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ABSTRACT 

The present paper deals with a simple numerical approach to estimate the depth 
of a buried structure from the characteristic points of the least-squares residual 
gravity anomaly profile, namely, the points at which the anomaly attains its 
half-maximum and zero. The problem of depth determination from the characteris­
tic distances is transformed into the problem of finding a solution of a nonlinear 
equation of the form z =f( z ). Formulas are derived for simple geometrically 
shaped causative sources for different orders of fit. The procedure has been applied 
to synthetic data with and without random errors. The method can be applied not 
only to residuals but also to the Bouguer anomaly profile consisting of the 
combined effect of a residual component due to a purely local structure and a 
regional component represented by a polynomial of low order. The method is easy 
to apply and may be automated if desired. The procedure has been tested on two 
field examples from the United States and Egypt. In both cases, the depth obtained 
is consistent with the actual depth. 
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DEPTH DETERMINATION USING THE CHARACTERISTIC POINTS OF 
THE LEAST-SQUARES RESIDUAL GRAVITY ANOMALY PROFILES 

INTRODUCTION 

Simple geometrically shaped models are frequently 
used in gravity interpretation to find the depth of 
most geological structures. Numerical and graphical 
techniques have been developed by many authors for 
interpreting the residual gravity anomalies due to 
these models. An excellent review is given in Bowin 
et al. [1]. Numerical methods include, for example, 
least-squares minimization approaches [2-4]; ratio 
techniques [5]; Mellin transform [6]; Fourier trans­
form [7, 8]; and Walsh transforms techniques [9]. 
On the other hand, the methods of characteristic 
points for solving the inverse gravity problem include, 
for example, the use of the distances at which the 
gravity anomaly attains its maximum, half-maximum, 
and three quarters-maximum [10-15]. However, 
effective quantitative interpretation using iterative 
procedures based on the characteristic points of the 
least-squares residual gravity anomaly profiles are 
yet to be developed. The characteristic points of the 
least-squares residual gravity anomaly profile are the 
points at which the anomaly attains its half-maximum 
and zero. 

The problem of depth determination from the 
characteristic points has been transformed into the 
problem of finding a solution of a non-linear equa­
tion of the form z =J(z). Formulas have been derived 
for spheres, cylinders, and the first horizontal 
gradient of the gravity effect of a 2-D thin faulted 
layer for different orders of fit. The procedure has 
been applied to synthetic data with and without 
random errors. The depth obtained agrees with 
model depth within 7 percent in the case of the 
sphere and horizontal cylinder when the gravity data 
contain random errors of 5 percent. The method can 
be applied not only to residuals but also to the 
Bouguer anomaly profile consisting of the co~bined 
effect of a residual component due to a purely local 
structure and a regional component represented by 
low order polynomial. The validity of the method has 
been tested on two field examples: (1) the Humble 
Dome gravity anomaly near Houston and (2) the 
Abu Roash Dome gravity anomaly west of Cairo. 

THEORY OF THE METHOD 

The gravity effects of the sphere, the infinitely 
long horizontal cylinder, and the vertical cylinder 

(semiinfinite vertical line-element approximation) 
are expressed as [6, 11]: 

g(x, z) = Azm H(x, z), (1) 

where 

H(x, z) = 1I(x2 + Z2)Q. 

In Equation (1), z is the depth; x is a position 
coordinate; and A, m, and q are defined in Table 1. 

Table 1. Definition of A, m, and q used in Equation (1). 

G is the Universal Gravitational Constant; cr is the 


Density Contrast; R is the Radius. 


Model A m q 

Sphere 1i31TG crR3 . 1 

Horizontal cylinder 21TG crR2 1 

Vertical cylinder 1TGcrR2 0 

Vertical fault (FHD) 2G crt 1 1 

The gravity effect of a thin faulted layer is 
expressed as [11] : 

g(x, z) = A(rr/2 + tan -1 xlz). 

The first horizontal derivative (FHD) of the gravity 
effect of this structure is given by Equation (1) for 
the horizontal cylinder, where A = 2Gcrt and t is 
the thickness of the fault [6]. 

From Equation (1), we obtain the following 
equation at x = Xi' i = 1,2,3, ... ,N: 

(2) 

where x i are the discrete points on the ground sur­
face at which gO(x;, z) is observed. 

