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1. INTRODUCTION 

Optimization problems that appear in integrated 
circuit design are characterized by complex tradeoffs 
between multiple objectives while satisfying linear 
(and nonlinear) constraints. Typical of VLSI problem 
objectives include area, delay, and power. VLSI 
technology evolves very fast. Certainly there are 
many problems connected with VLSI technology and 
the main problem is in fact a multi-objective optimi
zation problem, and therefore very difficult to solve. 
In this note we address only one issue in this compli
cated process. 

Many of the optimization problems in VLSI, in 
their higher formulation, are nonconvex quadratic 
programs with either linear constraints or quadratic 
constraints that can be easily linearized. For a general 
survey of optimization techniques used in integrated 
circuit design see Brayton et al. [1]. Applications 
using nonconvex quadratic models can be found in 
Ciesieski and Kinnen [2]. Kedem and Watanabe [3], 
Mating et al. [4]. Soukup [5], and Watanabe [6]. A 
survey of algorithms for nonconvex quadratic pro
grams can be found in a recent monograph by Par
dalos and Rosen [7]. 

A circuit is built on the surface of a silicon sub
strate by interconnecting pieces of material in three 
primary layers: 

a conducting layer in metal which is used for 
electrical connections: and 

. , To whom correspondence should be auure<.;seu. 

two layers of semiconductors (polysilicon and 
diffusion) are used for building such devices as 
switches, inverters, and gates as well as for elec
trical connections. 

Layers are always insulated from each other by 
insulating material, and the electrical connections can 
be established between layers of special structures 
(see, e.g., Mead and Conway [8] for further details). 

An important optimization problem in VLSI de
sign arises repeatedly in the process of solving the 
circuit compaction problem. We model this noncon
vex programming problem as a jointly constrained 
bilinear program and present a linear programming 
relaxation which is equivalent to convexifying the 
bilinear program over a bounded region. In the over
all VLSI design process, we propose using these 
linear programs in lieu of heuristics to determine cir
cuit compaction. We also indicate how the bilinear 
programs can be solved to optimality using an avail
able global optimization eode, thereby obtaining 
even better VLSI designs. The purpose of this note 
is to indicate how some new global optimization 
techniques can be used in the proces of VLSI technol
ogy. 

2. GLOBAL OPTIMIZATION FORMULATION 
OF THE COMPACTION PROBLEM 

We consider the compaction problem in VLSI. The 
approach considered here is based on Lin and Allen 
[9] . 
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The process of solving circuit compaction problems 
involves three main steps (see, e.g., Mead and Con
way [8] or Watanabe [6]): 

translation of stick diagrams into an optimization 
problem~ 

solution of the optimization problem; and 
modification of stick diagrams and optimization 
model to improve the layout. 

The stick diagram is a lower level representation of 
an electric circuit. In a stick diagram, circuit elements 
such as transistors and butting contacts are rep
resented by symbols. The interconnections among 
these circuit elements are represented by lines. 

In the compaction problem, we minimize the area 
of the bounding rectangle as well as the individual 
rectangles in the layout. Employing this strategy 
iteratively, we "compress" the layout in one dimen
sion and then the other following a user specified 
sequence. We can think of compaction in the hori
zontal direction as a process of determining the 
abscissas of the vertical edges of each rectangle in a 
given layout such that the bounding area and the lay
out areas are minimized. 

The optimization model to be solved consists of 
two problems. 

Problem 1. Minimize the area of the bounding rec
tangle (see Figure 1): 

Minimize (XR - xd 
subject to {a set of network constraints S}. 

As shown in Figure 1, in the first step we compress 
the layout in one dimension, which gives rise to the 

above linear program. The other dimension of the 
bounding rectangle is controlled by the designer (see 
[9]). The constraints in S are further explained at the 
end of this section. 

Problem 2. Minimize the total weighted areas of indi
vidual rectangles (see Figure 2): 

N, 

Minimize LWi(X k- x D(yu- yD 
i= 1 

subject to {a set of constraints S} 

and XR - XL = XO 

where XO is the solution obtained in Problem 1, Wi is 
the weight associated with rectangle Ri , N is ther 

number of rectangles in the layout, and (xL, y L) and 
(xk,y/;) are the coordinates of the lower-left and 
upper-right corners, respectively, of rectangle Ri for 
i = 1, 2, ... , N r • 

By specifying different weights to Wi' we can con
trol the priority of minimization among layers. This 
is very useful when there is a tradeoff in area between 
two rectangles on different layers. 

