
SELF SYNCHRONIZING CLOCKS FOR REAL TIME

SYSTEMS

Mohamed Benmaiza* and Murat Tayli t

College ofComputer and Information Sciences, King Saud University
p. O. Box 51178, Riyadh 11543, Saudi Arabia

..:JIJ 1.aJI ~~~ OJ : l.t..A ~j.l1 .:...IJI~ ~Ij:j .:...~l>I";' 4. r~ ~11I1 ~)I ~..JJ.111 ~l

. . JI~ 't j. -'::''I...i.J I 'Yu . ~ .. 1 ~L I. L.!. , ~ - .1 I •. !._. ~L
V4u: t.j ~~ ~~" ~~jOV4Y. .~" ~ ~. •

J1.aJ I" ~~I J,:..IJ JI~ t.ji ~ J..>i11 i>~l"" ~ .J~1..i ,~1iI1 Lai .U"JL4 J".,1.:Io. ~~~I

•.b.iQ .:...IJI.aJ1 OJ J! [~ ~j.l1 ~ &~I .>:' ~,;"J.I FI ~i ~ ~ .~ J".,1.:Io. ~ ~).I

. J..I.aJ I • I. - - . . 1 t..a..........lL ~I' ..- -. i L ~< _. "1 ~LA_II • • 'I - I.::. • I..i
~ _ U. ~~J-oOV4Y. •• ~~U ~ ~ V4y \,",U.

~ ..:JIJI.aJ1 ~~~ UoLuo ~J ~.b.iQ ~ .:...IJI.aJ1 ~I~ r~ t:-,.r.J1 ..:J~l>!.,.:J1

ill ~jJll ~I ~jJl F ~Ij.:i.ll y,..,.b:ill ~ .~~~ Jl &Jlc. t.jJ';; lA.o ~~ ~j

.u" ...:JIJI.aJ1 ~"OJ - ~Iji.o~" ..:.J"JI ~~ - J~"11 ~ j.;.'I.:;~.".b ~ La.j"1 ~i

~" OJ ~~I J! .J~ .:...IJI.aJ1 ~I,;:;J t:-~ ..:J~.j)";'~" ~~I IlA rl,j

~ t.jjJl" '[lfi1jJl ~I,;:;JI] ~ &~~~~~ (.;.ul ~l>!.,.:J1 ~l ..,1.:Io.I" ~i ~ ..:JIJI.aJ1

..:JIJI.uJ1 ~~~" ,~~I JIJ.A.lJ ~4 JI~ t.ji.J.;-b ~~ lfil.j ~I~ 4J)l;. ~

~I ~4J1 ~! .(~~WI ..:J¥ J:") ..:J"1L.u)1 JJL::i ~:J5..-.b..J Jt4 r~4 IlA ~..J .~"11

