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ABSTRACT 

Given a nonempty set X, an ideal I on X is a collection of subsets of X closed 
under finite union and subset operations. Newcomb (1967) and Rancin (1972) 
defined a generalization of compactness (I-compactness) which requires that an 
open cover of a space have a finite subcollection which covers all the space except 
for a set in the ideal. In this paper we introduce and study two different notions of 
generalized compactness namely, quasi I-compactness and countable quasi 
I-compactness. Classical results concerning quasi H-closed and lightly compact 
spaces are obtained by letting I . {cf>}. Some results in [1, 2] are improved. 
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QUASI COMPACTNESS WITH RESPECT TO AN IDEAL 

1. INTRODUCTION 

The concept of compactness modulo an ideal was 
introduced by Newcomb [3] and RanCin [4], and 
studied by Hamlett, Rose, and Jankovic in [1] and 
[2]. Newcomb also defined the concept of countable 
compactness modulo an ideal in [3]. The aim of this 
paper is to introduce and study quasi compact and 
countably quasi compact spaces via ideals as a gen­
eralization of I-compact and countably I-compact 
spaces. The concepts of quasi H-closed, H-closed, 
and lightly compact spaces are special cases. 

Throughout the present paper, (X, 1') and (Y,O') 
(or simply X and Y) denote topological spaces on 
which no separation axiom is assumed unless explic­
itly stated. A subset S of a topological space is said to 
be regular open (resp. regular closed, preopen [5]) if 
Int(CI(S» S(resp. CI(Int(S» = S, S k Int(CI(S»), 
where CI(S) (resp. Int(S» denotes the closure (resp. 
interior) of S. The complement of S will be denoted 
by (X-S). 

Given a nonempty set X, a collection I of subsets 
of X is called an ideal [6] if: 

(1) 	 A E I and B k A implies BEl (heredity), and 
(2) 	 A E I and BEl implies A U BEl (finite addi­

tivity). 

If X f1. I then I is called a proper ideal. We will 
denote by (X,1', I) a topological space (X, 1') and an 
ideal I of subsets of X. Given a space (X, 1', I), 
we denote by 1'* (I) the topology generated by the 
basis ~(I' 1') = {U-E: U E 1', EEl} [7]. A bijection 
f: (X,1',I)~(Y,O',J) is called a *-homeomorphism 
if f: (X, 1'*) ~ (Y, 0'*) is a homeomorphism [8]. A 
space (X, 1') is said to be extremally disconnected if 
CI(U) E l' for every U E 1'. Recall that a space (X, 1') 
is said to be quasi H-closed, abbreviated QHC, iff 
every open cover of X has a finite subcollection 
which covers a dense subset of X. A space is said to 
be H-closed iff it is Hausdorff and QHC. We will say 
that a space (X, 1') lightly compact iff for every 
countable open cover {Ua : a E V} of X there exists 
a finite subcollection {Ua ;: i = 1,2, .... ,n} such that 
X= CI(U{Uaj : i = 1,2, .... ,n}). A space (X,1',I) is 
said to be I-compact [3] resp. countably I-compact 
[3]) iff for every open (resp. countable open) 
cover {Ua : a E V} of X there exists a finite 
subfamily {Uai : i = 1,2, .... ,n} such that 
X- U {Ua ;: i 1,2, .... ,n} E l. 

2. QUASI I-COMPACT SPACES 

Definition 2.1. A space (X, 1', I) is said to be quasi 
I-compact (abbreviated as QI-compact) if for 
every open cover {Ua : a E V} of X, there exists a 
finite sub collection {Ua ;: i = 1,2, .... ,n} such that 
X- U {CI(Uaj ): i = 1,2, .... ,n} E l. 

Remark 2.1. The class of QI-compact spaces con­
tains the class of I-compact spaces and the reverse 
does not hold. 

