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ABSTRACT 

A bidirectional associative memory (BAM), reported by Kosko, can be used to store 
and recall binarylbipolar pattern pairs. An iterative learning algorithm called PRLAB has 
been used for guaranteed recall of all training pairs up to the maximum storage capacity 
of a BAM. In this paper we propose a new coding strategy for storage and recall of real­
valued patterns using BAM. The proposed algorithm is based on the PRLAB iterative 
learning algorithm, which enables the BAM to be applied in industrial environments where 
analog patterns are commonly encountered. An algorithm has been developed for converting 
real-valued pattern pairs into binarylbipolar patterns, thus enabling it to be applied to a 
discrete BAM. The PRLAB learning algorithm is then applied to store and recall the real­
valued pattern pairs successfully. Examples are given demonstrating the applicability of 
the new encoding mechanism for real-valued patterns with sufficient resolution to be used 
in any practical application. 
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The human information processing system consists of the biological brain. The basic building block of the nervous 
system is the neuron that handles intercommunication of information among various parts of the body. The neuron can be 
considered as a threshold unit that collects inputs from other neurons and produces an output only if the sum of the inputs 
exceeds an internal threshold value. Artificial neural systems (ANSs) are mathematical models of the theorized mind and 
brain activity [1]. ANSs are created by interconnecting many of the simple 'neurons' into a network. The primary function 
of ANS is to act as a memory. ANSs store different types of patterns and they perform different types of recall. ANSs act as 
content addressable memory (CAM) or associative memory. CAMs map data to addresses while associative memories map 
data to data. The two primary ANS mapping mechanisms are auto-association and hetero-asssociation. An ANS is 
autoassociative if its memory, W, stores vectors (patterns) Ai' A2 .... Am and is hetero-associative if W stores the pattern pairs 
(AI' B1), (A2, B2) .... (Am' Bm)' 

An ANS is said to be learning while there is a change in the memory W i.e., dWldt"* O. ANS learning methods can be 
classified into two categories: supervised and unsupervised learning. Supervised learning is a process that incorporates an 
external teacher and/or global information. Unsupervised learning is a process that incorporates no external teacher and 
relies upon only local information. Examples of supervised learning are error correction learning, reinforced learning, 
stochastic learning, while examples of unsupervised learning are Hebbian learning and competitive learning [2]. 

Hebbian learning, named after Donald Hebb, illustrates a simple correlation learning that adjusts the connection weights 
according to the correlation (multiplication) of the values of two processing elements (PEs) i.e. neurons. Hebbian correla­
tion can be mathematically defined as 

(1) 

where wij represents the connection strength from neuron a i to neuron hj • An extension of simple Hebbian learning is the 

signal Hebbian learning where the correlation of the activation is filtered through a sigmoid or signal function and is 
described by the equation 

(2) 

where S( ) is the sigmoid function. The most common sigmoid function is the logistic function Sex) = (I +e -X) -I. 

ANS recall corresponds to the decoding of the stored contents which may have been encoded in a network previously. 
Assume that a set of patterns can be stored in a network. Later if the network is presented with a pattern similar to a member 
ofthe stored set, it may associate the input with the closest stored pattern. The process is called autoassociation. Association 
of input patterns can also be stored in a heteroassociative variant. In heteroassociative processing, the association between 
pairs of patterns is stored. The heteroassociative recall mechanism can be considered a function gO that takes W (memory) 
and Ai (cue) as input and returns B j (response). This relationship can be illustrated by the equation g(Aj,W) = Bj. Details of 
other learning and recall mechanisms are available in references [1,2]. 

Kosko [3] proposed a neural network model of bidirectional associative memory (BAM) that consists of two layers of 
neurons with feedbacks and symmetric synaptic connections between layers. The discrete BAM behaves as a heteroassociative 
pattern matcher that encodes arbitrary spatial patterns using Hebbian learning. The encoding procedure places the associa­
tion at system energy minima. The discrete BAM has been studied extensively [3-8]. However, these neural models have 
not been utilized for a wide range of applications because of their inability to encode a large number of pattern pairs and the 
restriction to binary or bipolar pattern pairs. The restriction on input data has limited applicability of BAM. In applications 
such as medical diagnosis, robot tracking and control, and industrial fault diagnosis where patterns in continuous time are 
encountered, an appropriate coding scheme is desired. 