~ 1.-:.1.1,j 4.i.K:; J,Ai - .<... ~ ..:JIJI.aJ1 - 1-- .:...L..o' I ' -.: .. L-:. WlI4..U1S:.c:.1 AA u.cuJ1 b ',.1"t-'::!"":'!J ~ _. V4Y _'.).Jt?~r _ _ • ...r- _

~~~J~4 ~j ~ I~j ~y'.u".~ ~,,~1 &~j t.ji J! t~)1 ~J i>lh;.'Y1 

~,,~¥I &~'YI ~ jS..:iJ-oO ~ ~i 'F""t.......;.:; ~~I~ t.jlll U.JI ~~!-t 
,VLSIJI ty~ 

e. mail: *benmaiza@ccis.ksu.edu.sa 
tmurat@acm.org 

April 1999 The Arabian Journal/or Science and Engineering, Volume 24, Number lB. 103 

mailto:tmurat@acm.org
http:JIJ.A.lJ
http:Ij.:i.ll
http:t:-,.r.J1


Mohamed Benmaiza and Murat Tayli 

ABSTRACT 

The two functions achieved by clock synchronization algorithms are clock precision 
and clock accuracy. The former keeps the drift between any two clocks in a given set of 
clocks within defined limits; the latter maintains the drift between a given clock and a 
reference clock within defined limits. While distributed non real-time systems need only 
clock precision for their correct operation, clock accuracy is an absolute must for distributed 
real-time systems. Many of the existing software-based clock synchronization algorithms 
implement only clock precision, treating clock accuracy as a secondary problem, often 
solved at a high cost. As modern distributed real-time systems are emerging more and 
more, it becomes necessary to devise an approach that deals with the precision and accuracy 
issues equally and in an integrated way. The work presented in this paper consisted in the 
design and implementation of a software-based clock synchronization algorithm, which 
achieves at the same time clock accuracy and clock precision. The proposed algorithm is 
built upon a new mechanism, referred to as self synchronization, through which a clock 
can continuously synchronize itself relative to a reference clock, independently of the 
others and with minimal message exchange. An important aspect of this mechanism is to 
permit the implementation of a very low cost, fault-tolerant algorithm without resorting to 
any specific hardware. We finally show that, with proper architectural support, the level 
of attainable accuracy can match hardware-based solutions. 

Index Terms: 	 clock synchronization algorithm, clock accuracy, clock precision, 
distributed real-time systems. 

104 The Arabian Journalfor Science and Engineering. Volume 24. Number lB. 	 April 1999 



Mohamed Benmaiza and Murat Tayli 

SELF SYNCHRONIZING CLOCKS FOR HARD REAL TIME SYSTEMS 


1. INTRODUCTION 

Since the pioneering work by L. Lamport on event ordering in distributed systems [1], clock synchronization has been 
widely recognized as a fundamental issue for the correct operation of distributed systems: global synchronization, global 
update and recovery problems, maintenance of a global reference time for real-time systems, to cite a few, cannot be 
properly handled if clocks at different sites are not closely synchronized. As the abundant literature reveals [2-12], quite 
intensive research has been conducted on the subject since 1978, and many solutions, distributed or centralized, software 
and/or hardware-based have been proposed. 

Clock synchronization encompasses two distinct issues: the clock precision within pre defined limits, and the clock 
accuracy relative to a known real time referential [4, 5]. In the general context ofdistributed systems, the clock synchronization 
problem has as objective the approximation of the global reference time, in presence of arbitrary communication delays and 
clock drifts. Estimate of the reference time is then used to build clock precision within defined limits. However, these 
approaches reveal to be insufficient for real time systems that must rely on clock accuracy for their correct operation. 
An important point to note is that clock accuracy cannot be achieved using only estimates of the reference time; it needs 
exact knowledge of the reference time. 

Software-based clock synchronization algorithms implement, in general, techniques to achieve clock precision, and tackle 
the clock accuracy issue as an additional problem that can be solved at some extra cost, whenever required [4, 6]. Hardware 
solutions providing clock accuracy already exist, but are expensive [4]. We present in this paper a software-based alternative 
that builds clock accuracy and avoids the replication of hardware equipment that induces significant problems at system 
integration stage. As clock accuracy is a stronger condition than clock precision (in the sense that the accuracy of a set of 
clocks also involves their precision), this solution would de facto guarantee clock precision. The proposed approach assumes 
arbitrary clock drift rates as in other algorithms, but differs from them by relying on predictable communication delays. 
Although, the latter assumption seems restrictive, it is however a reasonable tenet for real time distributed systems for 
which the predictability of basic system services, including that of communication services, is an absolute must [13, 16]. 

A generic characteristic of software-based solutions is their reliance on collective decision making process to synchronize 
their clocks. A community of sites interact through heavy message exchanges to form a consensus about a common time 
base. Major drawbacks of this cooperative operation are: (a) a non-negligible increase in message traffic and inter-process 
communication costs; (b) an added inaccuracy resulting from clock reading errors at the different sites; and (c) the tendency 
to synchronize, or rather to lock, to the fastest clock in the community, drifting away significantly from the real time. 

Piggybacking techniques, as suggested in [5], can be efficiently used to minimize the number of exchanged messages and 
reduce communication costs. The reliance on message exchanges for clock synchronization purpose is inevitably a source 
of clock reading errors because of the uncertainties in the transfer and processing times of these messages. This type of 
errors can be contained through a tight control of unpredictability factors induced by the communication subsystem and the 
operating system. However, an ultimate solution to issues (a) and (b), would consist in eliminating message exchanges for 
clock synchronization purposes altogether. Finally, locking to the fastest clock can be avoided by referring to an absolute 
source of time, rather than deriving it using some quorum or consensus protocols. 

The solution proposed in this paper claims to address the problems stated above in an integrated way, using a scenario 
whereby each site in the system would synchronize itself with respect to a reference time source, and maintain its 
synchronization without having recourse to specific message exchanges. Because of the way it operates, the proposed 
solution is referred to as self-synchronizing clocks. The advantages of such an approach are manifold: 

• very low cost as the number of messages exchanged is very low; 
