QUASI COMPACTNESS WITH RESPECT TO AN IDEAL

M. E. Abd El-Monsef*, E. F. Lashien, and A. A. Nasef

Tanta University Tanta, Egypt

الخلاصــة :

يُـعرَّف المثالى I على المجموعة X بأنَّـه تجـمَـع المجموعات الجزئية المغلق تحت تأثير عمليتي الاحتواء والاتحاد المحدود . ولقد أدخل (نيوكمب) عام ١٩٦٧ و (رانسن) عام ١٩٧٧ مفهوم الأصياط I كتعميم للأصياط والذي يتطلب أنَّـه لأيَّ غطاءٍمفتوح للفراغ توجد عائلة جزئية تغطي الفراغ ماعدا مجموعةٍ من المثالي . تقدِّم في هذا البحث وندرس نوعين من المفاهيم كتعميم للأصياط ؛ الأول شبه الاصياط I ، والثاني شبه الأصياط المعدود I . وقد تم تقوية بعض النتائج في البحثين [١ ، ٢] من قائمة المراجع .

ABSTRACT

Given a nonempty set X, an ideal I on X is a collection of subsets of X closed under finite union and subset operations. Newcomb (1967) and Rančin (1972) defined a generalization of compactness (*I*-compactness) which requires that an open cover of a space have a finite subcollection which covers all the space except for a set in the ideal. In this paper we introduce and study two different notions of generalized compactness namely, quasi *I*-compactness and countable quasi *I*-compactness. Classical results concerning quasi *H*-closed and lightly compact spaces are obtained by letting $I . \{\phi\}$. Some results in [1, 2] are improved.

*Address for correspondence: Department of Mathematics Faculty of Science Tanta University Tanta, Egypt

QUASI COMPACTNESS WITH RESPECT TO AN IDEAL

1. INTRODUCTION

The concept of compactness modulo an ideal was introduced by Newcomb [3] and Rančin [4], and studied by Hamlett, Rose, and Janković in [1] and [2]. Newcomb also defined the concept of countable compactness modulo an ideal in [3]. The aim of this paper is to introduce and study quasi compact and countably quasi compact spaces via ideals as a generalization of *I*-compact and countably *I*-compact spaces. The concepts of quasi *H*-closed, *H*-closed, and lightly compact spaces are special cases.

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces on which no separation axiom is assumed unless explicitly stated. A subset S of a topological space is said to be regular open (resp. regular closed, preopen [5]) if $Int(Cl(S)) = S(resp. Cl(Int(S)) = S, S \subseteq Int(Cl(S)))$, where Cl(S) (resp. Int(S)) denotes the closure (resp. interior) of S. The complement of S will be denoted by (X-S).

Given a nonempty set X, a collection I of subsets of X is called an ideal [6] if:

- (1) $A \in I$ and $B \subseteq A$ implies $B \in I$ (heredity), and
- (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$ (finite additivity).

If $X \notin I$ then I is called a proper ideal. We will denote by (X, τ, I) a topological space (X, τ) and an ideal I of subsets of X. Given a space (X, τ, I) , we denote by $\tau^*(I)$ the topology generated by the basis $\beta(I, \tau) = \{U \in \tau, E \in I\}$ [7]. A bijection $f: (X, \tau, I) \rightarrow (Y, \sigma, J)$ is called a *-homeomorphism if $f: (X, \tau^*) \rightarrow (Y, \sigma^*)$ is a homeomorphism [8]. A space (X, τ) is said to be extremally disconnected if $Cl(U) \in \tau$ for every $U \in \tau$. Recall that a space (X, τ) is said to be quasi H-closed, abbreviated QHC, iff every open cover of X has a finite subcollection which covers a dense subset of X. A space is said to be H-closed iff it is Hausdorff and QHC. We will say that a space (X, τ) lightly compact iff for every countable open cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X there exists a finite subcollection $\{U_{\alpha i}: i = 1, 2, ..., n\}$ such that $X = Cl(\cup \{U_{\alpha i}: i = 1, 2, ..., n\}).$ A space (X, τ, I) is said to be I-compact [3] resp. countably I-compact [3]) iff for every open (resp. countable open) cover $\{U_{\alpha}: \alpha \in \nabla\}$ of X there exists a finite subfamily $\{U_{ai}: i = 1, 2, \dots, n\}$ such that $X - \cup \{U_{\alpha i}: i = 1, 2, \dots, n\} \in I.$