Example 2.1. Let X = [0,1] be the' closed unit 
interval in the real line and let l' be the topology 
generated by using the usual subspace topology and 
the rationals as a subbase. One can deduce that 
(X,1') is QIf-compact but not If-compact, where If 
denotes the ideal of finite subsets of X. 

The following two immediate theorems are stated 
without proof. 

Theorem 2.1. Let (X, 1', I) be a space, then we have: 

(a) (X,1') is Q{ <p }-compact iff (X, 1') is QHC. 

(b) 	If (X, 1') is Hausdorff, then (X, 1') is 
Q{ <p }-compact iff (X,1') is H-closed. 

(c) 	 If (X,1') is E.D., then (X,1') is QI-compact iff 
(X,1') is I-compact. D 

Theorem 2.2. (X, 1') is QHC iff (X, 1', If) is 
QIf-compact. 0 

Corollary 2.3. If (X,1') is Hausdorff, then (X,1') is 
H-closed iff (X,1') is QIf-compact. 0 

Recall that (X, 1') is a Baire space [9] iff Imn1'=<p, 
where 1m denotes the ideal of meager (first category) 
subsets of X. 

Corollary 2.4. If (X,1') is a space, consider the 
following: 

(i) 	 (X, 1') is QIf-compact. 

(ii) 	(X, 1') is QHC. 

(iii) (X,1') is In-compact, where In denotes the ideal 
of nowhere dense subsets of X. 

(iv) (X,1') is H-closed. 

(v) 	(X,1') is 1m-compact. 

Then we have: 

(1) 	 The properties from (i) to (iii) are equivalent. 
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(2) 	 The properties (i), (iii), and (iv) are equivalent 
if (X, T) is Hausdorff. 

(3) 	 The properties (i), (ii), and (v) are equivalent 
if (X, T) is a Baire space. 

(4) The properties from (i) to (v) are equivalent if 
(X, T) 'is Baire space and Hausdorff. 

Proof 

(1) 	 Follows from Theorem 2.2 and Corollary 1.5 (1) 
of [1]. 

(2) 	 This follows immediately from Corollary 2.3 
and Corollary 1.5 (2) [1]. 

(3) 	 The proof is immediate from Theorem 2.2 and 
Corollary 1.6 of [1]. 

(4) 	 The result follows immediately from Corollary 
2.3 and Corollary 1.6 of [1]. D 

Theorem 2.5. Let (X, T, I) be a space. Then the 
following are equivalent: 

(a) 	 (X, T) is QI-compact. 

(b) 	 For every regular open cover {Ua : a E V} 
of X, there exists a finite 
subfamily {Uai : i = 1,2, .... ,n} such that 
X- U {Cl(Ua;): i = 1,2, .... ,n} E I. 

(c) 	 For each family {Fa: a E V} of closed (regular 
closed) sets of X for which n{Fa: a E V} = 4>, 
there exists a finite subfamily {Fa;: i = 1,2, .... ,n} 
such that n{lnt(FaJ: i = 1,2, .... ,n} E I. 

Proof 

(a) ~ (b): Straightforward. 

(b)~(a): Let {Ua: a E V} be an open cover of X, 
then {Int(Cl(Ua)): a E V} is a regular open 
cover of X, then there exists a finite subfamily 
{Int(Cl(Ua;)): i = 1, 2, .... , n} such that 
X- U {Cl(Int(Cl(Uai ))): i = 1,2, .... ,n} E I. This 
implies, X- U {Cl(Uai ): i = 1,2, .... ,n} E I. 

(a) ~ (c): Let {Fa: a E V} be a family of closed 
sets for which n {Fa: a E V} = 4>. Then 
{X-Fa: aEV} is an open cover of X; by (a) there 
exists a finite subfamily {X-Fai: i = 1,2, .... ,n} 
such that X- U {Cl(X-FaJ: i = 1,2, .... , n} E I. 
Hence X- U {(X-Int Fa;): i = 1, 2, .... , n} E I. 
This implies, X-(X- n {Int Fai : i = 1, 2, .... , 
n}) E I. Thus n{Int(FaJ: i = 1,2, .... ,n} E I. 

