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ABSTRACT

Given a nonempty set X, an ideal I on X is a collection of subsets of X closed
under finite union and subset operations. Newcomb (1967) and Ran¢in (1972)
defined a generalization of compactness (I-compactness) which requires that an
open cover of a space have a finite subcollection which covers all the space except
for a set in the ideal. In this paper we introduce and study two different notions of
generalized compactness namely, quasi I-compactness and countable quasi
I-compactness. Classical results concerning quasi H-closed and lightly compact
spaces are obtained by letting /.{$}. Some results in [1, 2] are improved.
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QUASI COMPACTNESS WITH RESPECT TO AN IDEAL

1. INTRODUCTION

The concept of compactness modulo an ideal was
introduced by Newcomb [3] and Ranéin [4], and
studied by Hamlett, Rose, and Jankovi¢ in [1] and
[2]. Newcomb also defined the concept of countable
compactness modulo an ideal in [3]. The aim of this
paper is to introduce and study quasi compact and
countably quasi compact spaces via ideals as a gen-
eralization of I-compact and countably I-compact
spaces. The concepts of quasi H-closed, H-closed,
and lightly compact spaces are special cases.

Throughout the present paper, (X,t) and (Y, 0)
(or simply X and Y) denote topological spaces on
which no separation axiom is assumed unless explic-
itly stated. A subset S of a topological space is said to
be regular open (resp. regular closed, preopen [5]) if
Int(CI(S)) = S(resp. Cl(Int(S)) = S, S C Int(CI(S))),
where CI(S)(resp. Int(S)) denotes the closure (resp.
interior) of S. The complement of § will be denoted
by (X-S).

Given a nonempty set X, a collection I of subsets
of X is called an ideal [6] if:

(1) A€ and B C A implies B € I (heredity), and

(2) A€l and B € I implies A U B €] (finite addi-
tivity).

If X ¢ I then [ is called a proper ideal. We will
denote by (X, 7,I) a topological space (X, 7) and an
ideal I of subsets of X. Given a space (X,7,1),
we denote by 7*(I) the topology generated by the
basis B(,7) ={U-E: U€ 1, EE I} [7]. A bijection
f: (X,7,1)—>(Y,0,J) is called a *-homeomorphism
if f: (X,7*)—> (Y,0*) is a homeomorphism [8]. A
space (X, 1) is said to be extremally disconnected if
CI(U) € 1 for every U € 1. Recall that a space (X, 1)
is said to be quasi H-closed, abbreviated QHC, iff
every open cover of X has a finite subcollection
which covers a dense subset of X. A space is said to
be H-closed iff it is Hausdorff and QHC. We will say
that a space (X,7) lightly compact iff for every
countable open cover {U,: a € V} of X there exists
a finite subcollection {U,;: i =1,2,....,n} such that
X=Cl(U{U,;: i=1,2,....,n}). A space (X,7,1I) is
said to be I-compact [3] resp. countably I-compact
[3]) iff for every open (resp. countable open)
cover {U,:a€V} of X there exists a finite
subfamily {U,;:i=1,2,....,n} such that
X-U{lU,;:i=1,2,..,n€L
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2. QUASI I-COMPACT SPACES

Definition 2.1. A space (X,7,1) is said to be quasi
I-compact (abbreviated as QI-compact) if for
every open cover {U,: a € V} of X, there exists a
finite subcollection {U,;: i=1,2,....,n} such that
X-U{Cl(U,): i=1,2,...,n}€EL

Remark 2.1. The class of QJI-compact spaces con-
tains the class of I-compact spaces and the reverse
does not hold.

Example 2.1. Let X =[0,1] be the closed unit
interval in the real line and let 7 be the topology
generated by using the usual subspace topology and
the rationals as a subbase. One can deduce that
(X, 7) is QI;-compact but not I;-compact, where I;
denotes the ideal of finite subsets of X.

The following two immediate theorems are stated
without proof.

Theorem 2.1. Let (X, 1, 1) be a space, then we have:

() (X,1) is Q{d}-compact iff (X,7) is QHC.

() If (X,7) is Hausdorff, then (X,7) is
Q{d}-compact iff (X,7) is H-closed.

(c) If (X,7) is E.D., then (X,7) is QI-compact iff
(X,7) is I-compact. [

Theorem 2.2. (X,7) is QHC iff (X,71;) is
QI-compact. [J

Corollary 2.3. If (X, ) is Hausdorff, then (X,7) is
H-closed iff (X,7) is QI;-compact. [

Recall that (X, 7) is a Baire space [9] iff I,N7=4¢,
where I, denotes the ideal of meager (first category)
subsets of X.