2. QUASI I-COMPACT SPACES

Definition 2.1. A space (X, τ, I) is said to be quasi *I*-compact (abbreviated as *QI*-compact) if for every open cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X, there exists a finite subcollection $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that $X \cdot \bigcup \{Cl(U_{\alpha i}) : i = 1, 2, ..., n\} \in I.$

Remark 2.1. The class of *QI*-compact spaces contains the class of *I*-compact spaces and the reverse does not hold.

Example 2.1. Let X = [0,1] be the closed unit interval in the real line and let τ be the topology generated by using the usual subspace topology and the rationals as a subbase. One can deduce that (X, τ) is $QI_{\rm f}$ -compact but not $I_{\rm f}$ -compact, where $I_{\rm f}$ denotes the ideal of finite subsets of X.

The following two immediate theorems are stated without proof.

Theorem 2.1. Let (X, τ, I) be a space, then we have:

- (a) (X, τ) is $Q\{\phi\}$ -compact iff (X, τ) is QHC.
- (b) If (X, τ) is Hausdorff, then (X, τ) is $Q\{\phi\}$ -compact iff (X, τ) is H-closed.
- (c) If (X, τ) is E.D., then (X, τ) is Q*I*-compact iff (X, τ) is *I*-compact. \Box

Theorem 2.2. (X, τ) is QHC iff (X, τ, I_f) is QI_f -compact. \Box

Corollary 2.3. If (X, τ) is Hausdorff, then (X, τ) is *H*-closed iff (X, τ) is QI_f -compact. \Box

Recall that (X, τ) is a Baire space [9] iff $I_m \cap \tau = \phi$, where I_m denotes the ideal of meager (first category) subsets of X.

Corollary 2.4. If (X, τ) is a space, consider the following:

- (i) (X, τ) is QI_{f} -compact.
- (ii) (X, τ) is QHC.
- (*iii*) (X, τ) is I_n -compact, where I_n denotes the ideal of nowhere dense subsets of X.
- $(iv)(X,\tau)$ is H-closed.
- (v) (X, τ) is $I_{\rm m}$ -compact.

Then we have:

(1) The properties from (i) to (iii) are equivalent.

- (2) The properties (i), (iii), and (iv) are equivalent if (X, τ) is Hausdorff.
- (3) The properties (i), (ii), and (v) are equivalent if (X, τ) is a Baire space.
- (4) The properties from (i) to (v) are equivalent if (X, τ) is Baire space and Hausdorff.

Proof.

- (1) Follows from Theorem 2.2 and Corollary 1.5 (1) of [1].
- (2) This follows immediately from Corollary 2.3 and Corollary 1.5 (2) [1].
- (3) The proof is immediate from Theorem 2.2 and Corollary 1.6 of [1].
- (4) The result follows immediately from Corollary 2.3 and Corollary 1.6 of [1]. □

Theorem 2.5. Let (X, τ, I) be a space. Then the following are equivalent:

- (a) (X, τ) is QI-compact.
- (b) For every regular open cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X, there exists a finite subfamily $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that $X \cdot \cup \{Cl(U_{\alpha i}) : i = 1, 2, ..., n\} \in I.$
- (c) For each family $\{F_{\alpha} : \alpha \in \nabla\}$ of closed (regular closed) sets of X for which $\cap \{F_{\alpha} : \alpha \in \nabla\} = \phi$, there exists a finite subfamily $\{F_{\alpha i} : i = 1, 2, ..., n\}$ such that $\cap \{Int(F_{\alpha i}) : i = 1, 2, ..., n\} \in I$.

Proof.

 $(a) \rightarrow (b)$: Straightforward.