• fault-tolerance, because each site synchronizes itself in an isolated way and the reference site can be replicated; and 
• applicability to both real-time and non real-time systems. 

Last but not least, the proposed solution also claims that, with the proper architectural support, it is possible to achieve 
clock accuracy within the same order of magnitude as hardware-based solutions. 

April 1999 The Arabian Journal/or Science and Engineering. Volume 24. Number lB. 105 



Mohamed Benmaiza and Murat Tayli 

How the proposed clock synchronization algorithm precisely works is explained in Sections 3 and 4. Section 2 restates 
more formally the clock synchronization problem and gives basic definitions. Section 5 presents implementation problems 
in general, while Section 6 discusses the integration of the proposed algorithm in the kernel of the Real Time Distributed 
Operating System (RTDOS) [16]. Finally, the paper concludes by a summary of the main features and strong points of the 
self-synchronizing clocks approach. 

2. PROBLEM STATEMENT 

Clock synchronization is seen as a set of techniques (implemented by specific algorithms) to create and maintain a 
consistent global time base for a set of, possibly faulty, interconnected sites in a distributed system. Many clock synchronization 
techniques based on message exchanges have been developed. The clock self-synchronization technique presented in this 
paper differs from others in that it relies on minimal message exchange. Foundations ofour approach and necessary definitions 
are introduced in this and the following sections. 

Logical Clock 

Each site Sj has knowledge of the global time through a local logical clock denoted Cj • Cj can be defined as a monotonic, 
increasing function where Cj(t) is the reading of the value of logical clock Cj at real time t. It is clear that the value of Cj is 
the only observable time at the site Sj. 

Physical Clock 

A given site Sj is equipped with a physical (hardware) clock PCj through which the logical clock Cj is derived and 
maintained by the clock synchronization process. Usually, the granularity of Cj is much larger than the granularity of PCj • 

Since a physical clock is never accurate, its drift from a reference real time clock is non-null, implying that the drift rate of 
the derived logical clock is also non-null. 

Clock Rate 

The rate p of a physical or logical clock c, over an interval of real time [tl' t 2], is defined as: 

A perfect clock c is such that c (t) =t, 'tI t, giving p =1 second/second, 'tI t, if the time unit is the second. 

Drift Rate 

The drift rate 0 of a clock c is the number of time units (or clock ticks) by which c deviates in one unit of real time. It can 
be formally defined as 0= II-pI. A non faulty clock c is such that o<d, for a given d. The limit d can be reasonably taken as 
1 »d 2 0, which means that a non-faulty clock is considered as drifting by a small fraction of time unit per real time unit. 

Oock Reading Error 

Clock synchronization is usually based on message exchanges. A given site Sj has knowledge of the time of a given site 
Sj through a message 911:, carrying the clock value of the site Sj' In order to "read" correctly j's clock, site Sj must account for 
transmission and processing times of the message 911:. Since there are variations in message transmission and processing 
times at different sites, estimates for successive readings of site S/s clock at site Sj vary as well. These alterations in clock 
reading times are called clock reading errors or reading errors in short. 

Logical Clock Precision 

For a defined period of real time T, a collection of n sites are said to have their logical clocks precise within the limit E, if 

'tItE T, 'tIi,jE {1,2, ... ,n}, IC/t)-C/t)ISE. 

106 The Arabian Journal for Science and Engineering, Volume 24. Number 1B. April 1999 



Mohamed Benmaiza and Murat Tayli 

A major objective of clock synchronization algorithms is to maintain logical clock precision within specified values of E. 

This type of clock synchronization, called internal synchronization [4], is usually implemented by having all concerned 
sites periodically exchange messages containing some sort of clock information. The frequency of clock synchronization 
messages is defined according to a re-synchronization period 1t. Every 1t, a given site Si adjusts its logical clock according 
to an agreed upon synchronization protocol, after the reception of the messages carrying clock information from all other 
sites. The synchronization protocol must be defined so that clocks can only be set forward in order to avoid having negative 
time intervals [4 - 6]. The consequences of this are that clocks tend to be adjusted to the fastest clock in the system on one 
hand, and on the other, global time tends to drift away importantly from the real time. This fact is quite acceptable if global 
time is solely used for event ordering. Yet, it may not be appropriate for real time systems that need to refer to an absolute 
time referential. 

Mechanisms for internal clock synchronization fall in two categories: instantaneous re-synchronization and continuous 
re-synchronization. In the first case the correction is immediately applied every re-synchronization period; and in the latter, 
a clock is corrected by spreading the adjustment over the next re-synchronization period. Such a continuous adjustment is 
implemented through continuous clock rate correction [4]. 

Clock Accuracy 

Call RTC a reference source of real time t (Temps Atomique International provider for example). A logical clock Ci is said 
to be accurate relatively to a real time clock RTC if 

where 9 is an arbitrarily small positive value. 

Clock accuracy is achieved by what is known as external synchronization which builps, at a given site Si' a view of a 
reference real time clock [4]. Usually, such mechanisms come to derive the real time from the local logical clock, using 
specific mapping functions. As a consequence, the accuracy of a given logical clock depends highly on its precision. 

Note that continuous clock correction applied to a logical clock tends in fact to put an upper bound on the drift rate of a 
logical clock, relative to other logical clocks. However, it does not prevent the drift from a reference real time clock [5]. 
Ifwe were to ensure clock accuracy, then it becomes necessary to design mechanisms that allow to bound the absolute value 
of any logical clock, relative to a known source of real time. The use of continuous clock correction to adjust the rate of a 
logical clock, with respect to the rate of a reference real time clock, would help bound the absolute value of a logical clock. 

As stressed in the introduction, clock accuracy is a stronger condition than precision. The following theorem announces 
formally this condition. 

Theorem 1 