Polynomial fitting by the least-squares method is 
an important technique for the separation of the 
gravity anomalies into residual and regional compo­
nents. An excellent review was given in Nettleton 
[11]. In all cases, the condition of the least-squares 
solution is 

N

L [Rp(x i , Z)]2 = minimum, (3) 
i= 1 

where Rp(Xi' z) is the residual component given as: 

Rp(xi , z) gO(x;, z) - g~(x;, z), (4) 
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and where gO(Xi' z) is the observed gravity given by 
Equation (1) and g~(Xi' z) is the computed regional 
gravity, which can be represented by 

g;(xi, z) = L
p 

an x? , (5) 
n=o 

where an are (p +1) coefficients and p is the order 
of the one-dimensional (1-0) polynomial. 

Condition (3) is fulfilled when the partial deriva­
tives with respect to each an are zero. This gives 
(p + 1) simultaneous linear equations from which 
the (p + 1) different values of an can be determined. 
As a result, the least-squares method will produce 
both positive and negative residuals even when the 
gO(Xi' z) values are only positive (or negative). The 
total sum of the residuals is zero. The least-squares 
profile is usually balanced between positive and 
negative values. 

Let the sample observed gravity values be taken 
for symmetrical values of x i and the interval for x be 
symmetric about the origin. In this case, when 
regional components of first-order are fit to the 
observed gravity field gO(Xi' z) the simplest first­
order least-squares residual gravity expression is 
defined as [5]: 

R1(Xi, z) gO (Xi , z) - ao , (6) 

and when regional components of second or third­
order are fit to the same observed gravity data given 
by Equation (1), the second or third-order least­
squares residual gravity anomaly expression is 
defined as [5]: 

R2&3(X j , z) gO(Xi' z) - ao - a2xt , (7) 

and similarly, the fourth or fifth-order expression is 
given as 

R4&5(Xi, z) = gO(Xi' z) ao - a2x; - a4xi , (8) 

and so on. 

Now, two detailed cases are presented to demon­
strate the use of these expressions at the character­
istic points in determining the depth to the buried 
structure. 

Case 1: First-order Fit 

Figure 1 shows the gravity effect due to horizontal 
cylinder having a positive density contrast, whereas 
Figure 2 shows the first-order least-squares residual 
effect of this structure. From Figure 2, we can imme­

diately identify three significant points, the maximum 
positive (x = 0), the half-maximum positive (XIf.z) , 
and the value of x where R1(Xi, z) = 0 (denoted by 
xc). These are the characteristic points of the first­
order residual anomaly profile. The points XIf.z and Xc 

are sufficient to determine the depth to the buried 
structure, as shown in the following paragraph. 

Using Equation (1), Equation (6) may be written 
in the form 

At the characteristic points, Equation (9) gives the 
following equations 

(10) 

R1(1/2max) = Azm/(x~ + Z2)q - ao , x = XIf.z, (11) 

Azm/(x~+z)q = ao , R1(Xi,Z) = 0, x = xc' (12) 

Multiplying Equation (11) by 2 and equating the 
resultant with Equation (10), we have 

2Azm/(x~ + Z2)q Azm- 2q + a • (13)o 

Finally, from Equations (12) and (13), we obtain, 

z = [ (x~ + Z2)q (x~+ Z2)q ]1I2q
2(x~ +Z2)q - (x~ +Z2)q . (14) 

Case 2: Second or Third-order Fit 

Figure 3 shows the second or third-order least­
squares gravity anomaly due to a two-dimensional 
horizontal cylinder having a positive density contrast. 
From this Figure, four characteristic points, namely, 
the maximum, the half-maximum, and the values of 
x where R2&3(X i , z) = 0 can be identified. They are 
denoted in Figure 3 by x = 0, XIf.z, XcI' and Xc2' 
respectively. In this case, Xc2 is greater than XcI' The 
XIf.z, XcI' and Xc2 values are sufficient to determine the 
depth. Applying the method just described above to 
the second or third-order least-squares residual 
gravity expression shown in Equation (7), we obtain 
the following four equations 

(15) 

R2&3(1f2max) 

Azm/(x~+ Z2)Q - a - a2x~, xo 

Azm/(X;I + Z2)Q = ao + a2x~1' R2&3(X j , z) = 0, (17) 

Azm/(X~2 + Z2)Q = ao + a2x~21 R2&3(X i , z) O. (18) 
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Figure 1. Residual Gravity Anomaly for a Buried Horizontal Cylinder. 
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Least-Squares Residual Anomaly Obtained by Applying First-Order Fit to the Data of Figure 1. 

