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ABSTRACT 

This paper describes a possible approach to determine the optimum second 
derivative weight coefficient sets for various ring systems with amplitude 
responses approximating the theoretical response of the second derivative 
operation. 

Weight coefficient sets for many ring systems are derived as follows. In each 
system, the average radial gravity for each circle is given a weight of 1/r~, where 
rm is the radius of circle and n is a real number. For each n value, the overall 
similarity between the calculated amplitude response of each derived set and the 
theoretical response of the second derivative operation is determined by computing 
the correlation coefficient between the mapped variables. Similarity between the 
calculated and the theoretical responses measured by the highest correlation may 
generally be considered a criterion for determining the optimum nand 
consequently the optimum weight coefficient set for second derivative. For a 'given 
ring system, the derived coefficient set by this technique is considered the best one. 

Moreover, to calculate the second vertical derivative, a new weight coefficient 
set, which uses the least number of circles to obtain average gravity values and at 
the same time yields best results has been developed. To test its validity, the 
proposed method has been applied to the Bouguer gravity anomaly in the Central 
Salt Province of the Gulf of Suez region, Egypt. 
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DETERMINATION OF OPTIMUM SECOND DERIVATIVE WEIGHT COEFFICIENT 
SETS FOR VARIOUS GRID SYSTEMS 

INTRODUCTION 

In gravity interpretation, second derivative maps 
play an important role in delineating the structures of 
interest. Generally, all such methods are based on 
potential theory to calculate the second derivative of a 
gravity anomaly [1 - 16]. Practical applications 
involve summation of a number of products of the 
average gravity values over circles of different radii 
with the corresponding weight coefficients. 

The general expression for calculation of the 
second vertical derivative can be written as: 

2(iPgJ _ (1)M 
S oz2 = ~Cm germ), 

with 

where g(rm ) is the average gravity value over a circle 
of radius rm and s is the grid spacing. The function 
g(rm ) can be expanded into a Taylor series 

g(rm ) = ao+ a2 r;, + a4r! + a6r~ +... (2) 

where 

_ 1 (02g)
ao = g (0), a2 = - - -2 ' 

4 OZ 

1 (02g)
a4 = 64 oz2 . 

For numerical computation of the second vertical 
derivative, the infinite series is truncated after a 
certain number of terms and the resulting expression 
is solved by the method of least-squares and the corre
sponding coefficient for a2 is multiplied by - 4 to yield 
coefficients for second derivative. 

Careful study of the Tables published by Pick and 
others [17], Nettleton [18], and Mesko [14] indicates 
that there are several weight coefficient sets derived 
by different approaches using the same geometry of 
circles and grid pattern. As an example, Rao and 
others [10] used 5 different ring systems and for each 
system they obtained six different sets of coefficients, 
using Peters' [1] and Elkins' [3] approaches. Thus, it 
is evident that any number of coefficient sets can be 

developed for the same ring system, depending on the 
allocation of weights. Using Fourier transformation, it 
is possible to compare operators by their frequency 
characteristics and accordingly to accept or reject the 
coefficients [11, 14, 19 - 21]. 

However, an unescapable question that may need to 
be answered is: what is the optimum weight coeffi
cient set which can be derived, following a certain 
approach for a ring system; whose amplitude response 
is the best approximation to the theoretical amplitude 
response of the second derivative operation h t (u,v) 
(Figure 1); and which, when applied to the Bouguer 
gravity anomaly data, yields the best results. The aim 
of the present paper is to find an objective criterion for 
the selection of such an optimum weight coefficient 
set. 

SOLUTION BY CORRELATION FACTOR 
DETERMINATION BETWEEN THE 
CALCULATED AND THE THEORETICAL 
AMPLITUDE RESPONSES 

The grid systems considered in the present study 
consist mainly of circles as defined by many authors 
including those given by Peters [1], Henderson and 
Zietz [2], Elkins [3], Baranov [4], Rosenbach [5], Paul 
[7], Darby and Davies [8], and Rao and others [10]. 
They differ in the number of the circles and their radii. 
The first ring system 8 1 consists of the central point 
and the circles of radii 1, {2, and 2 while the second 
ring system 82 is defined by the central point and the 
circles of radii 1, {2, and {5; and similarly the other 
systems, 83, 84, ... , 812, are also defined in Table 1. 