In this paper we present the AID converted pattern encoding mechanism that enables the discrete BAM to encode con­
tinuous patterns. The BAM encoding and recall mechanism developed can be applied to analog signal patterns encountered 
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in real life. The encoding mechanism can be applied with any desired accuracy to encode analog signal patterns and recall 
them successfully. This removes the difficulty of encoding real-valued patterns by discrete BAM. Also the use of pseudo­
relaxation learning algorithm for BAM (PRLAB) enables it to store and recall patterns up to the maximum theoretical 
capacity of BAM [5]. 

The Rest of this paper is organized as follows. A review of the basic concepts of BAM encoding with enhancements of 
BAM capacity and recall by different proposed mechanisms are provided in Section 2. Section 3 provides the mechanism of 
real valued BAM encoding and its limitations. In Section 4 the AID converted BAM encoding mechanism is developed. 
In Section 5 simulation results and discussions on the proposed algorithm are made. An example illustrating the capability 
of the proposed learning and recall mechanism is given in Section 6 while Section 7 concludes the paper. 

2. DISCRETE BAM 

BAM concepts were first introduced by Kosko [3]. A BAM stores and recalls associations (Ai' Bi) that are learned by 
summing correlation matrices. Consider an n x m BAM with n neurons in the first layer and m neurons in the second layer. 
The BAM stores and recalls p discrete pattern pairs 

Here aij and bij are either ON or OFF. (In binary mode ON 1, OFF = 0; in bipolar mode ON 1, OFF = -1). 

Kosko used the correlation matrix: 

p 

M = LXrli (3) 
i=1 

The use of such a correlation matrix for storing information in a neural network model is often called the first-order 
correlation encoding [8]. The correlation matrix M superimposes the information of several patterns on the same memory 
medium. However, unless the training vectors are orthogonal, the superposition may introduce noise in the system and the 
recall of all training pairs is not guaranteed [5]. 

Kosko [3] has shown that the BAM energy function E for the pair (a, P) and correlation matrix Mis: 

(4) 

At each cycle of decoding the energy E given by Equation (4) is lowered. Furthermore the pairs ( a, ~) and those resulting 

from subsequent iterations remain finite. Thus if we wish to retrieve one of the nearest (Ai' B) pairs from the network where 

any(a,~) pair is presented, a finite sequence (a',~'),(a",W') ... will be encountered until an equilibrium point(a F '~F) 

is reached where: 

W = q,(aM) 

a' = q,(WMT). (5) 
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The function <PO is defined as follows: 

tP(F) = G = (gl ,g2 ···,gn) 

F = (II' 12 ' ... , In ) 

I 
0 (binary) 

gj = /<0 

-1 (binary) 

gj = previous gi' Ii = O. 

Thus for the final pattern ( a F ' ~ F ) the energy 

is a local minimum. 

Abedin 

(6) 

If the energy, E, evaluated using the coordinates of the pair (Ai' B i) i.e. E= -AiMBiT does not constitute a local minimum, 
then the point cannot be recalled even though one starts with a = Ai' Kosko's encoding method does not ensure that the 
stored pairs are at local minima [6]. Depending on the applications, it may be important to guarantee recalling of a particular 
pair or several training pairs. Wang et al. [4] introduced a multiple training concept to ensure recalling of a desired pair in a 
set of training pairs. 

If multiple training of order q is directed to the training pair (Ai' B), one augments the M matrix by the matrix P which is 
defined as: 

P=(q-l)Xrr:· (7) 

The new value of the energy E' evaluated at the point (Ai' B) then becomes: 

(8) 

The augmentation of M in the manner adds (q-l) more pairs located at (Ai' B) to the existing Npairs. The energy E' can be 
decreased to an arbitrary low value by suitable choice of q. The multiple training method can guarantee that one training 
pair will always be recalled [4]. However, there is no guarantee that all training pairs will be recalled. For a guaranteed recall 
of all training pairs the dummy augmentation method is proposed in [4]. 