For a set of n sites in a distributed system 

clock accuracy ~ clock precision. 

Proof 

Take n sites S), S2'" "Sn. with accurate logical clock, i.e. for which 

"dt, "diE [l,n], ICi(t)-tIS9. 

This involves that 

showing that the clocks are precise within 29. 
o 

April 1999 The Arabian Journal for Science and Engineering. Volume 24. Number lB. 107 



Mohamed Benmaiza and Murat rayli 

3. SELF SYNCHRONIZATION PROCESS 

A physical clock is built from an oscillating quartz crystal, and ticks at a given rate with a known accuracy. A logical clock 
is usually implemented as a time counter, derived from a physical clock by periodical increments, as illustrated in Figure 1. 
The counting period" depends on the desired time granularity of the logical clock. 

The rate of a physical clock PC relative to the real time t, p=dPC(t)/dt, defines the accuracy of the physical clock, which 
in turn defines the accuracy of the derived logical clock. The equality dPC(t)/dt =1 defines a perfect physical clock, 
dPC(t)/dt> 1 a fast physical clock, and dPC(t)/dt < 1 a slow physical clock. It is interesting to note that, if a site knows 
precisely the drift rate of its logical clock, relative to a real time reference, over a given time interval 't, then it can correct its 
logical clock C without resorting to message exchanges. 

For a given logical clock C, with a drift rate 0, the self synchronization will be performed every 1t = 110, 1t defining the 
period where C is exactly one unit fast or slow relative to the real time clock. The correction algorithm will simply consist 
in dropping from, or adding to, C one extra unit, depending on whether C is fast or slow (Figure 1). 

Note that the correction period 1t is a discrete value, yet its computation can generate a fractional part that will be rounded 
to the closest integer. The inevitable inaccuracy introduced by the rounding operation has also to be compensated for. It is 
crucial that this correction, too, should set a logical clock only forward in order to avoid negative intervals. Therefore, the 
rounding operation should always perpetrate a slow down of a logical clock, so that the readjustment would consist of 
setting the clock forward by a number of units corresponding to the possible deviation. Subsequently, rounding of 1t is 
subject to the following rules: 

• if a logical clock is fast (p >1), round down 1t so that we "drop" more frequently 1 unit, leading to a slow clock over the 
period't, 

• if the clock is slow (p <1), round up 1t so that we "add" less frequently 1 unit, leading to a slow clock over the period 'to 

Let us now estimate the deviation introduced by the rounding process. Call1t' the rounded value of 1t (l > 11t -1t' I~0). 

Lemma 1 

The maximal deviation of a logical clock induced by the rounding process is equal to 1 time unit every 1t'2 time units. 

Proof 

The rounding process introduces an inaccuracy of 11t -1t'I/1t over every period 1t' and so a maximal inaccuracy of 1I1t units 
over the period 1t'. Consequently, the deviation of a logical clock is less or equal than 1 time unit every 1t'2 time units. 
The maximal deviation is then as stated in Lemma 1. 
o 

Physical Clock ncks 
! 
I 
I 
I 
I 

t 

! 
I 

I 
I 
+ 

i 

I 
I 
I 
t 

I 
I 
t 

I 
I 

I 
+ 

Logical Clock 
Ticks 

+1 
I 

+1 
I 
1+1 

I 
+1 

I 
+1 

"I 

i+l 
! 
! 

.. 1t 
I 

.t 

I 
i 
i 

t 
Clock Synchronisation I I 

±.1 ±.1 

• 
time 

Figure 1. Counting and synchronization process. 

108 The Arabian Journal for Science and Engineering, Volume 24, Number lB. April 1999 



Mohamed Benmaiza and Murat Tayli 

Clock Readjustment 

Lemma 1 involves that a logical clock must be readjusted by 1 time unit every X 
/2 time units to compensate for the effect 

of the rounding process. Let us callx'2 the readjustment period, and name it R. R defines, indeed, the time interval over 
which one extra unit should be added to the clock. Ifx' is large, as expected, then the inaccuracy will be significantly small, 
and the readjustment period very long. To fix the ideas about the importance of the rounding error and the readjustment 
period, let us consider a fast logical clock that deviates by +1 milliseconds (ms) every 10000.9ms. The self-synchronization 
period x = 10000.9 ms will be rounded to x'=l0000 ms, causing an inaccuracy of 1 ms every 108 ms == 28 hours. 

Theorem 2 

Given the drift rate p of a logical clock CJ and assuming that CJ has been properly initialized to some reference real time, 
the application of self-synchronization process (±1 unit) every period x' and readjustment process every period X/2 guarantees 
the accuracy of the clock CJ• 

Proof 

The application of self-synchronization involves that (1) dCj(t)/dt== 1 every x' and the application of readjustment involves 
that (2) dCj(t)/dt= 1 every X 

/2
• (1) and (2) involve that dCj(t)/dt == 1 Vt which guarantees the accuracy of Cj • 

Cl 

The self-synchronizing clocks approach does not necessarily assume the accessibility to a unique Reference Time Provider 
from every site in a distributed system. In fact, any site can act as an alternate Reference Time Provider, with a known 
accuracy that depends on the particular topology adopted. For example, Figure 2depicts a possible hierarchy where the root 
of the tree at levelois the Universal Time Provider. Level j (i >0) nodes are "rooted" to one node at level j _ 1 that is also their 
Reference Time Provider. System architectures that accommodate mUltiple Reference TIme Providers do not only simplify 
intricate problems that may arise during dynamic scaling of a distributed system, but they also provide high fault-tolerance 
via the replication of such providers across the system. 

4. SELF SYNCHRONIZING CLOCKS ALGORITHM 

Self synchronizing clocks algorithm consists of two distinct operational phases: (1) an initial calibration phase during 
which a node joining the system, at the start up or after a crash, adjusts its logical clock to a referential time and computes 
its drift; (2) a self synchronization phase during which the algorithm tries to keep different sites synchronized within 
defined limits. 

The algorithm assumes that every concerned site in the system has access to a known provider of real time, RTP. However, 
the RTP can be any "trusted" node in the network: a node with a known deviation from Universal Time. A RTP node can be 
pre-calibrated (possibly manually) to serve as a time basis for the rest of the network nodes in the calibration process as 
explained below. Note that the RTP node uses the same self-synchronization algorithm as the other nodes to keep its clock 
as close as possible to Universal Time. 

The calibration phase serves to determine the drift rate of site Sj'S logical clock Ci , relative to RTP over a given period t. 
The self-synchronization period x' and the readjustment period R are then derived from the drift rate. Based on the periods 