(c) ~ (a): Let {Ua : a E V} be an open cover of X. 
Then {X-Ua : a E V} is a collection of closed sets 
and n{(X-Ua): a E V} = 4>. Hence there exists 
a finite subcollection {(X-Ua;): i = 1,2, .... ,n} 
such that n{Int(X-Uai ): i = 1, 2, .... , n} E I, 
n{(X-Cl(Ua;)): i = 1, 2, .... , n} E I. Thus, 
X- U {Cl(Uai ): i = 1,2, .... ,n} E I. D 

Theorem 2.6. A space (X, T, I) is QI-compact iff for 
each preopen cover {Ua : a E V} of X, there exists a 
finite subcollection {Ua i: i = 1,2, .... , n} such that 
X- U {Cl(Uai ): i = 1,2, .... ,n} E I. 

Proof Sufficiency is obvious. To show necessity, 
assume (X, T, I) is QI-compact and let {Ua : a E V} 
be a preopen cover of X. So, {Int(Cl(Ua)): a E V} is 
an open cover of X; from the hypothesis, there exists 
a finite subcollection {Int(Cl(UaJ): i = 1,2, .... ,n} 
such that X- U {Cl(Int(Cl(Ua;))): i = 1,2, .... ,n} = 
X- U {Cl(Ua;): i = 1,2, .... ,n} E I. D 

Theorem 2.7. If (X, T, I) is QI-compact, and J is an 
ideal on X with J d I, then (X, T,J) is QJ-compact. 

Proof This is obvious. D 

The following two theorems are slight improve­
ments of Theorems 1.3 and 1.4 of reference [1]. 

Theorem 2.8. If (X, T, Ie) is QIe-compact, where Ie 
denotes the ideal of countable subsets of X, then 
(X, T) is Lindelof. 

Proof Suppose that {Ua : a E V} is an open cover 
of X, then from the hypothesis there exists a 
finite subfamily {Uai : i = 1,2, .... ,n} such that 
X- U {Cl(Ua ;): i = 1, 2, .... , n} E Ie' i.e. 
X- U {Cl(Ua;): i = 1,2, .... ,n} has a countable 
subcover. D 

Given a space (X, T, I), I is said to be T-boundary 
[3] 	 if In T = {4>}. 

Theorem 2.9. Let (X, T, I) be a space with In the 
ideal of nowhere dense subsets of X. 

(a) 	 If (X, T, I) is QI-compact, and I is T-boundary, 
then (X, T) is QHC. 

(b) 	 If I d In and (X, T) is QHC, then (X, T) is 
QI-compact. 

Proof 

(a) 	 Let {Ua : a E V} be an open cover of X, there 
exists a finite subcollection {Ua;: i = 1,2, .... ,n} 
such that X- U {Cl(Ua;): i = 1,2, .... ,n} = EEl, 
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since I is T-boundary, then Int(E) = <p and 
hence (X, T) is QHC. 

(b) It follows immediately. 0 

Theorem 2.10. Let (X, T, I) be a space. If (X, T*) is 
QI-compact, then (X, T) is QI-compact. 

Proof. Follows from the fact that T* ~ T. 0 

Remark 2.2. [10]. Let (X, T, I) be a space, then 
T*(1, T) T iff every member of I is T-closed. 

Remark 2.3. Let (X, T, I) be a space such that every 
member of I is T-closed. Then (X, T) is QI-compact 
iff (X, T*) is QI-compact. 

3. PRESERVATION BY FUNCTIONS 

The following lemma will be used in the sequel. 

Lemma 3.1. [3]. Let f: (X, T, I) ~ (Y, a) be a func­
tion. Then f(I) = {f(E): EEl} is an ideal on Y. 0 

It is well known that the image of a compact space 
is compact under a continuous function. This result 
is generalized as follows. 