The dummy augmentation method requires the users to generate dummy elements during the coding phase of BAM. 
In the dummy augmentation method strictly noise-free sets (dummy sets) are appended to (Ai' BJ Consider training 

pairs [ {( Ai' Bi )}, i lt~ N] and a strictly noise-free set with N elements [{ Di }, i = 1 to N]. 

where 

(9) 

A new set of training pairs 

N 

[A,!D.!"k.IDil [B;IDili.·ID;·lL (10) 
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is formed with K Dis appended to Ai and K'Dis appended to Bis. It is shown in [4] that by appropriate choice of D i , K, and 
K', it is possible to guarantee recall of all patterns. It is to be noted that dummy augmentation algorithm requires the 
generation of strictly noise free dummy sets to be augmented to the patterns. It is not always possible to generate allowable 
dummy sets which can guarantee complete recall of all training pairs. 

Wang et al. [6] presented the idea of linear programming/multiple training (LPIMT) method, which determines weights 
that satisfy the conditions to recall all training pairs. 

Suppose MT is used for all pairs in the training set, then the correlation matrix becomes: 

N 

M = "" q.X.y .£..t 1 1 I. 

;=1 

A pair Pi = (Ai' B) can be recalled using the generalized correlation matrix in (7) if and only if 

N 

Lqinij ~o 
j=1 

for every neighbor in both fields A and B where qj> 0 for all i = 1,2 .. Nand llij is: 

(11) 

(12) 

The physical meaning of llij is the energy difference between P~ and Pi caused by Pj' If llij <0 then the neighbor ~ 
achieves more negative energy than Pi from Pj' such that Pi is relatively more unstable; if llij >0 then the neighbor Pi 
achieves more negative energy than P;' from Pj' such that Pi is relatively more stable. 

All training pairs in T ( { ~ I; 1,2 ... N}; ~ = (Ai' Bi )) can be recalled using a generalized correlation matrix if and 

only if the positive real weights satisfy 

where qj> 0 for all i = 1,2, ... Nand TJij is defined in (12). 

An iterative learning algorithm called pseudo-relaxation learning algorithm for BAM (PRLAB) which ensures recall of 
all training pairs has been introduced by Oh and Kothari [9]. This algorithm updates the weights based on a mathematical 
technique called the relaxation method. 

Let Wij be the connection strength between the i-th neuron in the first layer and the j-th neuron in the second layer of a 
NxM BAM. Let Sx; be the threshold for the i-th neuron in the first layer and SYi be the threshold for the j-th neuron in the 
second layer. 

Let T = {(X(k), y(k»} k = l ... p be a set of training vector pairs where 

X(k) E {-I,I}N and Y(k) E {-I,I}M. 

The vectors in T are guaranteed to be recalled if the following system of linear inequalities are satisfied for all K = 1,2 ... P. 

(13) 

(14) 
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PRLAB examines each training pair X!k>, }XK) one by one systematically and updates the weights and threshold values if 
inequalities (13) or (14) are not satisfied. It iterates through the training pairs as follows. 

L\8 Xi = + ').../(1 + M)[ SX
j 
(k) - ~/k) ]~(k) if Sx, (k.) xy) ::; 0 

and for the neurons in the second layer 

where: 

and 

M 
Sx (k) = ~ W .. y.(k) 

; .t. 'lJ 
j=l 

N 

S (k) = ~ W .. X(k) - 8 
Yj .t. IJ' YJ • 

i=l 

(15) 

(16) 

The relaxation factor A is a constant between 0 and 2 and the normalizing constant ~ must be positive. PRLAB always 
finds a solution in finitely many steps if the inequalities (13) and (14) are not satisfied. Note that the initial values of the 
weights and threshold are chosen at random. It has been demonstrated in [10] that a quick learning for BAM by using the 
PRLAB is possible if the BAM is initially formed by the correlation matrix W in the first stage as: 

p 

w::::: IX(klTY(k) . (17) 
K=l 

In the second stage, the BAM is trained by the PRLAB as defined above. As the correlation matrix learning (Hebbian 
learning) is used in the first stage, a reduction of learning epochs is expected in the proposed algorithm. The term epoch is 
used to denote a learning iteration. Each training pattern is presented once during an epoch and the learning speed is 
measured in number of epochs. If a pattern is not already memorized, weights are adjusted in successive epochs. 

Our discussion so far is concerned with the encoding and recall of binary (bipolar) BAM. As most of the research carried 
out on BAM are restricted in binary or bipolar pattern pairs, the application of BAM in practical use is very much limited. 
However, improved encoding mechanisms [4, 6, 8] ensured the recall of all training pairs which was not possible in the 
original BAM. Also, some improvement has been done on the increment of the size of BAM i.e. to construct a BAM capable 
of recalling a large number of training pairs [8]. 