The set of constraints S in this model consists of 
linear binary inequalities with ± 1 coefficients. These 
constraints include: 

- minimum width and separation constraints 
- connection constraints 
- compaction constraints 
- user specified constraints, etc. 

Figure 1. Bounding Rectangle Area. 
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Figure 2. Location of ith Rectangle (R;). 

The minimum width constraints describe the 
minimum width design rules of available layers. The 
separation constraints describe the relationships be
tween edges of separated rectangles, and the connec
tion constraints describe the relationships between 
edges of connected rectangles. All constraints have 
the form x - yRb, where R is =, :5, or ;:::. It is well 
known that the coefficients of the constraint matrix 
represent the adjacency matrix of a directed graph G, 
where each vertex of G represents a vertical edge in 
the layout and each edge represents an inequality 
(equalities are replaced by two inequalities). 

3. BILINEAR PROGRAMMING APPROACH 

After reformulation, it is easy to see that Problem 
2 can be stated as a bilinear programming problem 
of the form 

n 

global min F(x,y) = L),..;XiYi 
i = 1 

subject to (x,y) E P 

where Ai are constants and P are network constraints. 
This problem is a jointly constrained bilinear pro
gram that can be solved using the algorithm of AI
Khayyal and Falk [10]. The procedure in [10] as
sumes that all Ai > 0, and, otherwise, n additional 
constraints Zi = AiYi are introduced. The objective 
function is an instance of an indefinite quadratic form 

and the above problem is known to be NP-hard. The 
algorithm in [10] creates a sequence of successively 
tighter piece-wise linear functions that underestimate 
the objective over successively finer partitions of rec
tangular sets bounding all variables. The under
estimating functions are convex envelopes (highest 
convex underestimating functions) of xTy over a 
specified rectangle. With minor notational changes 
the formulas in [10] for the convex envelope of xTy 
can be adjusted for F(x,y) provided Ai ;::: 0 for all i. 
The case where Ai < 0 is allowed can be similarly 
treated by using the concave envelope of xTy over a 
rectangle [11], Theorem 10. 

We next construct the convex envelope of F over 
a hyperrectangle. It readily follows that the con
vexified problem is equivalent to a linear program. 
Let (l, m) and (L, M) denote the vectors of lower 
bounds and upper bounds, respectively, of (x,y). 

These quantities can either be obtained from the 
solution of Problem 1, or tight bounds on the location 
of rectangle Ri can be deduced from the constraints 
defining P. In the approach we follow, tighter bounds 
yield a better initial approximate solution. It is conve
nient to define the rectangular sets 

Q = {(x,y): I :5 x :5 L, m :5 y :5 M} 

and 
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Note that Q = Q1 X Q2 X ... X QI/" LettingfA denote 
the convex envelope of a function f over a set A, we 
have from Theorem 11 in [11]: 

FQ(x,y) = 

L max {Aimixi + llYi -limi), AiMiXi + LiYi - LiMJ} 
i E / + 

+ L max {AlMiXi + (Yi -liMJ, Alm~i + LiYi - Limi)}, 
iEr 

where j+ = {i: Ai> O} and j- = {I: Ai < O}. 

Since FQ(x,y) :::; (F(x,y) for all (x,y) in Q and the 
convex envelope is the highest convex function un
derstanding F over Q, then solving the following con
vex program will yield an approximate solution to 
Problem 2. 

minimize FQ(x ,y) 

subject to (x,y) E P II Q. 


But this problem is equivalent to the linear program 

minimize L
11 

Zi 
i= 1 

subject to (X,y) E P II Q 

(lIAi)Zi ~ mixi + liYi - (mi i E j+ 

(lIAi)Zi ~ MiXi + LiYi - LiMi i E j+ 

(lIAi)Zi:::; MiXi + liYi - (Mi i E j

i E j(lIAi)Zi :::; mixi + LiYi - Limi 

With the above linear program defining the subprob
lems , the branch-and-bound strategy presented in 
[10,11] can now be used to solve for the global solu
tion of Problem 2. 