Corollary 2.4. If (X,7) is a space, consider the

following:

(i) (X,7) is QI;-compact.

(@) (X,7) is QHC.

(#ii) (X, 7) is I,-compact, where I, denotes the ideal
of nowhere dense subsets of X.

(iv) (X, 1) is H-closed.

(v) (X,7) is I,-compact.

Then we have:

(1) The properties from (i) to (iii) are equivalent.
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(2) The properties (i), (iii), and (iv) are equivalent
if (X,7) is Hausdorff.

(3) The properties (i), (ii), and (v) are equivalent
if (X,7) is a Baire space.

(4) The properties from (i) to (v) are equivalent if
(X, 7) is Baire space and Hausdorff.

Proof.

(1) Follows from Theorem 2.2 and Corollary 1.5 (1)
of [1].

(2) This follows immediately from Corollary 2.3
and Corollary 1.5 (2) [1].

(3) The proof is immediate from Theorem 2.2 and
Corollary 1.6 of [1].

(4) The result follows immediately from Corollary
2.3 and Corollary 1.6 of [1]. O

Theorem 2.5. Let (X,7,I) be a space. Then the
following are equivalent:

(a) (X,7) is QI-compact.

(b) For every regular open cover {U,: a € V}
of X, there exists a finite
subfamily {U,;:i=1,2,....,n} such that
X-u{Cl(U,):i=1,2,....,n}EL

(¢) For each family {F,: a € V} of closed (regular
closed) sets of X for which N{F,: c €V} = ¢,
there exists a finite subfamily {F,;: i = 1,2,....,n}
such that N{Int(F,;): i=1,2,.....,n} EL

Proof.
(a) — (b): Straightforward.

(b)— (a): Let {U,: « € V} be an open cover of X,
then {Int(CI(U,)): « €V} is a regular open
cover of X, then there exists a finite subfamily
{Int(Cl(U,;): i = 1, 2,...., n} such that
X-U{Cl(Int(Cl(U,,))): i =1,2,....,n} €L This
implies, X- U{CI(U,;): i=1,2,....,n} EL

(@) (c): Let {F,: « €V} be a family of closed
sets for which N{F,: « € V} = ¢. Then
{X-F,: €V} is an open cover of X; by (a) there
exists a finite subfamily {X-F,;:i=1,2,....,n}
such that X- U {CI(X-F,;):i=1,2,.....,n} € L
Hence X- U {(X-Imt F,;): i =1,2,...,n} € L
This implies, X-(X- N {Int F,;: i = 1, 2,....,
n}) €1 Thus N{Int(F,;,):i=1,2,....,n}E L
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(c)—(a): Let {U,: a € V} be an open cover of X.
Then {X-U,: o € V} is a collection of closed sets
and N{(X-U,): « € V} = . Hence there exists
a finite subcollection {(X-U,;):i=1,2,....,n}
such that N{Int(X-U,;): i = 1, 2,...., n} € I,
N{(X-Cl(U,))): i = 1, 2,...., n} € I. Thus,
X-u{Cl(U,):i=1,2,....,n}€L O

Theorem 2.6. A space (X, 7,1) is QI-compact iff for
each preopen cover {U,: a € V} of X, there exists a
finite subcollection {U,;: i=1,2,....,n} such that
X-u{Cl(U,)):i=1,2,....,n}E L

Proof. Sufficiency is obvious. To show necessity,
assume (X, 7,/) is QI-compact and let {U,: a € V}
be a preopen cover of X. So, {Int(CI(U,)): a € V}is
an open cover of X; from the hypothesis, there exists
a finite subcollection {Int(CI(U,))):i=1,2,....,n}
such that X-U{Cl(Int(CI(U,,)):i=1,2,....,n} =
X-u{Cl(U,):i=1,2,.....,n}€ L O

Theorem 2.7. If (X, 7,1) is QI-compact, and J is an
ideal on X with J D I, then (X, t,J) is QJ-compact.

Proof. This is obvious. [

The following two theorems are slight improve-
ments of Theorems 1.3 and 1.4 of reference [1].

Theorem 2.8. If (X,7,1.) is QI -compact, where I,
denotes the ideal of countable subsets of X, then
(X, 7) is Lindelof.

Proof. Suppose that {U,: « € V} is an open cover
of X, then from the hypothesis there exists a
finite subfamily {U,;:i=1,2,....,n} such that
X- U {Cly,y): i =1, 2., n €1, ie
X-u{Cl(U,,):i=1,2,.....n} has a countable
subcover. [

Given a space (X, 7, 1), I is said to be 7-boundary
[3] if INT={¢}.