In the following sections we shall mainly concentrate on the encoding and recall of real valued patterns as to make the 
BAM useful for applications such as fault diagnosis, robot control, medical diagnosis etc. The success behind these depends 
on the successful encoding and recall of real valued pattern pairs by using BAM. 

3. REAL VALUED BAM ENCODING 

The adaptive BAM (ABAM) [5] is an extension of BAM where the correlation matrix elements are updated by Hebbian 
learning according to: 

(18) 
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where wij represents the connection strength from neuron a i to neuron bj' SO is the sigmoid function and a is a small positive 
constant controlling the learning rate. 

ABAM recall uses the same processing sequence as the BAM but the recall equations are now changed to: 

(19) 

(20) 

The ABAM theorem assumes the global stability of recall process. The ABAM is able to process analog patterns in 
continuous time. But, it has the same storage limitation of BAM. An additional limitation is the memory plasticity. 
Any pattern pair presented for an extended period of time is "burned in" to the point that no other patterns can be stored in 
the memory [1]. However, despite its potential the ABAM has not yet been applied owing to its limitations. 

In [11] the weighted matrix product coding procedure has been introduced that can be applied for real valued analog 
patterns. Such patterns can be discretized and their real valued amplitUdes can be expressed in binary form. An analog 
pattern pair is considered as a pair of real valued vectors Pi E [O,l]n and Qi E [O,l]P . In order to encode it into a correlation 
matrix these real valued vectors can be approximated by an averaged sum of k binary valued vectors as 

P; = (l/k)Laij, i = 1,2,3 ... n 

The real valued vectors can be written as (n x k) and(p x k) binary valued data matrices Ai and Bi . The correlation 

matrix in terms of these data matrices can be derived as 

W; wA/ Bi where w = (1/k2). 

The weighted matrix-product law sums up the binary correlation matrices for each pattern: 

(21) 

We can represent the weighted-matrix product law more compactly as: 

W = WATB (22) 

where 

BT - [B T . B T. B T] - 1 • 2 .... m 

and w = 1/k2 . 

Note that encoding one real valued vector pair results in encoding k binary valued vector pairs. Since the storage limit of 
binary-valued BAM is min(n,p), it is desirable to make nand p large enough if the value of k is large. Also, for better 
approximation of the real-valued patterns, the value of k should be large enough, which in tum complicates the arbitrary 
decomposition of Pi and Qi into binary patterns. In the next section we shall generalize the real-valued pattern encoding, 
which can be used for up to any desirable range of resolution. Also, it will simplify the mechanism of formation of Ai and Bi 
while real-valued pattern pairs Pi and Qi are presented. 
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4. AID CONVERTED PATTERN ENCODING MECHANISM 

Let Pi and Qi be the real valued pattern pairs, 

where ~ = {Pil ,Pi2 ... ,Pu} and Qi = {qil ,qi2 , ... ,qim} . 

Each of Pij and qij are AID converted and expressed as 

n 

Pij = LUk 2k (23) 
k=O 

n 

qij = L Vk 2k , (24) 
k=O 

the values of Vi and Vi being E [0,1]. 

By choosing n large enough the necessary resolution can be obtained. For example, if n = 6 the resolution can be 0.01 and 
for n = 9 the resolution is 0.001. 

Let ( ~ ,Qi ) be the real valued pattern pair represented by: 

(25) 

(26) 

real valued vectors. 

When converted into binary form each P ij and q ij becomes 

Pit { U it ,0 ,U iI,l , ... , U i I,n } 

Pi 2 = {u i 2,0 ,Ui 2,1 , ... , Ui 2 ,n } 

Pil = {Uil,O ,Uil,1 , ... ,Ui/,n} (27) 

and q i 1 { Vi 1 ,0 ' Vi 1 ,I , ••• , v: 1 ,n } 

q im = {Vim ,0 ' Vim .1 , ... , Vim .n }. (28) 

Let ( Ai ,Bi ) be the binary representation of (~ ,Oi ). ( Ai ,Bi ) can be written as 

(29) 

and (30) 
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Each of the vector Ai has (n + 1)1 elements and Bi has (n + I)m elements of binary Os and Is. An added advantage of ND 
converted encoding of BAM is that there is an (n + 1) fold enlargement of the size i.e. both Ai and Bi vectors are now 
expanded (n + 1) times than the original Pi and Qi vectors. This automatically increases the number of BAM interconnec­

tions and hence the storage capacity of the BAM. Once the vector pairs ( Ai ' Bi ) are formed the next step is to convert 

the ( Ai ,Bi ) pairs into their bipolar forms. 