- $(b) \rightarrow (a)$: Let $\{U_{\alpha} : \alpha \in \nabla\}$ be an open cover of X, then $\{Int(Cl(U_{\alpha})): \alpha \in \nabla\}$ is a regular open cover of X, then there exists a finite subfamily $\{Int(Cl(U_{\alpha i})): i = 1, 2, ..., n\}$ such that $X - \cup \{Cl(Int(Cl(U_{\alpha i}))): i = 1, 2, ..., n\} \in I$. This implies, $X - \cup \{Cl(U_{\alpha i}): i = 1, 2, ..., n\} \in I$.
- (a) → (c): Let $\{F_{\alpha}: \alpha \in \nabla\}$ be a family of closed sets for which $\cap \{F_{\alpha}: \alpha \in \nabla\} = \phi$. Then $\{X - F_{\alpha}: \alpha \in \nabla\}$ is an open cover of X; by (a) there exists a finite subfamily $\{X - F_{\alpha i}: i = 1, 2, ..., n\}$ such that X- $\cup \{Cl(X - F_{\alpha i}): i = 1, 2, ..., n\} \in I$. Hence X- $\cup \{(X - Int F_{\alpha i}): i = 1, 2, ..., n\} \in I$. This implies, X-(X- $\cap \{Int F_{\alpha i}: i = 1, 2, ..., n\} \in I$. $n\}) \in I$. Thus $\cap \{Int(F_{\alpha i}): i = 1, 2, ..., n\} \in I$.

(c) → (a): Let $\{U_{\alpha}: \alpha \in \nabla\}$ be an open cover of X. Then $\{X \cdot U_{\alpha}: \alpha \in \nabla\}$ is a collection of closed sets and $\cap\{(X \cdot U_{\alpha}): \alpha \in \nabla\} = \phi$. Hence there exists a finite subcollection $\{(X \cdot U_{\alpha i}): i = 1, 2, ..., n\}$ such that $\cap\{Int(X \cdot U_{\alpha i}): i = 1, 2, ..., n\} \in I$, $\cap\{(X \cdot Cl(U_{\alpha i})): i = 1, 2, ..., n\} \in I$. Thus, $X \cdot \cup \{Cl(U_{\alpha i}): i = 1, 2, ..., n\} \in I$. \Box

Theorem 2.6. A space (X, τ, I) is *QI*-compact iff for each preopen cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X, there exists a finite subcollection $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that $X \cdot \cup \{Cl(U_{\alpha i}) : i = 1, 2, ..., n\} \in I$.

Proof. Sufficiency is obvious. To show necessity, assume (X, τ, I) is *QI*-compact and let $\{U_{\alpha} : \alpha \in \nabla\}$ be a preopen cover of X. So, $\{Int(Cl(U_{\alpha})): \alpha \in \nabla\}$ is an open cover of X; from the hypothesis, there exists a finite subcollection $\{Int(Cl(U_{\alpha i})): i = 1, 2, ..., n\}$ such that $X - \bigcup \{Cl(Int(Cl(U_{\alpha i}))): i = 1, 2, ..., n\} = X - \bigcup \{Cl(U_{\alpha i}): i = 1, 2, ..., n\} \in I$. \Box

Theorem 2.7. If (X, τ, I) is *QI*-compact, and *J* is an ideal on *X* with $J \supseteq I$, then (X, τ, J) is *QJ*-compact.

Proof. This is obvious. \Box

The following two theorems are slight improvements of Theorems 1.3 and 1.4 of reference [1].

Theorem 2.8. If (X, τ, I_c) is QI_c -compact, where I_c denotes the ideal of countable subsets of X, then (X, τ) is Lindelöf.

Proof. Suppose that $\{U_{\alpha} : \alpha \in \nabla\}$ is an open cover of X, then from the hypothesis there exists a finite subfamily $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that $X \cdot \cup \{Cl(U_{\alpha i}) : i = 1, 2, ..., n\} \in I_c$, *i.e.* $X \cdot \cup \{Cl(U_{\alpha i}) : i = 1, 2, ..., n\}$ has a countable subcover. \Box

Given a space (X, τ, I) , I is said to be τ -boundary [3] if $I \cap \tau = \{\phi\}$.

Theorem 2.9. Let (X, τ, I) be a space with I_n the ideal of nowhere dense subsets of X.

- (a) If (X, τ, I) is QI-compact, and I is τ -boundary, then (X, τ) is QHC.
- (b) If $I \supseteq I_n$ and (X, τ) is QHC, then (X, τ) is QI-compact.