x' and R, clock correction procedure is applied according to Theorem 2 to build and maintain clock synchronization. 

The calibration operation involyes message exchanges between the site to calibrate and the source of real time. The 
necessary condition for the calibration to be performed correctly and drift rate to be determined precisely is to keep the 
reading error close to O. This involves that factors contributing to the reading error, such as transmission delays, and 
message processing times, must be known precisely. Meeting the above condition is, to a large extent, a matter of 
implementation and will be discussed in Section 5. It is interesting to note that message exchanges required by the proposed 
approach take place only during the calibration phase. Therefore, in order to minimize reading errors, usage of "heavy" 
techniques may be considered at this stage, without major drawbacks on the cost or performance of the algorithm. 

In the following, we adopt the convention to represent the real time by small letters (t, for example) and the logical time 
by dashed small letters (f, for example). Let t be a period of real time known to every site involved in clock synchronization 

/ / 

C
and t j , the value of t as seen by a site Sj. Clearly, t j may be greater, equal, or less than t depending on whether logical clock 

j is fast, exact, or slow relative to RTP. The two phases of the algorithm are given below. 

April 1999 The Arabian Journal/or Science and Engineering. Volume 24. Number lB. 109 



Mohamed Benmaiza and Murat Tayli 

Calibration phase 

1. 	 Get the initial time to from closest RTP 

2. 	 Compute t~ =to + trte,i' where trte,; represents communication and processing overheads for the site Sj 

3. 	 Initialize logical clock Cj to 1'0' and start the counting process to increment Cj by one unit every 11 ticks of site S/s 
physical clock 

4. 	 After 't:, get time tl from RTP and compute 1'1 =tl + trte,j 

5. 	 Compute clock rate p =1(1'] - t'o)/(tl - to)1 for the interval 't: =It'l - t'ol 

6. 	 Derive the drift rate 0 =11- P I 

7. 	 Determine the self synchronization period x' = round( 1/0) 

8. Determine the readjustment period R =X'2 

end phase 

Self synchronization phase 

Every 11 do 1* counting period *1 

begin 

if x' units have elapsed 1* self synchronization period *1 then 

if p > 11* logical clock Cj is fast *1 then 


do nothing; 1* forget one tick *1 


else if p < 1 1* logical clock is slow *1 then 


C j =Cj +2; 1* catch up the time *1 


else do nothing 1* p =1, perfect clock *1 


else Cj =Cj +1; 1* normal clock update *1 


end; 


Every R units 1* readjustment period *1 do 


Cj =Cj +1; 

end phase 

Universal Time 
Provider 
__ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ 

+1-1 units 

+1-1 units 

_ __ _ _ _ _ 

+/-8 units +1-8 units 

Figure 2. Time Deviation in a hierarchical tree-structure. 

110 The Arabian Journal for Science and Engineering, Volume 24. Number 1B. April 1999 

I..evel 0 

+/- 4 units 
Levell 

Level 2 



Mohamed Benmaiza and Murat Tayli 

Note that the algorithm assumes the unifonnity of time units between RTP and a given site Sj. If this is not the case, then 
a mapping function can be applied to align all units in a consistent way. It is also implicitly assumed that drift rates of 
various physical clocks are detenninistic and stable within defined operational conditions (especially range oftemperatures 
within which clock operation is stable). If a drift rate is not stable, the physical clock is considered as faulty. However, re­
calibration at defined intervals can be envisaged as a possible way to compute again the drift rate and keep a tighter clock 
synchronization, when clocks with unstable drift rates are considered to be non faulty. 

S. GENERAL IMPLEMENTATION ISSUES 

The Self-Synchronizing Clocks algorithm, presented in this paper, is largely independent from the architecture of the 
experimental RTDOS platfonn. Its implementation does not require the provision of special hardware or software components. 
As such, it can be adopted for a wide range of distributed systems, extending from large heterogeneous general purpose 
systems to embedded real time systems, provided they rely on predictable communication delays and handle properly 
implementation pitfalls. Data networks implementing point to point communication (i.e. through circuit switching as in 
ISDN [17]) are appropriate platfonns to build predictable communication services, and hence have the potential to allow an 
efficient implementation of the proposed approach. 

There are several architectural constraints that may breach proper implementation of the clock synchronization process in 
a distributed system. It is to note that, most of these constraints are not just proper to the proposed approach, but they are 
also affiliated with all software based solutions that aim high clock precision. Correct perfonnance of Self-Synchronizing 
Clocks algorithm rests on the dependability of two time-critical factors, both controlled by the underlying system: the 
accuracy of the reference time acquired for clock initialization and calibration activities, and the timeliness of counting and 
clock synchronization operations. It is also implicitly assumed that, concurrent system activities, if any, would not hinder 
significantly the timing of the overall process. 

Given the cost and physical constraints, it is unlikely that every site, in a distributed system, can be equipped with a local 
provider of the reference time. Instead, a few servers scattered over the network will be in charge to provide the Reference 
Time Service. As the accuracy and the precision of the local time depend closely on the quality of the Reference Time 
Service, it is vital to analyze and evaluate major factors involved in the time acquisition process. Figure 3 sketches the 
scenario between a client process and a Reference Time Server. Major events affecting the course of actions at both sites are 
depicted in their chronological sequence mapped onto an unscaled time axis. It is to note that, local time at the client site 
will be set to the time sent by the server, offset by the acquisition cost 0e' which corresponds to the time elapsed between the 
acquisition of the reference time by the server (Tread) and its delivery to the requesting process (Tpost)' In many cases, the cost 
oflocal processing may also be important to consider. The overall cost can then be defined as the quantity 0t' corresponding 
to the interval TUpdate - Tread' It is composed of communication costs (t2), process dispatching delays (d2), and computation 
overheads (P2 and P3)' The reading error corresponds, therefore, to the variations of the overall acquisition cost 0,. 

In many systems, the acquisition of the reference time by the time server (Tread) is not an event that can be observed from 
