activated. The resulting spatial stationary solution y is the "pattern." 

In two (or three) spatial dimensions the minimum size that allows some pattern to develop depends on two 
(or three) directions. The aspect ratio L1/L2 of the spatial domain determines the modes of which direction 
are activated first. On a narrow domain there may be a tendency that several modes in one direction are 
excited before the first mode in the other direction is activated. For example, for L1 <t: L2, several modes with 
11 = 0 and 12 = 1,2, ... may be activated before the first pattern with 11 ;::: 1 is excited. Nice consequences and 
interpretations of the predominance of either stripes or spots on animal tails and other animal coats are found 
in [21, 22]. 

7. 	NUMERICAL COMPUTATION 

For arbitrary n the homogeneous states y$ are the constant solutions y(x) of the boundary-value problem: 

o =D\72y + fey, A), (n . \7)y = O. 	 (21) 

The activated non-constant patterns bifurcate from y$. These bifurcations are of pitchfork type (generally 
without Z2-symmetry). The excitable band is the range of f{2 values such that Jl > O. The radii of the excitable 
band are the same for all dimensions of x. Hence we can calculate the hypersurfaces 1i in the parameter space 
for the relatively simple ODE boundary-value problem with x E IR: 

0= Dy" +f(y,A), y'(O) = y'(L) = O. 	 (22) 

The hypersurface 1i can be thought of being represented by bifurcation curves in suitable two-dimensional 
subspaces. The calculation of the bifurcation curves is based on the branching system, 

Dy" + fey, A) ) ( ;:~1~ )
Dh" + fy(y, A)h = 0 , h'(O) =0 	 (23)

( p' h'(L) 
h,(O) 1 

see [26, 27]. In Equation (23), p stands for any of the parameters, 

P E II,:= {L, D, A}. 
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The branching system (23) is solved for various values of a second parameter lEn by means of continuation 
methods; see [26, 27]. This allows to calculate the bifurcation curve, which is cross section of 1i with the 
(p'/)-parameter plane. For a multi-parameter problem, several such slices can be calculated to obtain an 
approximation of 1i. Based on these results the excitable band can be approximated; compare the example 
of Section 8. The obtained radii bound the excitable bands of the x E IR?, x E IR3 situation; no PDEs need 
be solved for the process of modelling the excitable band. In this way it is possible to efficiently design the 
parameters that match a specific application. 

8. EXAMPLE: GIERER-MEINHARDT REACTION 

A reaction of the Gierer-Meinhardt [28] type is given by 

2 

Ut = \72 
U +-u - bu 

v 

(24) 

We study this reaction-diffusion system on an interval 0 :'5 Xi :'5 Li for i = 1 (x E IR), or on a rectangle, 
i = 1,2 (x E IR2). To cut down the dimension of the parameter space n we choose b =0.5, c =0 throughout. 
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Figure 3. Bifurcation Curves 'HI in the (D, L) Plane, for 1= 1 (Bottom), ... , 1= 8 (Top). 
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Clearly, D1 = 1, D2 = D. For x E IR, the situation is analyzed numerically. The hypersurfaces 1t reduce to 
bifurcation curves in a (D, L )-plane. These curves have been calculated by solving the branching system that 
results from the boundary-value problem of the stationary situation Ut = Vt =0, see Equation (23), with p = D, 
'Y = L. The result is shown in Figure 3 (the calculated points are shown without interpolation). Each of the 
bifurcation curves corresponds to one mode number I; the lowest curve is that of 1 = 1. For small D, and for 
small values of L there will be no bifurcation with respect to D. The length L must exceed some minimum value 
in order to let bifurcation or pattern happen. 

To see how the results in Figure 3 can be used, assume L =40. Clearly, for D = 11 there is no J.L > O. For 
D = 12, the point (D,L) = (12,40) E II is "outside" 1t1 for 1 = 1, ... ,5 and 1 ~ 7. But the chosen (D,L) is 
"inside" 1t6. This means that the mode with mode number 1 = 6 can be activated with the chosen parameter 
combination. For the 2D-situation with L = L1 = L2 this numerically obtained result implies that the modes 
with 

62Ii + I~ ~ 
may be activated. The excitable band is certainly bounded by 

Interpolation based on the results of Figure 3 allows are to bound the excitable band more accurately. But since 
the example of Equation (24) is an n = 2 problem, the bounds can be calculated analytically. 

Figure 4. Processing a Square, u(t, x) for t = 5, L = 100. 
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9. 	IMAGE PROCESSING 

The Gierer-Meinhardt reaction of Equation (24) can be applied for image processing. Assume a square image 
as input, with light density u(x, 0), for 0 :::; Xl :::; L, 0 :::; X2 :::; L. We are free to assign an arbitrary length L to 
the initial image in order to have another free parameter to control the number of active modes. From Section 
5, the radii of the excitable band are 

(25) 

For c = 0, the hypersurface that characterizes [{~in for the stationary solution ya = (b- 1 , b- 2 ), with a11 = b, 

a22 = 1, is obtained from (18), 

For b 0.5, c = 0, we choose D = 12. This choice satisfies the requirements for the existence of an excitable 
band. The radii are Rl = 1/4, R2 = 1/6. In order to obtain a high resolution, many modes should be activated. 
In view of (25) this calls for large values of L. 

In Figure 4 for b = 0.5, c 0, D = 12, L 100, we show how an initial square u(x,O) has been processed. 
The 2D differential Equation (24) has been integrated for 0 < t :::; 5, using a discretization of 32 grid points 
in each direction, with time step ~t = 0.01. The figure shows the state u(x,5). The stabilization of corners 
becomes clearly visible. 

The analysis of Section 5 allows to reinvestigate the numerical results of Section 8. This reveals for L = 40 
from (25) the approximate inequality 

27 :::; [i + [~ :::; 40.5 . 

Up to symmetry the mode numbers (/1, [2) = (4,4), (3,5), (2,5), (1,6), (2,6) are inside the excitable band. The 
mode (3,5) is the closest to [{~in' As another example of applying Section 5, for (/1, [2) = (1,0) the analysis 
reveals the bounds 21T :::; L :::; V61T. Note that these analytical results are shown in Figure 3 as the result of the 
numerical computation. 

SUMMARY OF THIS PAPER 

We have addressed the question of how to design the parameters D, L, A of a reaction-diffusion equation. 
For each mode number, we are able to approximate the hypersurface 1i in the parameter space that bounds the 
domain of parameter combinations for which this mode can be activated. Preliminary numerical results suggest 
that the approach can be used for computerized vision. 
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