Let ( Xi ,Y; ) be the bipolar representation of ( Ai ,Bi ). Then the correlation matrix W can be formed using Equation (3) i.e. 

p 

W = ~ £.. X.Ty (31)1 I. 

i=1 

If the number of patterns encoded are small the original BAM recall mechanism as stated in [3] can be used to recall the 
trained patterns. As Kosko's original BAM suffers from limitations in recalling a large number of patterns we used the 
PRLAB recall mechanism to encode a large number of patterns. The mechanism of encoding and recall of real valued 
patterns by the NO converted recall method can be summarized in the following steps. 

Step 1. Convert each pattern pair ( P; ,Qi ) to its binary form ( Ai ' Bi ) 

Step 2. Produce the bipolar form (Xi' r: )of the binary pattern pair (Ai' Bi ). 

Step 3. Form the correlation matrix W from the bipolar pattern pairs (X/k) ,r:(k»). 
Step 4. Use the PRLAB encoding mechanism to from the final correlation matrix satisfying the required conditions. 

Step 5. Use the BAM recall mechanism to decode desired patterns. 

Step 6. Convert the bipolar pattern pairs back to binary and then to analog patterns i.e. (p; ,Qi ). 

s. SIMULATION RESULTS AND DISCUSSION 

In this section we shall demonstrate the ability of ND converted BAM encoding mechanism for successful encoding and 
recall of real valued pattern pairs. Table 1 shows the simulation results of the learning and recall of random real valued 
patterns for both the original and the PRLAB BAM. It is clear that the capacity of the PRLAB mechanism is much better 
than the original BAM. It can recall real valued pattern pairs successfully in the absence of any noise in the patterns. It is 
also shown that the original BAM has a very limited capacity of recalling real valued patterns. For example a 98 x98 BAM 
can store and recall up to 8 pattern pairs successfully (Table 1) while a PRLAB BAM of the same size can store and recall 
successfully up to 98 real valued pattern pairs. Thus we can reach up to the maximum storage capacity of a BAM [3] using 
the PRLAB recall mechanism. 

In Table 2 we demonstrated the capability of the proposed algorithm to store and recall randomly generated patterns using 
the PRLAB mechanism. We took 20 arbitrary pattern pairs each with 9 real-valued numbers in the range [0,1] and with 
resolution up to 0.001 (10 bits). We converted each pattern into 9* 10 =90 binary (bipolar) numbers. So, we used a BAM of 

Table 1. Original BAM and PRLAB Learning and Recall Capacity for Random Real Valued 

Pattern Pairs. 


BAM size Number of Real Valued Original BAM PRLAB 


(MxN) Pattern Pairs (Pairs Recalled Correctly) (Pairs Recalled Correctly) 


SOx 50 

64x64 

70x 70 

80x 80 

98 x 98 

50 

64 

70 

80 

98 

5 

6 

7 

8 

9 

50 

64 

70 

80 

98 
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size 90x90 to encode and decode the patterns. In Table 2, rows I and 2 represent the first pattern pair (input real-valued 
vectors PI and Ql). All other 19 input pattern pairs are shown in successive pairs of rows, i.e. rows 3 and 4 for pattern 
pair 2 and rows 5 and 6 for pattern pair 3 and so on. The BAM is trained by the PRLAB mechanism with the 20 input pattern 
pairs. The BAM recall mechanism is then used to recall any desired pattern. All 20 pattern pairs are recalled successfully 
without any error in recalling. The PRLAB mechanism has been tested for storing and recalling pattern pairs up to the 
maximum capacity of a BAM and found to be working perfectly without any difficulty. The number of learning epochs 
required for recalling all pattern pairs successfully lies in the range 10-15 with an average of 12 epochs [10]. 

We have also studied the proposed learning mechanism for real valued patterns in the presence of Gaussian noise. Ran­
dom Gaussian noise (normal distribution) having the same mean and standard deviation ( m = a) was introduced in a certain 

Table 2. Randomly Generated Real Valued Pattern Pairs 

Successfully Learnt and Recalled by a (90 x 90) PRLAB BAM. 