client sites. Therefore, a direct measure of time acquisition cost 0, is not possible. A number of implementations resort then 
to the indirect estimation of 0" such as measuring the time elapsed from the initiation of the request to the receipt of the 
reply (Tpost - Trequest)' and guessing the moment when Tread could have happened. Yet, this approach may not be appropriate 
for real time systems, as the nature of system components involved in the process prevents a detenninistic evaluation of 0,. 

It is to note that, IPC operations constitute a first source of reading errors. The use of shared communication media and the 
involvement of intennediary communication agents when server and client sites are not directly connected are among 
major uncertainty factors. Moreover, the cost and the occurrence of process dispatching activities cannot be anticipated and 
controlled readily. Finally, client and server processes may be interrupted during the processing of the service request at 
both sites. Consequently, any architectural support capable of removing, if not containing, these unpredictability factors 
constitutes a major asset to achieve higher accuracy. 

Proper functioning of the clock synchronization algorithm might also be threatened if the implementation disregards the 
asynchronous nature of the ticking process of a physical clock and the counting process of a logical clock. In other words, 
clocks synchronization algorithm assumes that: (a) logical clocks are instantaneously incremented following the expiration 
of the interval counted in physical clock ticks; (b) the interval counter of the physical clock is regenerated independently 
from the handling of the logical clock. Given the chain of physical and logical events that may occur in a system, the 
probability of deferring the activation of the process managing logical clocks, by one or more physical clock ticks, is not 

April 1999 The Arabian Journalfor Science and Engineering. Volume 24. Number 18. 111 



Mohamed Benmaiza and Murat Tayli 

equal to zero. The counting process should then compensate such delays in order to avoid their repercussion on the next 
counting period. 

6. RTDOS IMPLEMENTATION OF SELF SYNCHRONIZING CLOCKS 

The Real Time Distributed Operating System - RTDOS project [16] has been initiated to investigate, and to experiment 
with design alternatives and implementation techniques, leading to a reliable and predictable distributed platform for hard 
real time applications. Clock synchronization process is implemented as part of RTDOS kernel. Accurate global time is 
available to all RTDOS processes to address the needs of real time applications, as well as to support the implementation of 
system functions that enforce system reliability and fault tolerance. 

This section starts by introducing major features that shaped the overall implementation and contributed to the 
accomplishment of a level of accuracy within the same order of magnitude as hardware-based solutions. Implementation 
decisions, proper to RTDOS platform, are presented under the title RTDOS Clock Synchronization Process. The realization 
of counting, synchronization and readjustment operations is intentionally omitted, as their implementation is trivial when 
concerns expressed in Section 5 are properly addressed. The design and implementation of RTDOS Reference Time Service 
is particularly emphasized, as the accuracy of the overall process depends closely on the quality of this service. 

(Client Process] [Reference Time Sen'er 

request reference time L....-...--....-......-.......-.....-......-- ........_._ ... _ ........................ _.... _ .. 
reception of the request 

activation of 

Time Server 

acquisition of the time 

pz
send reply 

Iz 
0'. 

reception of the reply ..................................................._.......................................·•..•.......... _....••..•....·.... ·····t....·•..·..........··•....·....·•...............................·..·..........•......·......·....·....·.. ·......·........·....1 

crt 

dz 
activation 

..........._................................._ ...... _............_............................................. 1..·..·..·-·..........·..·....·......·..·....·....·....·........·....·....·......•·..·....·..·........·....·..·
.._·....·.... •....·1 Tpottof client process 

P3 

update of local time Tupdat. 

Figure 3. Analysis oftime acquisition process. 

112 The Arabian Journal/or Science and Engineering. Volume 24, Number lB. April 1999 



Mohamed Benmaiza and Murat Tayli 

Overview of RTDOS Architecture 

RTDOS is designed to run on transputer networks organized as interconnected loops, or domains (Figure 4). Connecting 
two of the four serial communication links of a transputer to neighboring machines forms a given domain. The resulting bi­
directional loop is dedicated to the usage of a limited number of kernel functions that communicate via an unreliable 
datagram service. The basic RTDOS configuration is a single loop referred to as the base domain. This base domain can be 
expanded to multi-domain configurations by connecting additional loops, via dedicated transputers called Domain Managers. 
RTDOS architecture does not impose a priori limits on the number of domains forming a system, nor the number of 
transputers in a given domain. RTDOS kernel, replicated in each node, provides necessary transparency to hide the underlying 
topology from the rest of the system. Functional partitioning of the system is left to the discretion of the projected application. 
Hardware and software components of a given system are configured during system generation phase, taking into account 
resource requirements, performance and reliability constraints of targeted applications. 

RTDOS adopted the synchronous CSP communication model [3] as the basis of its inter-process communication (IPC) 
services. Furthermore, RTDOS-IPC has been extended to encompass N: 1 relationship, a prerequisite to implement client­
server paradigm for dynamically changing populations of processes. RTDOS processes, distributed within the system, 
communicate over non-shared, bi-directional, unbuffered, half duplex channels that provide total location transparency. 
RTDOS channels are mapped onto memory words when processes are located on the .same transputer, and on physical 
circuits established with transputer links, when they are placed at different sites. A reliable connection service [15] establishes 
point-to-point connections, using two remaining transputer links that are wired either to programmable switches, or to fixed 
partners (Figure 4). Experimental results showed that, a single connection server was able to establish over 600 connections 
per ~econd, with a guaranteed setup time less than 4 ms [14]. In general, RTDOS channels are mapped onto physical 
circuits, on request, and for the duration of a single exchange. However, time critical services, such as the Reference TIme 