The Arabian Journal for Science and Engineering, Volume 17, Number 2A. 157 



E. M. Abdelrahman and H. M. El-Araby 

Solving the above four equations and after simpli­
fications the following nonlinear equation in z is 
obtained, 

[ B(z) C(z) D(z) ]1I2q 
Z = L2B(z)D(z) C(z) B(z) - fC(z) (D(z) - B(z» , 

(19) 

where 

B(z) = (X~2 + Z2)Q, C(z) (X~ + Z2)Q, 

D(z) = (X~l +Z2)Q, and f (2x~ - X~l) / (X~2 - X~l)' 

Equations (14) and (19) can be solved by a simple 
iteration method [16]. Formulas for higher orders fit 
can be developed very easily, if required. In all cases 
the simple linear interpolation technique [17] can 
be used to estimate the values of the characteristic 
distances from the least-squares residuals. 

APPLICATION TO THEORETICAL DATA 

A theoretical residual gravity field due to a simple 
geometrically-shaped body buried at different depths 

R2&3 (In arbitrary units) 
0.8 

0.6 

0.4 

0.2 

is generated using Equation (1) so that the interval 
for x is symmetric about the origin and the sample 
values g(Xi' z) are taken for symmetrical values of Xi' 

Each theoretical field is subjected to a separation 
technique using the least-squares method. Regional 
components of first and second orders are fitted to 
the input data using the algorithm described by 
Gangi and Shapiro [18]. In this way two residual 
profiles are obtained for each input profile. A search 
algorithm is used to estimate the values of Xl,1 and Xc 

for the first-order profile and Xl,1, XcI' and Xc2 for the 
second-order profile using a linear interpolation 
method [17]. Considering the values of these charac­
teristic points and making use of Equations (14) and 
(19), the depth to the buried structure can be deter­
mined from the first and the second-order residual 
profiles, respectively. Numerical results obtained 
for two geometries of various depths, profile lengths 
and sampling intervals are shown in Tables 2-4, 
respectively. 

It is verified numerically that Equations (14) and 
(19) give accurate value of z when using synthetic 

depth- 6 units 
A-l00 units 
Ncl01 
p-2 or 3 

0.0 -t--tJ==:;;:==I=5E::~-~r---+-

-0.2 

-0.4 

-0.6 

Figure 3. Least-Squares Residual Anomaly Obtained by Applying Second or Third-Order Fit to the Data of Figure 1. 
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Table 2a. Effect of Random Errors on Depth Determination from First-Order Least-Squares Residual Gravity 

Anomaly Profiles of Actual Length 100 Units and a Sampling Interval of 1 Unit Due to a Spherical and a Horizontal 


Cylindrical Source at Various Depths. 


Computed depth (units) 

Sphere Horizontal cylinder 

Model 
depth 
(unit) 

Using 
synthetic 
data 

% 
error 

Using 
synthetic 
data with 
random 
errors 5% 

% 
error 

Using 
synthetic 
data 

% 
error 

Using 
synthetic 
data with 
random 
errors 5% 

% 
error 

2.0 2.0897 4.49 2.1045 5.22 2.0195 0.97 2.0698 3.49 
2.5 2.5246 0.98 2.5736 2.94 2.5520 2.08 2.6280 5.12 
3.0 3.0458 1.53 3.1390 4.63 3.0304 1.02 3.1023 3.41 
3.5 3.5527 1.51 3.6458 4.17 3.5229 0.65 3.6264 3.61 
4.0 4.0146 0.37 4.1019 2.55 4.0361 0.90 4.1624 4.06 
4.5 4.5311 0.69 4.6383 3.07 4.5033 0.07 4.6673 3.72 
5.0 5.0361 0.72 5.1663 3.32 5.0277 0.55 5.1670 3.34 
5.5 5.5158 0.28 5.6750 3.18 5.5202 0.37 5.5844 1.53 
6.0 6.0131 0.22 6.1805 3.01 6.0027 0.05 5.9895 0.17 
6.5 6.5298 0.46 6.6528 2.35 6.5207 0.32 6.6527 2.35 
7.0 7.0152 0.22 7.0830 1.19 7.0168 0.24 7.3390 4.84 
7.5 7.5012 0.02 7.5101 0.13 7.4998 0.00 7.8875 5.17 
8.0 8.0176 0.22 8.1311 1.64 8.0168 0.23 8.3416 4.27 