LABEL 1 2 3 4 5 6 7 8 9 


PI 0..524 0..106 0..968 0..20.8 0..0.11 0..319 0..521 0..382 0..331 
Ql 0..851 0..543 0..90.1 0..457 0..174 0..861 0..0.68 0..426 0..665 

P2 0..0.50. 0..779 0..70.9 0..655 0..887 0..647 0..912 0..923 0..575 
Q2 0..532 0..743 0..393 0..594 0..984 0..754 0..392 0..432 0..439 

P3 0..947 0..836 0..0.68 0..366 0..991 0..847 0..60.3 0..364 0..30.1 
Q3 0..750. 0..415 0..310 0..102 0..642 0..479 0..0.94 0..980. 0..258 

P4 0..348 0..387 0.694 0..256 0..430. 0..292 0..927 0..675 0..992 
Q4 0..149 0..318 0..966 0..840. 0..957 0..0.70. 0..80.3 0..20.0. 0..377 

P5 0..894 0..891 0..0.30. 0..939 0..410 0..940. 0..550. 0..730. 0..597 
Q5 0..950. 0..189 0..40.9 0..945 0..714 0..234 0..897 0..284 0..335 

P6 0..535 0..947 D.0l8 0..671 0..937 0..822 0..764 0..748 0..0.21 
Q6 0..154 0..848 0..847 0..778 0..954 0..776 0..877 0..584 0..177 

P7 0..20.2 0..849 0..70.6 0..985 0..658 0..20.7 0..20.2 0..378 0..964 
Q7 0..60.3 0..446 0..768 0..471 0..446 0..348 0..984 0..90.9 0..293 

P8 0..187 0..20.2 0..10.7 0..444 0..982 0..682 0..885 0..492 0..636 
Q8 0..316 0..295 0..851 0..912 0..225 0..438 0..825 0..789 0..782 

P9 0..389 0..539 0..916 0..218 0..420. 0..844 0..117 0..999 0..638 
Q9 0..453 0..377 0..213 0..389 0..939 0..700 0..395 0..60.3 0..0.70. 

PlO 0..414 0..210. 0..197 0..130. 0..920. 0..385 0..60.1 0..576 0..60.8 
QlO 0..156 0..851 0..414 0..821 0..953 0..752 0..904 0..0.42 0..215 
p11 0..743 0..945 0..469 0..421 0..930. 0..90.1 0..262 0..831 0..755 
Qll 0..933 0..853 0..876 0..247 0..973 0..123 0..932 0..444 0..324 

P12 0..977 0..968 0..446 0..436 0..616 0..50.9 0..447 0..758 0..540. 
Q12 0..0.89 0..959 0..417 0..576 0..747 0..340. 0..960. 0..677 0..492 

P13 0..377 0..20.5 0..534 0..237 0..0.86 0..222 0..361 0..952 0..10.1 
Q13 0..990. 0..797 0..0.53 0..764 0..924 0..412 0..375 0..851 0..0.55 

P14 0..50.9 0..270. 0..0.97 0..543 0..552 0..747 0..0.98 0..891 0..818 
Q14 0..487 0..60.9 0..670. 0..196 0..436 0..147 0..192 0..90.7 0..725 

P15 0..884 0..542 0..761 0..723 0..855 0..577 0..382 0..70.1 0..163 
Q15 0..766 0..180. 0..967 0..40.1 0..574 0..154 0..416 0..274 0..0.68 

P16 0..977 0..737 0..40.1 0..347 0..170. 0..534 0..763 0..118 0..446 
Q16 0..823 0..102 0..592 0..423 0..0.97 0..958 0..134 0..100 0..378 

P17 0..633 0..0.91 0..753 0..251 0..198 0..756 0..50.3 D.4Ol 0..911 
Q17 0..386 0..682 0..452 0..356 0..90.1 0..578 0..0.13 0..126 0..173 

P18 0..130. 0..328 0..987 0..0.53 0..559 0..70.4 0..189 0..338 0..70.2 
Q18 0..50.1 0..628 0..685 0..948 0..527 0..650. 0..550. 0..352 0..448 

P19 0..154 0..398 0..990. 0..691 0..292 0..838 0..626 0..665 0..421 
Q19 0..572 0..0.18 0..977 0..774 0..952 0..634 0..20.3 0..168 0..596 