Service, may exceptionally settle long lived circuits, and avoid circuits reinstatement overheads for each exchange. 

RTDOS Clock Synchronization Process 

RTDOS implementation adapted the basic synchronization algorithm to meet its design objectives and to cope with its 
operational requirements. First, calibration of physical clocks has been identified as an off-line activity, to be undertaken 

---~----............. 
Domain .......... 

.... 

DomainB 

: Reference 
j Time Server 

! 
f Control Loop---1-
/ 

----­~ 
f 

,,/' Data Links.' ........ 
 Control Links 
DM Domain Manager 

Programmable Switch 

Figure 4. RTDOS architecture. 

April 1999 The Arabian Journal/or Science and Engineering, Volume 24, Number lB. 113 



Mohamed Benmaiza and Murat Tayli 

prior to the integration of transputers in a system. Secondly, a time auditing function has been introduced to monitor the 
performance of the time keeping process and to enforce the reliability. 

The decision to calibrate physical clocks off-line stems from both physical and engineering considerations. Transputer 
hardware does not include internal physical clocks. Therefore, calibration activity concerns physical clocks rather then the 
transputer hardware. In many instances, a single external clock is used to drive a group of transputers. It is obvious that in 
such a context, calibration of individual transputer systems is a meaningless and redundant operation. Moreover, transputers 
cannot be physically inserted into, or removed from operational platforms. Thus, physical components of a given system 
must be integrated and tested in advance. It is to note that, hardware configuration of transputer based systems is static, but 
their topology may be dynamic. 

During system start-up, RTDOS kernel resorts to a limited calibration process to assert the validity of the configuration 
data. System initialization proceeds with the alignment of the local time to the reference time and by the launch of two time­
keeping processes: the Time Manager and the Time Auditor. The Time Manager, in charge of handling local logical clocks, 
performs the counting and self-synchronization activities specified by the basic algorithm. The Time Auditor monitors the 
performance of both physical and logical clocks. It first controls proper functioning of the physical clock driving the 
transputer, by performing a perpetual calibration. The drift rate of the clock is measured over a long period, and the findings 
are checked versus configuration data. A given system is declared faulty, when sizable variations in the drift rate are 
detected. As a concurrent activity, the Time Auditor also tracks possible shifts of the logical clock Ci , which may result from 
unaccounted system overheads interfering with counting periods. Deviations from the reference time, if any, are gradually 
offset by tuning the readjustment period R. 

Organization of the Reference Time Service 

Self-synchronizing clocks process relies on the Reference Time Service to initialize logical clocks, and to calibrate and 
track the performance of physical clocks within the system. The Reference Time Service can be implemented using a 
number of Reference Time Servers, organized in any appropriate structure such as the hierarchical tree structure presented 
in Section 3. It is the quality of this service that determines the accuracy of the overall process. Current implementation of 
RTDOS Reference Time Service guarantees an accuracy level of 10 J..ls by capitalizing on the possibility to observe remote 
events with accuracy, and the ability to confine reading errors. In comparison, note that the reading error has been evaluated 
to be 9 J..ls in the hardware based clock synchronization mechanism presented in [4] which involves that clock accuracy in 
this case can be 9 J..ls at best. This shows that our approach allows indeed to reach a level of accuracy within the same order 
of magnitude as hardware-based solutions. 

RTDOS processes distributed within the system can coordinate their actions by means of synchronous IPC services. 
Figure 5 presents the protocol followed by a Reference Time Server and a client process for the acquisition of the 
reference time. First, Reference Time Server and client process establish a connection using the pair of primitives: 
ConnectTo(TimeServer) and AcceptConnection(Client). The opened connection will be exclusively used during the time 
acquisition operation and explicitly closed by the two parties. To reduce reading errors, client and server processes must act 
in a totally synchronized way during the time acquisition operation. For this purpose, an initial synchronization is achieved 
by the pair Write(Synch) - Read(Synch). We recall that in CSP-based communication, read and write operation are totally 
synchronous. After this synchronization point, time acquisition operation can be safely engaged (Write(Reference Time)­
Read(Reference Time) pair). 

As stated in Section 5, reading errors result mainly from uncertainties introduced by IPC services, process dispatching 
and unaccounted computation overheads. The design ofRTDOS-IPC eliminates this major source of uncertainty, by providing 
predictable services. RTDOS-IPC communication costs tl and t2 (Figure 3) are deterministic, since data is directly transferred 
from the source to the destination address space, over pre allocated media and communication hardware, without the 
interference of other concurrent activities. The second uncertainty factor, variations in processing times, is discarded by 
running the time service protocol at the highest priority. Client and server processes relinquish the processor control only 
voluntarily, e.g. for synchronous read-write operations. Therefore, processing times PI' P2' and P3 (Figure 3) are also 
deterministic, as they are not subject to unexpected preemption. 

Despite the under microsecond performance of context switching operation in transputer systems, process dispatching 
still remains the potential source of uncertainty. A high priority process that becomes ready to run, on occurrence of an event 

114 The Arabian Journal for Science and Engineering. Volume 24, Number 1B. April 1999 



Mohamed Benmaiza and Murat Tayli 

Reference Time Server Client Process 

begin 
do repeat 


ConnectTo(TimeService) 
 AcceptConnection(Client) 

Tread 
........................................................................ 
 ........................................... Read(Synch)
Write(Synch) 

Acquire(ReferenceTime)cl= IntervalCounter 

Tpost
if (Read(ReferenceTime) *' aborted) ................................._................................ Write(ReferenceTime, TimeOut) 

LogicalClock= ftReferenceTime+c:n) ............. 
 Tupdate 
CloseConnectionc2=IntervalCounter 

foreverCloseConnection 

while «aborted or Ic2-cll > c:n) and Retry> 0) 