Proof.

(a) Let $\{U_{\alpha} : \alpha \in \nabla\}$ be an open cover of X, there exists a finite subcollection $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that $X \cup \{Cl(U_{\alpha i}) : i = 1, 2, ..., n\} = E \in I$,

since I is τ -boundary, then $Int(E) = \phi$ and hence (X, τ) is QHC.

(b) It follows immediately. \Box

Theorem 2.10. Let (X, τ, I) be a space. If (X, τ^*) is *QI*-compact, then (X, τ) is *QI*-compact.

Proof. Follows from the fact that $\tau^* \supseteq \tau$. \Box

Remark 2.2. [10]. Let (X, τ, I) be a space, then $\tau^*(I, \tau) = \tau$ iff every member of I is τ -closed.

Remark 2.3. Let (X, τ, I) be a space such that every member of I is τ -closed. Then (X, τ) is *QI*-compact iff (X, τ^*) is *QI*-compact.

3. PRESERVATION BY FUNCTIONS

The following lemma will be used in the sequel.

Lemma 3.1. [3]. Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a function. Then $f(I) = \{f(E): E \in I\}$ is an ideal on Y. \Box

It is well known that the image of a compact space is compact under a continuous function. This result is generalized as follows.

Theorem 3.2. If $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is a continuous surjection, and (X, τ) is *QI*-compact, then (Y, σ) is *Qf(I)*-compact.

Proof. Let $\{V_{\alpha} : \alpha \in \nabla\}$ be a σ -open cover of Y, then $\{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a τ -open cover of X, from assumption, there exists a finite subcollection $\{f^{-1}(V_{\alpha i}) : i = 1, 2, ..., n\}$ such that $X - \bigcup \{Cl(f^{-1}(V_{\alpha i})) : i = 1, 2, ..., n\} \in I$ implies, $Y - \bigcup \{Cl(V_{\alpha i}) : i = 1, 2, ..., n\} \in f(I)$. Therefore (Y, σ) is Qf(I)-compact. \Box

Theorem 3.3. Let $f: (X, \tau, I) \rightarrow (Y, \sigma, f(I))$ be a *-homeomorphism such that every member of I is τ -closed. Then (X, τ) is *QI*-compact iff (Y, σ) is *Qf(I)*-compact.

Proof: Necessity. Assume that (X, τ) is QI-compact, and let $\{V_{\alpha} : \alpha \in \nabla\}$ be a σ -open cover of Y. Then $\{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a τ^* -open cover of X, from Remark 2.3, there exists a finite subcollection $\{f^{-1}(V_{\alpha i}) : i = 1, 2, ..., n\}$ such that $X - \bigcup \{Cl(f^{-1}(V_{\alpha i})) : i = 1, 2, ..., n\} = E \in I$. Consequently, $Y - \bigcup \{Cl(V_{\alpha i}) : i = 1, 2, ..., n\} = f(E) \in f(I)$ and it is shown that (Y, σ) is Qf(I)-compact.

Sufficiency. Assume that (Y, σ) is Qf(I)-compact and let $\{U_{\alpha} : \alpha \in \nabla\}$ be a τ -open cover of X. Then $\{f(U_{\alpha}) : \alpha \in \nabla\}$ is a σ^* -open cover of Y, and there exists a finite subcollection $\{f(U_{\alpha i}): i = 1, 2, ..., n\}$ such that $Y cdot U\{Clf(U_{\alpha i}): i = 1, 2, ..., n\} = f(E) \in f(I)$. Then $X cdot U\{Cl((U_{\alpha i}): i = 1, 2, ..., n\} \subset f^{-1}[Y cdot Ql((U_{\alpha i})): i = 1, 2, ..., n\}] = E \in I$, thus (X, τ) is QI-compact. \Box

Definition 3.1. [11]. A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be pointwise *I*-continuous (*PI C*) if $f: (X, \tau^*) \rightarrow (Y, \sigma)$ is continuous.

Clearly continuous functions are PIC (since $\tau^* \supseteq \beta \supseteq \tau$).

Theorem 3.4. Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a surjection. If f is PIC and (X, τ) is QI-compact, then (Y, σ) is Qf(I)-compact.