Theorem 2.9. Let (X,7,1) be a space with I the

ideal of nowhere dense subsets of X.

(a) If (X,7,I) is QI-compact, and [ is 7-boundary,
then (X,7) is QHC.

(b) If ID1, and (X,7) is QHC, then (X,7) is
QI-compact.

Proof.

(a) Let {U,: « €V} be an open cover of X, there
exists a finite subcollection {U,;: i =1,2,....,n}
such that X-U{CI(U,,):i=1,2,....,n}=E€],
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since I is t-boundary, then Int(E)=¢ and
hence (X, 1) is QHC.

(b) It follows immediately. (]

Theorem 2.10. Let (X, 7,1) be a space. If (X,7*) is
QI-compact, then (X,7) is QI-compact.

Proof. Follows from the fact that +* D 1. [J

Remark 2.2. [10]. Let (X,7,1) be a space, then
7*(I,7) = v iff every member of I is 7-closed.

Remark 2.3. Let (X, 7, 1) be a space such that every
member of I is 7-closed. Then (X, 1) is Q/-compact
iff (X,7*) is QI-compact.

3. PRESERVATION BY FUNCTIONS
The following lemma will be used in the sequel.

Lemma 3.1. [3]. Let f: (X,1,1)— (Y, 0) be a func-
tion. Then f(I) = {f(E): EE I} is an ideal on Y. O

It is well known that the image of a compact space
is compact under a continuous function. This result
is generalized as follows.

Theorem 3.2. If f: (X,1,1)— (Y, 0¢) is a continuous
surjection, and (X, 1) is Ql-compact, then (Y, o) is
Qf (I)-compact.

Proof. Let {V,: o« € V} be a o-open cover of Y, then
{f/(V,): €V} is a 7-open cover of X, from
assumption, there exists a finite subcollection
{f'WVv,): i = 1, 2,.., n} such that
X- U {Cl(f ' (V,): i =1,2,..., n} € I implies,
Y- U {Ci(V,,): i =1,2,..., n} € f(I). Therefore
(Y,0) is Qf(I)-compact. [J

Theorem 3.3. Let f: (X,7,I1)—> (Y,0,f(I)) be a
*-homeomorphism such that every member of [ is
7-closed. Then (X,7) is QI-compact iff (Y,o) is
Qf (I)-compact.

Proof: Necessity. Assume that (X, ) is QI-compact,
and let {V,:a €V} be a o-open cover of Y.
Then {f}(V,):a€V} is a 7*-open cover of
X, from Remark 2.3, there exists a finite
subcollection {f~'(V,,):i=1,2,....,n} such that
X-U{Cl(f (V) i=1,2,....,n}=E€I Conse-
quently, Y- U {CI(V,,):i = 1,2,....,n} = f(E) € f(I)
and it is shown that (Y, o) is Qf(I)-compact.

Sufficiency. Assume that (Y, o) is Qf(I)-compact
and let {U,: « € V} be a t-open cover of X. Then
{f(U,): « €V} is a o*-open cover of Y, and there
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exists a finite subcollection {f(U,,):i=1,2,....,n}
such that Y-U{CIf(U,,): i=1,2,....,n}=f(E)Ef(I).
Then X-U{CI((U,):i=1,2,.....n}CfY-U{CI
(f(U,):i=12,...,n}]=E€l, thus (X,7) is
QI-compact. [J

Definition 3.1. [11]. A function f: (X,7,1)— (Y, 0)
is said to be pointwise I-continuous (PI C) if
f: (X,7*)— (Y, 0) is continuous.

Clearly continuous functions are PI C (since
T*2OB D).

Theorem 3.4. Let f: (X,7,1)—(Y,0) be a surjec-
tion. If fis PI C and (X,r) is QI-compact, then
(Y,0) is Qf(I)-compact.

Proof. The result follows immediately from Theorem
3.2 and Remark 2.3. O

Ideals are not as well behaved with respect to
function inverses as the following example shows.

Example 3.1. [1]. Let X and Y be the reals with the
usual topology and let I be the ideal on Y of all
subsets of the unit interval [0, 1]. Define f: X—>Y
by f(x) =|x|. Observe that [V, %]Cf7'([0, 1])
but [Y%, %] #f'(A) for any A C [0, 1]. Thus the
collection f~'(I) = {f '(E): E € I} is not hereditary
and hence not an ideal.

Lemma 3.5. [1]. If f: (X,7)— (Y, 0,J) is an injec-
tion, then f~!(J) is an ideal on X. O

Theorem 3.6. Let f: (X,7)— (Y, 0,J) be an open
bijection. If (Y,0,J) is QJ-compact, then (X,7) is
Qf "'(J )-compact.