The linear program above wiIl yield an approxi
mate solution to the problem. In the early design 
stages, the solution obtained from a single linear pro
gram can be used in the iterative process of compac
tion. Using this information only, we may reformu
late the problem and see if different (user specified) 
constraints can be modified as part of the overall 
iterative procedure to improve design. When the ob
jective values of two successive linear programming 
solutions do not differ from each other by more than 
a specified amount, the bilinear programming al
gorithm [10, 11] can be invoked to find an approxi
mate global solution to Problem 2, thereby allowing 
the optimal design process to continue. Moreover , 
since the algorithm [10, 11] is a feasible point 
method, any suboptimal solution can be returned for 
reformulation of the stick diagram if finding the 

global optimum is too expensive, especially for large
scale instances of the problem. For large-scale ver
sions of this problem decomposition techniques can 
be employed to fully exploit the network structure of 
the constraints in P. 

By taking a fine enough subpartitioning of Q , the 
piecewise linear (convex envelope) underestimating 
functions can approximate F to within f accuracy 
everywhere over the bounding rectangle Q. We can 
derive a worst case complexity bound on the number 
of partitions required using a modified rectangular 
subdivision rule. For simplicity, we assume that the 
underestimating function for each item AiXiYi in 
F(x ,y) is within fin for all (Xi, Yi) E Qi' i = 1, . .. , n. 
Thus , the underestimating function for F(x,y) is 
within f for all (x ,y) E Q. 

Since convex envelopes are tighter over smaller rec
tangles, we can partition Qi into k7 equal subrec
tangles by dividing the intervals [(, La and [mi' Ma 
into k i equal subintervals. For simplicity, assume that 
this is done for each i and that the underestimating 
function of F(x,y) at (x,y) E Q is given by the sum 
over i of the convex envelopes of AiXIYi, each taken 
over (any) one of the k7 rectangular subsets of Q i 

which contains (Xi, yJ. 

Theorem. Under the above hypotheses, the undere
stimating function for AiXiYi is within fin for every 
(Xi,yJ E Qi if Qi is partitioned into 

subrectangles, where Ai = (Mi - mi)(Li - li) is the 
area of rectangle Qi. 

Proof. For brevity, we only sketch the proof here 
since the result follows immediately from Theorem 
11 in [11] and the observation that the maximum dif
ference between the concave envelope (see [11]) and 
the convex envelope of AiXiYi over Q i occurs at the 
midpoint ! (li + L i, mi + MJ T of the rectangle. At this 
midpoint, the difference between these two functions 
is IAiIA/2. This implies that the convex envelope is 
within IAiIA/2 of AiXiYi for every (Xi,Yi) E Qi. If Qi is 
partitioned into k7 equal rectangles by dividing each 
interval [(, LJ and [mi' MJ into k i equal subintervals, 
then the convex envelope over any of these rectang
les is within fin of AiXiYi if we require 

D 
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Corollary. The underestimating function for F(x, y) 
is within E for every (x,y) E Q if each Q; is partitioned 
into at least k; 2:: nl A;IA/2E. In this way, Q is par
tioned into IT'! = lk; hyperrectangles. 

Remark. Since fine accuracy is only needed in a 
neighborhood of a solution, on the average, it is ex
pected that enumerative schemes based on branch 
and bound will achieve a desired accuracy E in a 
neighborhood of a global solution within a signifi
cantly fewer number of partitions. 

4. 	CONCLUDING REMARKS 

In the last two decades there has been a growing 
interest in global optimization problems. Many new 
algorithms and approximate methods have been pro
posed [7]. 

Bilinear programming (Section 3) can be viewed as 
a global optimization problem of a weighted sum of 
areas. Therefore, it is clear that bilinear program
ming techniques can be used in the solution of VLSI 
problems that involve area minimization. In addition 
to the compaction problem, global optimization can 
be used in other VLSI problems (see, e.g., [5]). 

As mentioned earlier, the purpose of this note is 
to communicate a new global optimization approach 
for VLSI. At the moment we have no computational 
experience. Other approaches to this problem in
clude simulated annealing [12]. A comparison of the 
proposed approach with the simulated annealing (or 
other) procedures in current practice will determine 
the practicality and efficiency of the proposed 
method. 
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