Proof. The result follows immediately from Theorem 3.2 and Remark 2.3. \Box

Ideals are not as well behaved with respect to function inverses as the following example shows.

Example 3.1. [1]. Let X and Y be the reals with the usual topology and let I be the ideal on Y of all subsets of the unit interval [0, 1]. Define $f: X \to Y$ by f(x) = |x|. Observe that $[\frac{1}{2}, \frac{3}{4}] \subseteq f^{-1}([0, 1])$ but $[\frac{1}{2}, \frac{3}{4}] \neq f^{-1}(A)$ for any $A \subseteq [0, 1]$. Thus the collection $f^{-1}(I) = \{f^{-1}(E): E \in I\}$ is not hereditary and hence not an ideal.

Lemma 3.5. [1]. If $f: (X, \tau) \rightarrow (Y, \sigma, J)$ is an injection, then $f^{-1}(J)$ is an ideal on X. \Box

Theorem 3.6. Let $f: (X, \tau) \rightarrow (Y, \sigma, J)$ be an open bijection. If (Y, σ, J) is QJ-compact, then (X, τ) is $Qf^{-1}(J)$ -compact.

Proof. We observe that f^{-1} : $(Y, \sigma, J) \rightarrow (X, \tau)$ is a continuous surjection and by applying Theorem 3.2 and Lemma 3.5, we have the result. \Box

Theorem 3.7. Let $(X_{\alpha}, \tau_{\alpha})$ be a family of spaces and let *I* be an ideal on $(\prod X_{\alpha}, \prod \tau_{\alpha})$. If $\prod X_{\alpha}$ is *QI*-compact, then each space $(X_{\alpha}, \tau_{\alpha})$ is $QP_{\alpha}(I)$ -compact, where P_{α} is the projection map in coordinate α .

Proof. Follows immediately from Theorem 3.2 and the fact that each P_{α} is a continuous surjection. \Box

4. SETS QI-COMPACT RELATIVE TO A SPACE

Definition 4.1. A subset S of a space (X, τ, I) is said to be QI-compact relative to X if for every open cover $\{U_{\alpha}: \alpha \in \nabla\}$ of S, there exists a finite subcollection $\{U_{\alpha i}: i = 1, 2, ..., n\}$ such that $S \cdot \cup \{Cl(U_{\alpha i}): i = 1, 2, ..., n\} \in I.$ Recall that $S \subseteq (X, \tau)$ is an *H*-subset if every open cover of *S* contains a finite subcollection whose closures cover *S*.

The following results are immediate and the obvious proofs are omitted.

Theorem 4.1. A subset S of a space (X, τ, I) is an *H*-subset iff it is $Q\{\phi\}$ -compact iff it is QI_f -compact.

Theorem 4.2. For a subset S of a space (X, τ, I) , the following are equivalent:

- (a) S is QI-compact relative to X,
- (b) For every cover $\{V_{\alpha} : \alpha \in \nabla\}$ of S by preopen sets of X, there exists a finite subfamily $\{V_{\alpha i} : i = 1, 2, ..., n\}$ such that $S \cdot \cup \{Cl(V_{\alpha i}) : i = 1, 2, ..., n\} \in I.$

Theorem 4.3. Any *H*-subset is a QI_n -compact subset. \Box

Theorem 4.4. If S_k , k = 1, 2 are *QI*-compact sets relative to a space (X, τ, I) , then $S_1 \cup S_2$ is *QI*-compact relative to X.

Proof. Let $\{V_{\alpha} : \alpha \in \nabla\}$ be an open cover of $S_1 \cup S_2$. Then it is an open cover of S_k for K = 1, 2. Since S_k is *QI*-compact relative to *X*, then there exists a finite subcollection $\{V_{\alpha i}: i = 1, 2, ..., n\}$ such that $S_k - \bigcup \{Cl(V_{\alpha i}): i = 1, 2, ..., n\} \in I$ for K = 1, 2. Therefore, $S_1 \cup S_2 - \bigcup \{Cl(V_{\alpha i}): i = 1, 2, ..., n\} \in I$. So, $S_1 \cup S_2$ is *QI*-compact relative to *X*. \Box

Corollary 4.5. The intersection of two open sets having QI-compact complements is also open having QI-compact complement.