P2D 0..899 0..618 0..341 0..868 0..985 0..783 0..898 0..492 0..728 
0..0.36 0..813 0..550. 0..977 0..90.1 0..474 0..696 0..497 0..266 
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percentage of the patterns. We have studied the original and the PRLAB BAM in presence of up to 30% noise introduced. 
Once a certain pattern has been selected for the introduction of noise, all elements of the same pattern are shifted up or down 
according to the normal distribution with m =cr. The BAM recall capabilities, in presence of noise, are shown in 
Figures 1-4. Figures 1-2 are drawn for the original BAM while Figures 3 and 4 are for the PRLAB BAM. It can be seen in 
Figures 1 and 2 that the introduction of random noise degrades the original BAM performance drastically. In case of the 
PRLAB BAM (Figures 3 and 4), with a small number ofpatterns (5 to 10 patterns), the performance degrades slightly when 
random noise is introduced. Thus a PRLAB BAM can also be used to recall noisy patterns when the number of patterns are 
small. 
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Figure 1. Recall Capacity ofOriginal BAM in Presence ofNoise (BAM size 84 x 84). 
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Figure 2. Recall Capacity ofOriginal BAM in Presence ofNoise (BAM size 98 x 98). 
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6. AN EXAMPLE 

In this section we give an example demonstrating the use of the new BAM encoding method for storing and recalling real­
valued pattern pairs applying the AID converted pattern encoding mechanism. We used a 42 x 42 BAM to store and recall 10 
real-valued pattern pairs given in Table 3. Each pattern has 6 real numbers (real numbers Pi' QjE [0-1]), where each real 
number can have a resolution of 0.01. First of all, the real-valued patters are converted into their binary and then to bipolar 
forms (steps 1, 2). Table 4 shows the binary representation of the real-valued pattern pairs. We omitted the decimal point 
from each real number while converted to binary. As the BAM processes the data in binarylbipolar form only, the omission 
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Figure 3. Recall Capacity of PRLAB BAM in Presence ofNoise (BAM size 84 x 84). 
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Figure 4. Recall Capacity ofPRLAB BAM in Presence ofNoise (BAM size 98 x 98). 
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of the decimal point does not effect the BAM processing. Here the omission of the decimal point simply means the 
premultiplication of all real numbers by a factor of 100. Once the BAM correctly recalls the input patterns, the output data 
can again be returned back as real numbers within the range [0-1] after division by 100. Once the input patterns are ready 
in their bipolar form, the initial correlation matrix W is formed using the bipolar pattern pairs and taking the help of 
Equation 3 (step 3). After the initial correlation matrix W is formed, the PRLAB learning mechanism is used to determine 
the final correlation matrix through successive iterations satisfying the required conditions set in Equations(13, 14). This 

Table 3. Input Pattern Pairs (l!, Qj) 

Used for the (42 x 42) PRLAB BAM. 

PI 1.00 0.80 0.70 0.67 0.50 0.50 
Ql 0.33 0.66 0.99 0.50 0.35 0.16 

P2 0.00 0.16 0.33 0.66 0.85 1.00 
Q2 0.67 0.32 0.34 0.18 0.10 0.00 

P3 0.15 0.44 0.90 0.50 0.31 0.11 
Q3 0.00 0.43 0.54 0.55 0.67 0.00 

P4 0.32 0.56 0.54 0.56 0.12 0.10 
Q4 0.67 0.89 0.99 0.50 0.22 0.14 

P5 0.21 0.32 0.34 0.50 0.40 0.80 
Q5 0.56 0.67 0.00 0.00 0.34 0.56 

P6 0.50 0.10 0.40 0.60 0.70 0.55 
Q6 0.76 0.32 0.98 0.99 0.01 0.01 

P7 0.33 0.67 0.71 0.80 0.98 1.00 
Q7 0.22 0.34 0.56 0.45 0.10 0.20 

P8 0.00 0.43 0.23 0.43 0.10 0.05 
Q8 0.10 0.30 0.40 0.60 0.80 0.90 

P9 0.45 0.21 0.80 0.99 0.52 0.11 
Q9 0.00 0.10 0.20 0.10 0.01 0.00 

PIO 0.43 0.56 0.78 0.77 0.45 0.55 
QIO 0.23 0.30 0.60 0.21 0.34 0.54 

Table 4. Binary Input Pattern Pairs to the (42 x 42) PRLAB BAM. 