Table 2b. Effect of Random Errors on Depth Determination from Second-Order Least-Squares Residual Gravi., 

Anomaly Prordes of Actual Length 100 Units and a Sampling Interval of 1 Unit Due to a Spherical and a Horizontal 


Cylindrical Source at Various Depths. 


Computed depth (units) 

Sphere Horizontal cylinder 

Model 
depth 
(unit) 

Using 
synthetic 
data 

% 
error 

Using 
synthetic 
data with 
random 
errors 5% 

% 
error 

Using 
synthetic 
data 

% 
error 

Using 
synthetic 
data with 
random 
errors 5% 

% 
error 

2.0 2.1031 5.16 2.1109 5.55 2.0378 1.89 2.0885 4.42 
2.5 2.5321 1.29 2.5832 3.33 2.5292 1.17 2.6374 5.50 
3.0 3.0089 0.30 3.1428 4.76 3.0469 1.56 3.1531 5.10 
3.5 3.5469 1.34 3.6758 5.02 3.5147 0.42 3.6312 3.75 
4.0 4.0442 1.10 4.1620 4.05 4.0154 0.38 4.1880 4.70 
4.5 4.4936 0.14 4.6206 2.68 4.5255 0.57 4.7566 5.70 
5.0 5.0159 0.32 5.2003 4.01 5.0204 0.41 5.3314 6.63 
5.5 5.5298 0.54 5.7614 4.75 5.4895 0.19 5.8529 6.42 
6.0 6.0059 0.10 6.3022 5.04 6.0056 0.09 6.2492 4.15 
6.5 6.4940 0.09 6.8763 5.79 6.5166 0.26 6.6018 1.57 
7.0 7.0053 0.08 7.4230 6.04 7.0070 0.10 6.9858 0.20 
7.5 7.5019 0.03 7.7949 3.93 7.4826 0.23 7.3574 1.90 
8.0 7.9983 0.02 8.1424 1.78 7.9894 0.13 7.8988 1.26 
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data. After adding 5 percent random error in the 
theoretical data, the depth obtained is within 7 
percent. Generally, the method does not depend on 
the profile length, the geometry of the body, and the 
order of fit (Tables 3 and 4). It is evident from Table 
4 that the percentage of error in depth decreases as 
the number of measurements made around g(max) 
and within the restricted length of profile increases. 
In this particular case, the depth obtained is in a very 
good agreement with the model depth. 

OPTIMUM-ORDER REGIONAL 
DETERMINATION 

Polynomial fitting by least-squares method is an 
effective technique for separation of gravity anoma­

lies into residual and regional components. However, 
the method depends on selecting the optimum degree 
of regional polynomial to fit the Bouguer anomalies. 
Abdelrahman et ai. [19] presented a procedure to 
select the optimum polynomial order based on the 
correlation factors between residuals of successive 
orders. Zeng [20] showed that the optimum order of 
the regional can be estimated from the point of 
discontinuity of the gradient on a graph of variance 
against the polynomial degree. That graph is obtained 
by fitting polynomials of different orders to an 
upward continuation of the Bouguer anomaly at a 
proper height, where the shape of the anomaly is 
similar to that of the regional anomaly. However, 
because all the least-squares residual anomalies are 

Table 3. Effect of Profile Length on Depth Determination from Least-Squares Residual Gravity Anomalies Due to a 

Spherical and a Horizontal Cylindrical Source at Depth of 6 Units. Sampling Interval is I Unit. 