Proof. Follows directly from Theorem 4.4. □

If I is an ideal on X and $S \subseteq X$, we denote the restriction of I to S by $I | S = \{E \cup S : E \in I\}$. It is easily seen that I | S is an ideal [1].

Theorem 4.6. Let (X, τ, I) be a space, if $(S, \tau | S)$ is QI | S-compact, then S is QI-compact, for every $S \subseteq X$.

Proof. Let $\{U_{\alpha} : \alpha \in \nabla\}$ be a τ -open cover of S. Then $\{U_{\alpha} \cap S : \alpha \in \nabla\}$ is a $\tau|S$ -open cover of S. There exists then a finite subfamily $\{U_{\alpha i} \cap S : i = 1, 2, ..., n\}$ such that $S \cdot \cup \{Cl(U_{\alpha i} \cap S) : i = 1, 2, ..., n\} \in I | S \subseteq I$. Hence S is QI-compact. \Box

5. COUNTABLY QI-COMPACT SPACES

Definition 5.1. A space (X, τ, I) is said to be countably *QI*-compact if for every countable open cover $\{V_{\alpha}: \alpha \in \nabla\}$ of X, there exists a finite subfamily $\{V_{\alpha i}: i = 1, 2, ..., n\}$ such that $X \cdot \cup \{Cl(V_{\alpha i}): i = 1, 2, ..., n\} \in I.$

From the above definition, we deduce the following theorem.

Theorem 5.1. For a space (X, τ, I) , the following are equivalent:

- (a) (X, τ) is lightly compact.
- (b) (X, τ, I) is countably *QI*-compact, where $I = \{\phi\}$.
- (c) (X, τ, I) is countably QI_{f} -compact. \Box

Remark 5.1.

- (a) Every Q1-compact space is countably Q1-compact.
- (b) Every countably *I*-compact is countably *QI*-compact.

Question. The authors need an example for countably *QI*-compact and not for *QI*-compact.

Theorem 5.2. If (X, τ, I) is countably *QI*-compact and Lindelöf, then (X, τ, I) is *QI*-compact. \Box

Theorem 5.3. Let (X, τ, I) be a space. The following are equivalent:

- (a) (X, τ) is countably QI-compact.
- (b) For every countable regular open cover $\{U_{\alpha}: \alpha \in \nabla\}$ of X, there exists a finite subfamily $\{U_{\alpha i}: i = 1, 2, ..., n\}$ such that $X \cdot \cup \{Cl(U_{\alpha i}): i = 1, 2, ..., n\} \in I$.
- (c) For every countable family $\{F_{\alpha}: \alpha \in \nabla\}$ of closed sets such that $\cap \{F_{\alpha}: \alpha = 1, 2, ..., \infty\} = \phi$ there exists a finite subfamily $\{F_{\alpha i}: i = 1, 2, ..., n\}$ such that $\cap \{Int(F_{\alpha i}): i = 1, 2, ..., n\} \in I$.

Proof. The proof is similar to that of Theorem 2.5 and is thus omitted. \Box

The following two theorems are slight improvements of Theorem 2.4 [2].

Theorem 5.4. If (X, τ, I) is countably *QI*-compact and *I* is τ -boundary, then (X, τ) is lightly compact. \Box

Theorem 5.5. Let (X, τ, I) be a space. If $I \supseteq I_n$ and (X, τ) is lightly compact, then (X, τ) is countably *QI*-compact.

Proof. Let $\{U_{\alpha}: \alpha \in \nabla\}$ be a countable open cover of X. From hypothesis, there exists a finite subfamily $\{U_{\alpha i}: i = 1, 2, ..., n\}$ such that $X = Cl(\cup U_{\alpha i}: i = 1, 2, ..., n)$. Thus $X - \bigcup \{Cl(U_{\alpha i}): i = 1, 2, ..., n\} \subseteq X - \bigcup \{(U_{\alpha i}): i = 1, 2, ..., n\} \in I_n \subseteq I$.

The following theorem is an improvement of Corollary 2.5 [2]

Theorem 5.6. Let (X, τ) be a space. Then (X, τ) is lightly compact iff (X, τ) is countably QI_n -compact.