Theorem 3.2. If f: (X, T, I) ~ (Y, a) is a continuous 
surjection, and (X, T) is QI-compact, then (Y, a) is 
Qf(I)-compact. 

Proof Let {Va: Cl E V} be a a-open cover of Y, then 
{f-l(Va ): Cl E V} is a T-open cover of X, from 
assumption, there exists a finite subcollection 
{f-l(Vai ): i 1, 2, .... , n} such that 
X- U {Cl(f-1(Vai )): i = 1, 2, .... , n} E I implies, 
Y- U {Cl(VaJ: i = 1, 2, .... , n} E f(1). Therefore 
(Y, a) is Qf(1)-compact. 0 

Theorem 3.3. Let f: (X, T, I) ~ (Y, a,f(1)) be a 
* -homeomorphism such that every member of I is 
T-closed. Then (X, T) is QI-compact iff (Y, a) is 
Qf(1)-compact. 

Proof: Necessity. Assume that (X, T) is QI-compact, 
and let {Va: Cl E V} be a a-open cover of Y. 
Then {f-l(Va ): Cl E V} is a T*-open cover of 
X, from Remark 2.3, there exists a finite 
subcollection {f- 1(Vai ): i = 1,2, .... ,n} such that 
X- U {Cl(f-1(Vai )): i 1,2, .... ,n} = EEl. Conse­
quently, Y- U {Cl(Vai ): i = 1,2, .... ,n} = f(E) E f(I) 
and it is shown that (y, a) is Qf(I)-compact. 

Sufficiency. Assume that (Y, a) is Qf(I)-compact 
and let {Ua : Cl E V} be a T-open cover of X. Then 
{f( Ua ): Cl E V} is a a *-open cover of Y, and there 

exists a finite subcollection {f(Uai ): i 1,2, .... ,n} 
such that Y-U{Clf(UaJ: i= 1,2, .... ,n}= f(E) Ef(1)· 
Then X- U {Cl«Ua;): i = 1,2, .... ,n} Cf-l[y- U {Cl 
(f(Uai )):i=1,2, .... ,n}]=EEI, thus (X,T) is 
QI-compact. 0 

Definition 3.1. [11]. A function f: (X, T, I) ~ (Y, a) 
is said to be pointwise I-continuous (PI C) if 
f: (X, T*) ~ (Y, a) is continuous. 

Clearly continuous functions are PI C (since 
T* ~ 13 ~ T). 

Theorem 3.4. Let f: (X, T, I) ~ (Y, a) be a surjec­
tion. If f is PI C and (X, T) is QI-compact, then 
(Y, a) is Qf(I)-compact. 

Proof The result follows immediately from Theorem 
3.2 and Remark 2.3. 0 

Ideals are not as well behaved with respect to 
function inverses as the following example shows. 

Example 3.1. [1]. Let X and Y be the reals with the 
usual topology and let I be the ideal on Y of all 
subsets of the unit interval [0, 1]. Define f: X ~ Y 
by f(x) = Ixl. Observe that [V2, 3/4] ~f-\[O, 1]) 
but [1/2, 3/4] ¥- f- 1(A) for any A ~ [0, 1]. Thus the 
collection f-l(I) ={f- 1(E): EEl} is not hereditary 
and hence not an ideal. 

Lemma 3.5. [1]. If f: (X, T) ~ (Y, a,l) is an injec­
tion, then f-\l) is an ideal on X. 0 

Theorem 3.6. Let f: (X,T)~(Y,a,l) be an open 
bijection. If (Y, a, l) is Ql-compact, then (X, T) is 
Qf-l(l)-compact. 

Proof We observe that f- 1
: (Y,a,l)~(X,T) is a 

continuous surjection and by applying Theorem 3.2 
and Lemma 3.5, we have the result. 0 

Theorem 3.7. Let (Xa,Ta) be a family of spaces and 
let I be an ideal on (IIXa, II Ta). If IIXa is 
QI-compact, then each space (Xa,Ta) is 
QPa(I)-compact, where Pa is the projection map in 
coordinate Cl. 