Computed depth (units) 

Sphere Horizontal cylinder 

First-order Second or third- First-order Second or third-
fit order fit fit order fit 

No. of 
data 

points 

Profile 
length 
(units) 

Computed 
depth 

% 
error 

Computed 
depth 

% 
error 

Computed 
depth 

% 
error 

Computed 
depth 

% 
error 

41 40 6.0242 0.40 5.8615 2.31 5.9876 0.21 5.9447 0.92 

51 50 6.0100 0.17 5.9451 0.91 6.0195 0.32 5.9560 0.73 

61 60 6.0000 0.00 5.9896 0.17 6.0222 0.37 5.9705 0.49 
71 70 6.0012 0.02 6.0003 0.01 6.0154 0.26 6.0019 0.03 
81 80 5.9960 0.07 6.0080 0.13 6.0068 0.11 5.9755 0.41 

91 90 6.0081 0.14 6.0215 0.36 6.0215 0.36 6.0076 0.13 
101 100 6.0131 0.22 6.0059 0.10 6.0027 0.05 6.0056 0.09 

Table 4. Effect of Sampling Interval on Depth Determination from Least-Squares Residual Gravity Anomaly Promes of 

Actual Length of 40 Units due to a Spherical and a Horizontal Cylindrical Source at a Depth of 6 Units. 


Computed depth (units) 

Sphere Horizontal cylinder 

First-order Second or third- First-order Second or third-
fit order fit fit order fit 

No. of 
data 

points 

Sampling 
interval 
(units) 

Computed 
depth 

% 
error 

Computed 
depth 

% 
error 

Computed 
depth 

% 
error 

Computed 
depth 

% 
error 

21 2.000 5.9247 1.25 5.6789 5.34 6.0007 0.12 5.5427 7.62 
41 1.000 6.0242 0.40 5.8615 2.31 5.9876 0.21 5.9447 0.92 
81 0.500 5.9963 0.06 5.9830 0.28 5.9962 0.06 5.9721 0.46 

161 0.250 5.9987 0.02 5.9946 0.09 5.9989 0.02 5.9916 0.14 
321 0.125 5.9998 0.00 5.9983 0.03 6.0000 0.00 5.9982 0.03 
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distorted in shape [21], Abdelrahman et aI., [5] 
showed that polynomial regional terms can be 
treated simultaneously with the anomaly in a 
least-squares inversion of gravity data. By exam­
ining the results obtained using regionals of p +3 
(p = 1,3,5, ... ) or p + 2 (p 2,4,6, ... ) of successive 
orders, the optimal order for the regional field can be 
determined simultaneously with the interpretation. 
Here, we formulate a simple procedure to determine 
the optimum order of the regional gravity field along 
the Bouguer anomaly profile and to obtain simul­
taneously the true depth to the buried structure, 
assuming that the Bouguer-anomaly profile consists 
of the combined effect of a residual component due 
to a purely local structure and a regional component 
represented by polynomial of any order. 

The data from a small segment of the Bouguer­
anomaly profile ag of order p are subjected to a 
separation technique using the least-squares method. 
Regional components of successive orders k are 
fitted to the input data using, for example, the 
algorithm described by Gangi and Shapiro [18] to 
obtain k-residual profiles. Each k-residual profile is 
subjected to a search algorithm to determine the 
corresponding characteristic distances from the 
observed data using a simple linear interpolation 
method [17]. The depth to the buried structure is 
then determined from the corresponding non-linear 
equation Z f(z), For example, using Equation (14) 
for k = 1, and Equation (19) for k 2 and 3, the Zk 

values are obtained. 

These computed depths Zk can be used to deter­
mine the optimum order of the regional field and to 
estimate the true depth of the buried structure by 
making use of the fact that the depths Zk and Zk+ 1, 

k = 1,2,3,... , should be equal, provided that the 
computed regional of order k is equal to or higher 
than the order of the actual regional present in 
the input data p. The following cases are given for 
illustration: 

(1) 	if Z 1 = Z z, then pI, and the true depth is Z 1 ; 

(2) if Zl =/; Z2 = Z3' then p = 2, and the true depth is 
Z2; 

(3) if 	Zl =/; Z2 =/; Z3 Z4, then p 3, and Z3 is the 
true depth, and so on. 