Proof. We observe that f™': (Y,0,J)—(X,7) is a
continuous surjection and by applying Theorem 3.2
and Lemma 3.5, we have the result. [

Theorem 3.7. Let (X,,7,) be a family of spaces and
let I be an ideal on (IIX,,II7,). If IIX, is
QI-compact, then each space (X,,7,) is
QP (I)-compact, where P, is the projection map in
coordinate a.

Proof. Follows immediately from Theorem 3.2 and
the fact that each P, is a continuous surjection. [J

4. SETS QI-COMPACT
RELATIVE TO A SPACE

Definition 4.1. A subset S of a space (X, , ) is said
to be QIl-compact relative to X if for every open
cover {U,: a €V} of §, there exists a finite
subcollection {U,;:i=1,2,....,n} such that
S-u{Cl(U,):i=1,2,.....n}E L
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Recall that S C (X, 7) is an H-subset if every open
cover of S contains a finite subcollection whose
closures cover S.

The following results are immediate and the
obvious proofs are omitted.

Theorem 4.1. A subset S of a space (X,t,1) is an
H-subset iff it is Q{¢}-compact iff it is QI;-compact.
|

Theorem 4.2. For a subset S of a space (X,7,1), the
following are equivalent:

(a) S is QI-compact relative to X,

(b) For every cover {V,: a € V} of S by preopen
sets of X, there exists a finite
subfamily {V,,:i=1,2,....,n} such that
S-u{Cl(V,):i=1,2,...,n}€L O

Theorem 4.3. Any H-subset is a QI -compact
subset. []

Theorem 4.4. If S,,k=1,2 are QI-compact sets
relative to a space (X,t,I), then S,US, is
QI-compact relative to X.

Proof. Let {V,: a € V} be an open cover of §; U §,.
Then it is an open cover of S, for K =1,2. Since S,
is QI-compact relative to X, then there exists a finite
subcollection {V,;: i = 1, 2,...., n} such that
S-uU{Cl(V,):i=1,2,....,nEIfor K =1,2.
Therefore, S; U S,- U {CI(V,,):i=1,2,....,n} E L
So, S, US, is QI-compact relative to X. []

Corollary 4.5. The intersection of two open sets
having QI-compact complements is also open having
QI-compact complement.

Proof. Follows directly from Theorem 4.4. []

If I is an ideal on X and S C X, we denote the
restriction of I to S by I |[S={EUS: EEI}. It is
easily seen that I |S is an ideal [1].

Theorem 4.6. Let (X,1,1) be a space, if (S,7|S) is
QI | S-compact, then S is QI-compact, for every
SCX

Proof. Let {U,: a € V} be a 1-open cover of S. Then
{U,NS: a €V} is a 7|S-open cover of S. There exists
then a finite subfamily {U,,N S:i=1,2,....,n} such
that §- U {CI(U,; N §):i=1,2,.....,n}€I|SC L
Hence § is QI-compact. []
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5. COUNTABLY QI-COMPACT SPACES

Definition 5.1. A space (X,t,I) is said to be
countably QI-compact if for every countable
open cover {V,: a € V} of X, there exists a finite
subfamily {Viri=1,2,....,n} such that
X-u{Cl(V,):i=1,2,....,n}EL

From the above definition, we deduce the follow-
ing theorem.

Theorem 5.1. For a space (X, 7, 1), the following are
equivalent:

(a) (X, 1) is lightly compact.

(b) (X,7,I) is countably QI-compact, where
I1={¢}.

(¢) (X,7,1) is countably QI;-compact. []

Remark 5.1.

(a) Every QI-compact space is countably QI-
compact.

(b) Every countably I-compact is countably

QI-compact.

Question. The authors need an example for
countably QI-compact and not for QI-compact.

Theorem 5.2. If (X,7,I) is countably QI-compact
and Lindelof, then (X, t,1) is QI-compact. []

Theorem 5.3. Let (X, 1,1) be a space. The following
are equivalent:

(a) (X,7) is countably QI-compact.

(b) For every countable regular open cover
{U,: « €V} of X, there exists a finite sub-
family {U,;:i=1,2,....,n} such that
X-U{Cl(U,):i=1,2,...,n}EL

(c) For every countable family {F,: a € V} of closed
sets such that N{F,: a =1,2,....,} = ¢ there
exists a finite subfamily {F,;:i=1,2,....,n}
such that N{In«(F,;): i=1,2,....,n} EL

Proof. The proof is similar to that of Theorem 2.5
and is thus omitted. [J

The following two theorems are slight improve-
ments of Theorem 2.4 [2].