end 

Figure 5. Reference time service protocol. 

such as the end of a synchronous read or write operation, may not be able to regain immediately control of the CPU, due to 
the presence of other processes with similar precedence. As such incidents cannot be avoided a priori, time service protocol 
resorts to an indirect validation. It checks by means of an asymmetric timing test, whether a client or server process has been 
delayed at the dispatching stage. The Reference Time Server uses a write operation with a time out, to verify that the client 
has reached in time the corresponding read operation. In case a client is delayed after the synchronization point, the server 
deadline expires and the write operation is aborted. The client is notified when it reaches the read operation. Remaining 
deferment possibilities are: the suspension of the server after the synchronization point, and the postponement of the client 
activation following the receipt of the reference time. Both cases are detected by measuring the duration c2-c1 at the client 
site (Figure 5). Time acquisition operation is considered successful, ifc2-c1 does not exceed the estimated time acquisition 
cost at' In case one or the other system experiences unexpected delays, the transaction is considered void and reiterated 
until reference time is read within the specified time interval. On our experimental platform, the time acquisition cost at is 
fixed at 50 Jls. 40 Jls correspond to the estimated processing cost, and 10 Jls to reading errors. It is presumed that the 10 Jls of 
reading errors are due to the variation in clocks speed among the sites and to the differences in their memory addressing 
architecture. 

7. CONCLUSION 

A new clock synchronization algorithm, adapted to the needs of both real-time and non real-time applications, has been 
presented in this paper. The major tenet of the proposed approach has been the consideration of the accuracy as the basic 
feature of any logical clock, clock precision being implicitly implied. The accuracy, taken as intrinsic feature of any logical 
clock, also conferred some of the forceful points of the approach: accuracy and precision are treated in a unified way; 
locking to the fastest clock is implicitly prevented; any site can be a provider ofthe Reference Time Service and temporarily 
substitute the original source. 

The self-synchronizing clocks approach is highly fault-tolerant as synchronization decisions are taken by every site in 
total isolation, and reference time providers can easily be substituted. The autonomous character of synchronization process 

April 1999 The Arabian Journalfor Science and Engineering, Volume 24. Number 1B. 115 



Mohamed Benmaiza and Murat Tayli 

contains the propagation of local faults, if any. and preserves the integrity of the sites in case of the failure of the original 
reference. Moreover. the accuracy of the local time at a given site offers the distributed system the possibility to replicate 
time servers and provide the Reference TIme Service transparently. 

The Self Synchronizing Clocks approach provides a low cost solution, in terms of inter-site communication traffic, and is 
largely independent of the implementation platform. The only implementation imperative is the predictability of the reference 
time acquisition process, used during the calibration of physical clocks and initialization of logical clocks. As the acquisition 
of the reference time is not a frequent operation, the use of complex and heavy mechanisms can be exceptionally tolerated 
to guarantee the required predictability. The algorithm has been successfully implemented on a transputer based platform, 
and preliminary measurements have shown an accuracy comparable to hardware-based clock synchronization algorithms. 

REFERENCES 

[1] 	 L. Lamport, "Time, Clocks and the Ordering of Events in Distributed Systems", CACM, 21(7) (1978), pp. 558-565. 

[2] 	 B. Liskov, "Practical Uses of Synchronized Clocks in Distributed Systems", Distributed Computing, 6 (1993), pp. 211-219. 

[3] 	 c.A.R. Hoare, "Communicating Sequential Processes", CACM, 21(8) (1978), pp. 666-677. 

[4] 	 H. Kopetz and W. Ochsenreiter, "Clock Synchronization in Distributed Real Time Systems", IEEE Transaction on Computers, 
C-36(8) (1987), pp. 933-940. 

[5] 	 R. Drummond and O. Babaoglu, "Low-Cost Clock Synchronization", Distributed Computing, 6 (1993), pp. 193-203. 

[6] 	 P. Ramanathan, K.G. Shin, and R.W. Butler, "Fault-Tolerant Clock Synchronization in Distributed Systems", IEEE Computer 
Magazine, 23(10) (1990), pp. 33-42. 

[7] 	 W.A. Vervoort et al.. "Distributed Time-Management in Transputer Networks". Proceedings ofthe EUROMICRO'91 Workshop on 
Real-Time Systems, 1991, pp. 224-230. 

[8] 	 MJ. Pfluegel and D.M. Blough, "Evaluation of a New Algorithm for Fault-Tolerant Clock Synchronization". Proceedings of the 
Pacific Rim International Symposium on Fault-Tolerant Systems: Kawazaki, Japan, September 26-27,1991, pp. 38-43. 

[9] 	 J. Hue, Z. Mammeri, and lP. Thomesse, "Clock Synchronization in Real-Time Distributed Systems based on FIP Field Bus", 
Proceedings ofthe 2nd IEEE Workshop on Future Trends ofDistributed Computer Systems, Cairo, Egypt, 1990, pp. 135 -141. 

[10] 	 S. Rangarajan and S. K. Tripathi. "Efficient Synchronization of Clocks in a Distributed System", Proceedings ofthe 12th Real-Time 
Systems Symposium: San Antonio, Texas, USA, December 4-6, 1991, pp. 22-31. 

[11] 	 C. Flaviu, "Probabilistic Clock Synchronization". Distributed Computing, 3 (1989), pp. 146-158. 

[12] 	 M. Raynal, "About Logical Clocks for Distributed Systems", Research Report nO 1534, INRIA, France, October 1991. 

[13] 	 J. Stankovic and K. Ramamritham, '''The Spring Kernel, A New Paradigm for Real-Time Operating Systems", ACM Operating 
Systems Review, 23(3) (1989), pp. 54-71. 

[14] 	 M. Benmaiza and M. Tayli, "Circuit-Switched IPC for Predictable Message Passing in a Multiloop Transputer Network", Proceedings, 
World Transputer Congress, Aachen, September 20-22, 1993, pp. 890-898. 

[15] 	 M. Tayli and M. Benmaiza, "An Efficient Circuit-Switching Mechanism for Inter Process Communication in a Transputer Network", 
Proceedings, 4th IEEE Workshop on Future Trends on Distributed Computing Systems, Lisbon, Portugal, September 22-24, 1993, 
pp.215-220. 

[16] 	 M. Tayli, M. Benmaiza, and R. Eskicioglu, "RT-DOS A Real-Time Distributed Operating System Kernel for Transputers", in 
Proceedings of the OUG 13, 13th OCCAM User Group Technical Meeting on Real-Time Systems with Transputers, September 
18-20, 1990, pp. 1-11. 

[17] 	 H. J. Helgert, ISDN: Architectures, Protocols, Standards. Amsterdam: Addison-Wesley, 1991 (ISBN 0-201-52501-1). 

Paper Received 25 June 1997; Revised 1 September 1998; Accepted 19 October 1998. 

116 The Arabian Journalfor Science and Engineering, Volume 24, Number IB. 	 April 1999 