The average radial gravity for each circle, in each 
ring system, is also given a weight of 1/r~ except in 
the case of g(O), the anomaly at the origin, which is 
given a unit weight. If we use Peters' approach [1], 
then the equation obtained with a weight of l/r~ to all 
circles giving preference to the central point is given 
as 

g(rm ) g(O) a2 a4 
-- = --+--+-- (3)

rn rn r n- 2 r n-4 ' m m m m 

where n is a given real number. 

The unknown a2 and a4 in Equation (3) can be 
obtained by direct minimization of 

April 1994 The Arabian Journal/or Science and Engineering , Volume 19, Number 2A. 135 



31114 

E. M. Abdelrahman, A. I. Bayoumi, H. M. El-Araby, and T. M. El-Araby 

11/2 
U.--. 

Figure 1. Theoretical Amplitude Response h (u, v) where u I 2lland vI 2llare the Frequencies in Cycles per Unit ofLength in t 
the x and y Directions, Respectively. 

From Equations (5) and (6), the following two 
q> = t [g(:m) - g\O) - ~~2 _~~4]2 = min. equations are derived after simplification: 

m=l r m r m r m r m 

(4) M M 

a2 L r!-2n + a4 L r!-2n 
m=l m=lAlternatively, the minimization of Equation (4), 

i.e., (dq>/da2) = 0 and (dq>/da4) = 0 will lead to M M 

the solution of two linear equations: = L g(rm ) r;-2n - g(O) L r;-2n, (7) 

~J = t [g(:m) - g(~) 
m=l 

and( da2 m=l rm rm 

a2 LM 

r!-2n + a4 LM 

r!-2n 
(5) m=l m=l 

M M 

and = L g(rm ) r!-2n - g(O) L r!-2n, (8) 
m=l m=l 

( 
dq> J= t[g(:m) - g(~) respectively. 
da4 m=l rm rm 

By solving these two equations for and then a2 
multiplying by -4, the second vertical derivative is ~]_1__ 0 (6)n-4 n-4 determined.rm rm 
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where 

M M 

r 2 2n r 4 2nA = ~ - B = ~ .£..J m ' .£..J m ' 
m=l m=l 

M M 

r6 2nC = ~ - D = L r!-2n..£..J m ' 

m=l m=l 


Comparing Equation (9) with Equation (1), we can 
calculate the required coefficients for computing the 
second derivative for any value of n and for any ring 
system. They are given as 

Co = 4 A.D - B .C , 

C 2
B.D 

and 

4-2 C 2-2n D 
C = 4 rm • - rm • • (10)m 

C 2B.D 

For each ring system of circles r m ' several weight 
coefficient sets are computed for second derivative, 
using Equation (10), and for different n values ranging 
from 2 to 5.5 with 0.25 steps. This provided a total 
number of 15 coefficient sets. 

Each weight coefficient set thus obtained is 
subjected to frequency analysis, using the average of 
finite number of points [19]. Here, the amplitude 
response of each coefficient set is computed using 169 
points on a square grid with a spacing of TIl 12. 

The overall similarity, in the form of correlation 
factor, between the calculated amplitude response of 
each set and the theoretical amplitude response of the 
second derivative operation is computed. The correla
tion factors between the calculated and the theoretical 
responses are determined using a formula given by 
Davis [22]. For each ring system, the highest correla
tion factor, between the calculated and the theoretical 
responses observed in the series of the correlations 
thus obtained, determines the optimum n and conse
quently the best coefficient set. For instance, Figure 2 
shows the variation of the computed correlation 

factors with increasing value of n in 0.25 steps for SI, 
S2, and S3 systems. 

Also, for each ring system, it is found that the 
numerical value of Co increases with increasing value 
of n , whereas the numerical value of c1 decreases. 
Other coefficients generally approach zero with 
increasing value of n. Table 1 shows the highest 
correlations, the optimum values of n, and the corre
sponding weight coefficient sets for the various ring 
systems examined in this work. 

It can be seen that the derived weight coefficient 
sets by this technique are generally different from one 
system to another but their responses are more or less 
similar to the theoretical response of the second 
derivative operation as verified by the highest correla
tions (Table 1). To the authors' knowledge, all the 
coefficient sets shown in Table 1 are new. 