Theorem 5.4. If (X,1,1) is countably QI-compact
and / is T-boundary, then (X, 7) is lightly compact. (]
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Theorem 5.5. Let (X, 1,1) be a space. If /D I, and
(X,~) is lightly compact, then (X, t) is countably
QI-compact.

Proof. Let {U,: « €V} be a countable open
cover of X. From hypothesis, there exists a finite
subfamily {U,:i=1,2,....,n} such that
X=CU,:i=1,2,...,n). Thus X-U{CI(U,):
i=1,2,...n}CX-U{U,)i=12,....nfel,CL

|

The following theorem is an improvement of
Corollary 2.5 [2]

Theorem 5.6. Let (X,7) be a space. Then (X, 7) is
lightly compact iff (X, ) is countably QI -compact.

Proof. Follows from the fact that I, is T-boundary
and by applying Theorem 5.5. [J

Corollary 5.7. If (X,7) is a completely regular
T,-space, then (X, 7) is pseudocompact iff (X, 1) is
countable QI -compact.

Proof. Tt is well known [12] that in a completely
regular T,-space, pseudocompactness is equivalent
to light compactness. The result then follows from
Theorem 5.6. [J

Theorem 5.8. Let (X, 1) be a Baire space. Then the
following are equivalent:

(a) (X,7) is countably QI -compact.
(b) (X,7) is lightly compact.
(¢) (X,7) is countably QI -compact.

Proof. Follows from the definition of Baire space
and Theorems 5.5 and 5.6. (J

Theorem 5.9. Let (X,1,I) be a space. If (X,7%)
is countably QI-compact, then (X,T) is countably
Ql-compact.

Proof. The result follows immediately by from the
observtion that v*(/) D 7. [J

The obvious proofs of the following theorems are
omitted.

Theorem 5.10. if (X,7,1) is countably QI-compact
and J is an ideal on X such that J D I, then (X,7,J)
is countably QJ-compact. [

Theorem 5.11. Let f:(X,7,I)—(Y,0) be a
continuous surjection. If (X,r,1) is countably QI-
compact, then (Y, o) is countably Qf(I)-compact.

g
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Theorem 5.12. If f: (X,7)—(Y,0,/) is an open
bijection and (Y, o) is countably QJ-compact, then
(X,7) is countably Qf '(J)-compact. []

Theorem 5.13. Let {(X,,7,): « € V} be a family of
spaces with I an ideal on (I1X,,I17,). If [1X, is
countably QI-compact, then each factor (X,,7,) is
QP (I)-compact, where P, is the projection map in
coordinate a.

Proof. The result follows from Theorem 5.11, since
each P, is a continuous surjection. []

ACKNOWLEDGEMENT

We would like to thank the referees for valuable
comments and suggestions.

REFERENCES

[1] T. R. Hamlett and D. Jankovié, “Compactness with
Respect to an Ideal”, Boll. U.M.I., 7(4-B) (1990),
p- 849.

2] T. R. Hamlett, D. Jankovi¢, and D. Rose, “Count-
able Compactness with Respect to an Ideal”, Math.
Chron., 20 (1991), p. 109.

[3] R.L.Newcomb, “Topologies Which are Compact
Modulo an Ideal”, Ph.D. Dissertation, University of
California at Santa Barbara, 1967.

[4] D. V.Randin, “Compactness Modulo an Ideal”,
Soviet Math. Dokl., 13(1) (1972), p. 193.

[S] A.S.Mashhour, M.E.Abd El-Monsef, and
S. N. El Deeb, “On Precontinuous and Weak Precon-
tinuous Mappings”, Proc. Math. and Phys. Soc.,
Egypt, 53 (1982), p. 47.

[6] K. Kuratowski, Topologies I. : Warszawa, 1933.

[71 R. Vaidyanathaswamy, Set Topology. New York:
Chelsea Publishing Company, 1960.

[8] T.R. Hamlett and D. Rose, “*-Topological Prop-
erties”, Internat. J. Math. and Math. Sci., 13(3)
(1990), p. 507.

[9] R. C. Haworth and R. A. Mc Coy, “Baire Spaces”,

 Dissertationes Mathematicae, CXLI (1977), p. 1.

[10] P. Samuels, “A Topology Formed from a Given
Topology and an Ideal”, J. London Math. Soc., 2(10)
(1975), p. 409.

[11] K. Kaniewski and Z. Piotrowski, “Concerning
Continuity Apart from a Meager Set”, Proc. Math.
Soc., 98 (1986), p. 324.

[12] S. Willard, General Topology. London: Addison—
Wesley, 1970.

Paper Received 2 November 1991; Revised 27 May 1992,

April 1994