Proof. Follows from the fact that I_n is τ -boundary and by applying Theorem 5.5. \Box

Corollary 5.7. If (X, τ) is a completely regular T_1 -space, then (X, τ) is pseudocompact iff (X, τ) is countable QI_n -compact.

Proof. It is well known [12] that in a completely regular T_1 -space, pseudocompactness is equivalent to light compactness. The result then follows from Theorem 5.6. \Box

Theorem 5.8. Let (X, τ) be a Baire space. Then the following are equivalent:

- (a) (X, τ) is countably $QI_{\rm m}$ -compact.
- (b) (X, τ) is lightly compact.
- (c) (X, τ) is countably QI_n -compact.

Proof. Follows from the definition of Baire space and Theorems 5.5 and 5.6. \Box

Theorem 5.9. Let (X, τ, I) be a space. If (X, τ^*) is countably *QI*-compact, then (X, τ) is countably *QI*-compact.

Proof. The result follows immediately by from the observtion that $\tau^*(I) \supseteq \tau$. \Box

The obvious proofs of the following theorems are omitted.

Theorem 5.10. If (X, τ, I) is countably *QI*-compact and *J* is an ideal on *X* such that $J \supseteq I$, then (X, τ, J) is countably *QJ*-compact. \Box

Theorem 5.11. Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a continuous surjection. If (X, τ, I) is countably *QI*-compact, then (Y, σ) is countably *Qf(I)*-compact.

Theorem 5.12. If $f: (X, \tau) \rightarrow (Y, \sigma, J)$ is an open bijection and (Y, σ) is countably *QJ*-compact, then (X, τ) is countably $Qf^{-1}(J)$ -compact. \Box

Theorem 5.13. Let $\{(X_{\alpha}, \tau_{\alpha}): \alpha \in \nabla\}$ be a family of spaces with I an ideal on $(\prod X_{\alpha}, \prod \tau_{\alpha})$. If $\prod X_{\alpha}$ is countably *QI*-compact, then each factor $(X_{\alpha}, \tau_{\alpha})$ is $QP_{\alpha}(I)$ -compact, where P_{α} is the projection map in coordinate α .

Proof. The result follows from Theorem 5.11, since each P_{α} is a continuous surjection. \Box

ACKNOWLEDGEMENT

We would like to thank the referees for valuable comments and suggestions.

REFERENCES

- T. R. Hamlett and D. Janković, "Compactness with Respect to an Ideal", Boll. U.M.I., 7(4-B) (1990), p. 849.
- [2] T. R. Hamlett, D. Janković, and D. Rose, "Countable Compactness with Respect to an Ideal", *Math. Chron.*, 20 (1991), p. 109.
- [3] R. L. Newcomb, "Topologies Which are Compact Modulo an Ideal", Ph.D. Dissertation, University of California at Santa Barbara, 1967.
- [4] D. V. Rančin, "Compactness Modulo an Ideal", Soviet Math. Dokl., 13(1) (1972), p. 193.
- [5] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El Deeb, "On Precontinuous and Weak Precontinuous Mappings", Proc. Math. and Phys. Soc., Egypt, 53 (1982), p. 47.
- [6] K. Kuratowski, Topologies I. : Warszawa, 1933.
- [7] R. Vaidyanathaswamy, Set Topology. New York: Chelsea Publishing Company, 1960.
- [8] T. R. Hamlett and D. Rose, "*-Topological Properties", Internat. J. Math. and Math. Sci., 13(3) (1990), p. 507.
- [9] R. C. Haworth and R. A. Mc Coy, "Baire Spaces", Dissertationes Mathematicae, CXLI (1977), p. 1.
- [10] P. Samuels, "A Topology Formed from a Given Topology and an Ideal", J. London Math. Soc., 2(10) (1975), p. 409.
- [11] K. Kaniewski and Z. Piotrowski, "Concerning Continuity Apart from a Meager Set", Proc. Math. Soc., 98 (1986), p. 324.
- [12] S. Willard, General Topology. London: Addison-Wesley, 1970.

Paper Received 2 November 1991; Revised 27 May 1992.