Proof Follows immediately from Theorem 3.2 and 
the fact that each Pa is a continuous surjection. 0 

4. SETS QJ-COMPACT 
RELATIVE TO A SPACE 

Definition 4.1. A subset S of a space (X, T, I) is said 
to be QI-compact relative to X if for every open 
cover {Ua : Cl E V} of S, there exists a finite 
subcollection {Ua;: i = 1,2, .... ,n} such that 
S - U {Cl(Uai ): i 1,2, .... ,n} E 1. 
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Recall that S ~ (X, T) is an H-subset if every open 
cover of S contains a finite subcollection whose 
closures cover S. 

The following results are immediate and the 
obvious proofs are omitted. 

Theorem 4.1. A subset S of a space (X, T, I) is an 
H-subset iff it is Q{ <f> }-compact iff it is QIr-compact. 

o 

Theorem 4.2. For a subset S of a space (X, T, I), the 
following are equivalent: 

(a) 	 S is QI-compact relative to X, 

(b) 	 For every cover {Va: a E V} of S by preopen 
sets of X, there exists a finite 
subfamily {Va;: i = 1,2, .... ,n} such that 
S- U {Cl(Va;): i = 1,2, .... ,n} E I. 0 

Theorem 4.3. Any H-subset is a QIn-compact 
subset. 0 

Theorem 4.4. If Sk, k = 1,2 are QI-compact sets 
relative to a space (X, T, I), then SI U S2 is 
QI-compact relative to X. 

Proof. Let {Va: a E V} be an open cover of S1 U S2. 
Then it is an open cover of Sk for K = 1,2. Since Sk 

is QI-compact relative to X, then there exists a finite 
subcollection {Va; : i = 1, 2, .... , n} such that 
Sk- U {Cl(Va;): i = 1, 2, .... , n} E I for K = 1, 2. 
Therefore, SI U S2- U {Cl(Va;): i = 1,2, .... , n} E l. 
So, S1 U S2 is QI-compact relative to X. 0 

Corollary 4.5. The intersection of two open sets 
having QI-compact complements is also open having 
QI-compact complement. 

Proof. Follows directly from Theorem 4.4. 0 

If I is an ideal on X and S ~ X, we denote the 
restriction of I to S by I IS = {E US: E E I}. It is 
easily seen that I IS is an ideal [1]. 

Theorem 4.6. Let (X, T, I) be a space, if (S, TIS) is 
QI I S-compact, then S is QI-compact, for every 
S~X. 

Proof. Let {Va: a E V} be a T-open cover of S. Then 
{Va n S: a E V} is a TIS-open cover of S. There exists 
then a finite subfamily {Va; n S: i = 1,2, .... ,n} such 
that S- U {Cl(Va; n S): i = 1, 2, .... , n} E I Is ~ I. 
Hence S is QI-compact. 0 

s. COUNTABLY QJ-COMPACT SPACES 

Definition 5.1. A space (X, T, I) is said to be 
countably QI-compact if for every countable 
open cover {Va: a E V} of X, there exists a finite 
subfamily {Va;: i = 1,2, .... ,n} such that 
X- U {Cl(Va;): i = 1,2, .... ,n} E I. 

From the above definition, we deduce the follow­
ing theorem. 

Theorem 5.1. For a space (X, T, I), the following are 
equivalent: 

(a) 	 (X, T) is lightly compact. 

(b) (X, T, I) is countably QI-compact, where 
1= {<f>}. 

(c) 	 (X, T, I) is countably QIr-compact. 0 

Remark 5.1. 

(a) 	 Every QI-compact space is count ably QI­
compact. 

(b) 	 Every countably I-compact is countably 
QI-compact. 

Question. The authors need an example for 
countably QI-compact and not for QI-compact. 