FIELD EXAMPLES 

To examine the applicability of the present method, 
the following two field examples are presented. 

Humble Dome Anomaly 

A gravity profile along the line AA' of the gravity 
map of the Humble Salt Dome, Houston, USA, [11] 
(shown in Figure 4) has been digitized at an interval 
of 1.09 km. The discrete data thus obtained have 
been subjected to a separation technique using the 
least-squares method. Regional components of first, 
second, and third-orders were fitted to the input data. 
In this way, three successive least-squares residual 
gravity anomaly profiles were obained (Table 5 and 
Figure 4). The average values of the characteristic 
distances have been determined from each residual 
anomaly profile thus obtained using a simple linear 
interpolation technique. The results are listed as 
follows: 

Xl,1 	 = 2.266737 (unit); 
Xc 4.021195 (unit), for first-order fit; 

Xl,1 	 = 1.686162 (unit); 
Xci 2.711215 (unit); 
Xc2 	 = 8.521696 (unit), for second-order fit; 

Xl,1 1.682477 (unit); 
Xc1 = 2.709037 (unit); 

= 8.518064 (unit), for third-order fit; X c2 

and from Equations (14) and (19), the computed 
depths (assuming a spherical body approximation 
[11]) were obtained as: 

Zl = 4.356 x 1.09 = 4.748 km; 
Z2 4.453 x 1.09 4.854 km; and 
Z3 4.418 x 1.09 = 4.816 km. 

Using the criterion established above, the regional 
field along this profile can be represented by a 
second-order polynomial and the depth to the center 
of the salt body is 4.854. The depth determined by 
Nettleton [11] is 4.968 km. 

Abu Roash Dome Anomaly 

An east-west gravity profile of this area [19] is 
shown in Figure 5. This profile has been digitized at 
an interval of 0.85 km. Adopting the same procedure 
used in case of the Humble Dome anomaly, the 
results (Table 6 and Figure 5) were obtained as: 

X 112 3.365836 (unit); 
Xc 5.335580 (unit), for first-order fit; 

Xl,1 1.651681 (unit); 
Xci 3.217214 (unit); 
Xc2 8.749662 (unit), for second-order fit; 

Xl,1 1.641278 (unit); 
Xci 3.232207 (unit); 
Xc2 8.748182 (unit), for third-order fit. 
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Table 	S. Numerical Values of the Bouguer and the Least-Squares Residual Gravity 
Anomalies Over the Humble Salt Dome, Harris County, Texas, U.S.A. 

x-Coordinate Bouguer values Rt(Xj, z) R 2(Xj, z) R3(Xj, z) 
(in 1.09km) (in mGal) (in mGal) (in mGal) (in mGal) 

-10 
-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-13.60 
-13.20 
-12.80 
-13.00 
-13.40 
-14.00 
-15.60 
-17.40 
-19.80 
-22.40 
-22.90 
-21.96 
-19.50 
-16.88 
-14.60 
-12.68 
-11.60 
-10.80 
-10.36 
-10.00 
-9.96 

3.08051 
3.31932 
3.55812 
3.19693 
2.63574 
1.87454 
0.11335 

-1.84785 
-4.40904 
-7.17024 
-7.83143 
-7.05262 
-4.75382 
-2.29501 
-0.17621 

1.58260 
2.50140 
3.14021 
3.41901 
3.61782 
3.49663 

-3.01457 
-0.94724 

0.92762 
2.01000 
2.69990 
2.99732 
2.10227 
0.81474 

-1.26526 
-3.73774 
-4.30270 
-3.62013 
-1.61004 

0.36758 
1.81271 
2.70537 
2.56556 
1.95327 
0.78850 

-0.64874 
-2.59846 

-2.77066 
-0.84968 

0.91735 
1.92612 
2.57238 
2.85184 
1.96021 
0.69322 

-1.35341 
-3.78395 
-4.32070 
-3.57392 
-1.52189 

0.48910 
1.95478 
2.85086 
2.69308 
2.03714 
0.79877 

-0.74630 
-2.84237 

mGal 
... 