Al 1100100 1010000 1000110 1000011 0110010 0110010 
Bl 0100001 1000010 1100011 0110010 0100011 0010000 

A2 0000000 0010000 0100001 1000010 1010101 1100100 
B2 1000011 0100000 0100010 0010010 0001010 0000000 

A3 0001111 0101100 1011010 0110010 0011111 0001011 
B3 0000000 0101011 0110110 0110111 1000011 0000000 

A4 0100000 0111000 0110110 0111000 0001100 0001010 
B4 1000011 1011001 1100011 0110010 0010110 0001110 

A5 0010101 0100000 0100010 0110010 0101000 1010000 
B5 0111000 1000011 0000000 0000000 0100010 0111000 

A6 0110010 0001010 0101000 0111100 1000110 0110111 
B6 1001100 0100000 1100010 1100011 0000001 0000001 

A7 0100001 1000011 1000111 1010000 1100010 1100100 
B7 0010110 0100010 0111000 0101101 0001010 0010100 

A8 0000000 0101011 0010111 0101011 0001010 0000101 
B8 0001010 0011110 0101000 0111100 1010000 1011010 

A9 0101101 0010101 1010000 1100011 0110100 0001011 
B9 00000oo 0001010 0010100 0001010 0000001 0000000 

AIO 0101011 0111000 1001110 1001101 0101101 0110111 
BIO 0010111 0011110 0111100 0010101 0100010 0110110 
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Table 5. Output Pattern Pairs after Successful Recall by the 

(42 x 42) PRLAB BAM. 

PI 1.00 0.80 0.70 0.67 0.50 0.50 
Ql 0.33 0.66 0.99 0.50 0.35 0.16 

P2 0.00 0.16 0.33 0.66 0.85 1.00 
Q2 0.67 0.32 0.34 0.18 0.10 0.00 

P3 0.15 0.44 0.90 0.50 0.31 0.11 
Q3 0.00 0.43 0.54 0.55 0.67 0.00 

P4 0.32 0.56 0.54 0.56 0.12 0.10 
Q4 0.67 0.89 0.99 0.50 0.22 0.14 

P5 0.21 0.32 0.34 0.50 0.40 0.80 
Q5 0.56 0.67 0.00 0.00 0.34 0.56 

P6 0.50 0.10 0.40 0.60 0.70 0.55 
Q6 0.76 0.32 0.98 0.99 0.01 0.01 

P7 0.33 0.67 0.71 0.80 0.98 1.00 
Q7 0.22 0.34 0.56 0.45 0.10 0.20 

P8 0.00 0.43 0.23 0.43 0.10 0.05 
Q8 0.10 0.30 0.40 0.60 0.80 0.90 

P9 0.45 0.21 0.80 0.99 0.52 0.11 
Q9 0.00 0.10 0.20 0.10 0.01 0.00 

PlO 0.43 0.56 0.78 0.77 0.45 0.55 
0.23 0.30 0.60 0.21 0.34 0.54 

involves step 4 in our algorithm. The BAM recall mechanism is then applied to correctly recall all real valued pattern pairs 

(step 5). The recalled pattern pairs, after conversion to real numbers (~ ,Qi £[ 0 - l]) , are shown in Table 5 (step 6). 

It is to be noted that the original correlation matrix W formed by Equation 3 is not sufficient to recall the pattern pairs 
correctly unless the PRLAB learning mechanism is applied to form the final correlation matrix. The above example demon­
strates steps (1-6) described in section 4 earlier for the encoding and accurate recall of real valued pattern pairs with the 
PRLAB BAM encoding mechanism. The mechanism can be used to learn and correctly recall any number of real-valued 
pattern pairs up to the storage capacity of the BAM. The BAM storage capacity equals min(n,m), where there are n neurons 
in the first layer and m neurons in the second layer [3]. 

7. CONCLUSIONS 

The encoding of real-valued vector pairs into a BAM has been considered in this paper. The AID converted BAM encod­
ing mechanism has been developed and applied. Examples are cited to demonstrate the ability of BAM encoding and recall 
for real-valued pattern pairs. The capability of real-valued pattern encoding and recall will be useful in many practical 
applications like industrial signal encoding, fuzzy pattern encoding etc. Further work is directed to extend the algorithm for 
more realistic applications. 
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