Theorem 5.2. If (X, T, I) is countably QI-compact 
and Lindelof, then (X, T, I) is QI-compact. 0 

Theorem 5.3. Let (X, T, I) be a space. The following 
are equivalent: 

(a) 	 (X, T) is count ably QI-compact. 

(b) 	 For every countable regular open cover 
{Va: a E V} of X, there exists a finite sub­
family {Va;: i = 1,2, .... ,n} such that 
X- U {Cl(Va;): i = 1,2, .... ,n} E I. 

(c) 	 For every countable family {Fa: a E V} of closed 
sets such that n{Fa: a = 1,2, .... ,oo} = <f> there 
exists a finite subfamily {Fa;: i = 1,2, .... ,n} 
such that n{Int(Fa;): i = 1,2, .... ,n} E I. 

Proof. The proof is similar to that of Theorem 2.5 
and is thus omitted. 0 

The following two theorems are slight improve­
ments of Theorem 2.4 [2]. 

Theorem 5.4. If (X, T, I) is count ably QI-compact 
and I is T-boundary, then (X, T) is lightly compact. 0 
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Theorem 5.5. Let (X, T, I) be a space. If [';;J In and 
(X, T) is lightly compact, then (X, T) is countably 
QI-compact. 

Proof. Let {Ua : a E V} be a countable open 
cover of X. From hypothesis, there exists a finite 
subfamily {Uai : i = 1,2, .... ,n} such that 
X = CI(U Uai : i = 1,2, .... ,n). Thus X- U {CI(Uaj ): 

i = 1,2, .... ,n} ~ X- U {(Ua;): i = 1,2, .... ,n} E In ~ I. 
o 

The following theorem is an improvement of 
Corollary 2.5 [2] 

Theorem 5.6. Let (X, T) be a space. Then (X, T) is 
lightly compact iff (X, T) is count ably QIn-compact. 

Proof. Follows from the fact that In is T-boundary 
and by applying Theorem 5.5. 0 

Corollary 5.7. If (X, T) is a completely regular 
T1-space, then (X, T) is pseudocompact iff (X, T) is 
countable QIn-compact. 

Proof. It is well known [12] that in a completely 
regular T1-space, pseudocompactness is equivalent 
to light compactness. The result then follows from 
Theorem 5.6. 0 

Theorem 5.8. Let (X, T) be a Baire space. Then the 
following are equivalent: 

(a) 	 (X, T) is countably QIm-compact. 

(b) 	 (X, T) is lightly compact. 

(c) 	 (X, T) is countably QIn-compact. 

Proof. Follows from the definition of Baire space 
and Theorems 5.5 and 5.6. 0 

Theorem 5.9. Let (X, T, I) be a space. If (X, T*) 
is countably QI-compact, then (X, T) is countably 
QI-compact. 

Proof. The result follows immediately by from the 
observtion that T*(I)";;J T. 0 

The obvious proofs of the following theorems are 
omitted. 

Theorem S.lU. ~f (X, T, I) is countably QI-compact 
and J is an ideal on X such that J ";;J I, then (X, T, J) 
is countably QJ-compact. 0 

Theorem 5.11. Let f: (X,T,I)~(Y,O') be a 
continuous surjection. If (X, T, I) is countably QI­
compact, then (Y,O') is countably Qf(I)-compact. 

D 

Theorem 5.12. If f: (X,T)~(Y,O',J) is an open 
bijection and (Y,O') is countably QJ-compact, then 
(X, T) is countably Qf-1(J)-compact. 0 

Theorem 5.13. Let {(Xa ,To): a E V} be a family of 
spaces with I an ideal on (llXa,ll To). If llXa is 
countably QI-compact, then each factor (Xa ,To) is 
QPa(I)-compact, where Po is the projection map in 
coordinate a. 

Proof. The result follows from Theorem 5.11, since 
each Po is a continuous surjection. 0 
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