- - ... ... ..... ...-- Second-order _ - - - ­
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Figure 4. Observed Bouguer Gravity Anomaly Profile and Its Successive Least-Squares Residual Anomaly Profiles of the 
Humble Salt Dome, Harris County, Texas. 
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Table 6. Numerical Values of the Bouguer and the Least-Squares Residual Gravity 
Anomalies Over Abu Roash Dome, West Cairo, Egypt. 

x-Coordinate Bouguer values R 1(Xj,z) Rz(Xj, z) R3(Xj, z) 
(in 0.85 km) (in mGal) (in mGal) (in mGal) (in mGal) 

-10 
-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-9.60 
-9.28 
-8.75 
-7.81 
-6.75 
-5.80 
-5.00 
-4.20 
-3.66 
-3.12 
-2.90 
-3.20 
-3.75 
-4.30 
-5.00 
-5.90 
-6.75 
-7.40 
-8.00 
-8.72 
-9.40 

-3.25047 
-2.94976 
-2.43904 
-1.51833 
-0.47762 

0.45310 
1.23381 
2.01453 
2.53524 
3.05595 
3.25667 
2.93738 
2.36810 
1.79881 
1.07952 
0.16024 

-0.70905 
-1.37833 
-1.99762 
-2.73691 
-3.43619 

0.94381 
-0.01376 
-0.62888 
-0.70155 
-0.52177 
-0.31953 
-0.13485 

0.18229 
0.37187 
0.69391 
0.82840 
0.57534 
0.20473 

-0.03343 
-0.28914 
-0.61239 
-0.75320 
-0.56155 
-0.18746 

0.19909 
0.75809 

1.02046 
0.01690 

-0.63211 
-0.72791 
-0.56184 
-0.36526 
-0.17950 

0.14410 
0.34417 
0.67939 
0.82840 
0.58986 
0.23243 
0.00476 

-0.24449 
-0.56667 
-0.71312 
-0.53519 
-0.18423 

0.16843 
0.68144 

mOal 
4 

...... 
",. ... 
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Figure 5. Observed Bouguer Gravity Anomaly Profile and Its Successive Least-Squares Residual Anomaly Profiles of 
Abu Roash Dome, West Cairo, Egypt. 
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From Equations (14) and (19), the computed depths 
(assuming a vertical cylinder approximation) were 

Zl = 6.211 x 0.85 = 5.279 km; 
Z2 	 2.080 x 0.85 = 1.768 km; and 
Z3 = 	2.033 x 0.85 = 1.728 km. 

Since Z2 is approximately equal to Z3, the regional 
field can be represented by a second-order polyno­
mial; the value of Z to the top of the basement given 
by the present technique is 1.768 km. This value 
agrees with the drill hole data given by Said [22], 
where the depth to the basement was found to be 
1.810 km in Abu Roash well # 1. 

DISCUSSION AND CONCLUSIONS 

The problem of depth determination of a buried 
structure from the values of the characteristic dis­
tances of the least-squares residual gravity anomaly 
profile is transformed into the problem of finding a 
solution of a nonlinear equation of the form z =fez). 
The present approach is capable of determining the 
depth of a buried structure from gravity data given in 
a small area over the buried structure, i.e., from the 
small segment of the gravity profile around gO(max). 
The method does not depend on the profile length 
and the order of fit. It can be automated if desired. 

Real data contain measurement errors which may 
be compounded by errors in computing the depth. 
In spite of this, high structural resolution may be 
achieved at the expense of decreasing tolerance to 
instrument readings. However, since the interpreta­
tion requires only a relatively short length of the 
profile, the problem may be overcome effectively 
and economically by increasing the number of 
measurements made within the restricted length of 
profile, provided that each local high and low is 
taken as a separate source. At the same time, using a 
relatively short length of profile results in a very high 
rejection of the neighboring disturbances. 

A scheme for interpretation to obtain the depth 
parameter and the optimum-order of the regional 
gravity field along the Bouguer anomaly profile has 
been developed. In this case, data interpretation 
requires analysis of only p + 1 successive least­
squares residual profiles which is more advantageous 
than the scheme of Abdelrahman et al. scheme [5] 
which employed p + 2 or p + 3 successive residual 
profiles, to obtain the true depth and the optimum­
order of the regional gravity field. 

Finally, analysis of two field data has demonstrated 
the applicability of the present technique, which is 
very simple. 
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