On the other hand, it is clear that the highest 
correlation coefficient among the correlations shown 

R 

0,96 

0,95 S3 
S1 

0,94 S2 

0,93 

0,92 

0,91 

0,90 

2 3 4 5 n 

Figure 2. Characteristic Curves ofVariation in Correlation 
Factor (R) versus n for S1, S2, and S3 Ring Systems. 
Arrows show the location of the highest correlation. 
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in Table 1, belongs to the derived coefficient set for 
S 1 system. Consequently the S 1 coefficient set can be 
considered generally the best coefficient set for 
second derivative. It uses the least number of rings to 
obtain average gravity values. The second derivative 
formula in this caseis given by: 

S2 (iFgJ = 4.92457 g(O) - 5.13218 g(s)
dz 2 

- O. 15087 g(s-J2) 

+ 0.35848 g(2s). (11) 

Figure 3 shows the corresponding amplitude 
response of Equation (11). Distortion of contours of 
the response of the derived set near the cutoff region 
is usually expected [11, 13, 16, 19,21]. 

For the sake of comparison, the correlation factor 
between the previously proposed set of weights and 
the theoretical response of the second derivative using 
the same number of data points with the same spacing 
are computed. Results in this case are given in Table 
2. For a given ring system, it is clear from Table 2 that 

the derived sets provide an improvement over the 
previously proposed sets. At the same time, the S 1 
coefficient set provides an improvement, in the sense 
of its close fit to the theoretical second derivative 
response, over all other coefficient sets. When 
Equation (11) is applied to the Bouguer anomaly data, 
it may give the best results among the other weight 
coefficient sets thus obtained. 

APPLICATION 

Figure 4 shows the Bouguer gravity anomaly map 
of the central area of the Gulf of Suez region, Egypt. 
The regional gravity field masks the gravity anomaly 
of a shallow NW - SE salt body of Miocene age, 
delineated from drill-hole and seismic information. 
Figure 5 shows the second vertical derivative anomaly 
of this area, calculated by convolving Equation (11) 
with the observed gravity field using a grid of 0.5 km 
spacing. The derivative field emphasizes the 
gravimetric effect of the salt body very clearly. The 
axis of the salt body interpreted from seismic data 
correlates with the axis of the elongated NW-SE 
central second vertical gravity low. 

3 

v 

1fJ2 

u-

Figure 3. Amplitude Response ofEquation (11) where u /2n and v/2 n are the Frequencies in Cycles per Unit ofLength in the 
x and y Directions, Respectively. 
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Table 2. Comparison of Correlation Values Obtained From the Present Study 
with Previous Studies. ·Indicates that only the coefficients derived with 

weightage of 1/,4 are used for comparison. 

Ring 
Correlation Present 

system Source 
Factor Correlation

(SI) 

SI Reference [2], Equation (15) 0.88187 0.96929 

Reference [3], Equation (13) 0.29900 

Reference [3], Equation (15) -0.30000 

S2 Reference [4], 0.93135 0.95412 

Reference [5], Equation (16) 0.86310 

Reference [7], Equation (25) 0.84643 

*Reference [10], Table 1 0.95348 

S3 Reference [7], Equation (27) 0.10720 0.96127 

S4 Reference [11], Equation (26) 0.93929 0.95922 

S5 *Reference [10], Table 1 0.95387 0.95411 

S6 Reference [1], Equation (27) -0.14892 0.95427 

S7 Reference [12], ForA =0.05 0.59238 0.95834 

S8 Reference [8], 0.85460 0.95728 

Reference [11], Equation (27) 0.95684 

S9 *Reference [10], Table 1 0.95308 0.95423 

SIO *Reference [10], Table 1 0.95216 0.95437 

Sl1 *Reference [10], Table 1 0.95139 0.95441 

S12 Reference [6], 0.94823 0.95455 

CONCLUSION 

The method presented here is an attempt to find the 
optimum weight coefficient set for second derivative 
when a definite geometry of the circles for obtaining 
average gravity values are used. To calculate the 
second derivative, a weight coefficient set, which uses 
the least number of rings and at the same time yields 
the best results, is obtained. The derived set provides 
an improvement, in the sense of its close fit to the 
theoretical second derivative response, over many of 
the previously proposed sets. The results obtained 
may be of interest in the field of exploration 
geophysics, although further detailed examination of 

different ring system are required when other 
approaches are used. 
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o, 	 e.I•• 0., IftGa1. 

Figure 4. Bouguer Gravity Anomaly Map ofan Area in the Gulf ofSuez Region, Egypt. 
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