SYNTHESIS OF SOME 1-PHENYL-3-SUBSTITUTED-4,5-PYRAZOLE-DIONE-4-ARYL AND AROYL-HYDRAZONES

Mohamed Ali El-Sekily, Sohila Mancy^{*}, and Kamal Atta

Department of Chemistry, Faculty of Science, Alexandria University, Egypt

1. INTRODUCTION

It is known that some of the 4,5-pyrazolinediones and their derivatives showed various biological activities [1-5] as potential drugs for central nervous system, and also as antidiabetic, antiviral, and anticancer agents. This attracted our attention [6, 7] to the synthesis of some pyrazolinediones having varied substituents on the ring and a carbohydrate moiety on C-3 [6-8]. In this paper we describe the synthesis of some pyrazolinediones having different aryl- and aroyl-hydrazones on C-4 and a carbohydrate moiety on C-3.

2. SYNTHESIS OF THE COMPOUNDS

In previous publication [9] we dealt with the reduction of 3-hydroxypropyl-1-phenyl-4,5-pyrazolinedione 4-phenylhydrazone [10] with zinc and acetic acid, which afforded the substituted L-threo- and D-erythro rubazonic acid. Similarly, hydrogenation of the pyrazole (1) in presence of palladium on carbon, afforded the intermediate 4-amino-3-hydroxyalkyl-1-phenylpyrazolin-5-one (2) that afforded [9] the dimeric reduction product (3) upon treatment with hydrochloric acid (yield > 90%).

Treatment of compound (3) with the desired arylor aroyl-hydrazines afforded the corresponding pyrazolinediones (4) (Table 1). Compounds (4) are characterized by their orange color and showed in the infrared region an amide band at $1660-1680 \text{ cm}^{-1}$ in addition to the hydroxyl absorption at $3450-3500 \text{ cm}^{-1}$ (Table 2). Acetylation of the pyrazolinediones (4) with boiling acetic anhydride or with acetic anhydride and pyridine, afforded peracetylated pyrazolinediones (5) (Table 1), which now showed an ester band at $1740-1750 \text{ cm}^{-1}$ and an amide band at $1660-1680 \text{ cm}^{-1}$.

Periodate oxidation of one mole of the pyrazolinediones (4) resulted in the consumption of two moles of the oxidant and the formation of the corresponding 3-formyl-1-phenyl-4,5-pyrazolinedione 4-aryl and aroylhydrazones (6), the infrared spectra of which showed an aldehyde band at 1690–1700 cm⁻¹ in addition to an amide band at 1660–1680 cm⁻¹.

Reduction of compound (6) with sodium borohydride, afforded 3-hydroxymethyl-1-phenyl-4,5-pyrazolinedione 4-aryl- and aroylhydrazones (7) characterized as its acetate (8). On condensation of (6a) and (6c) with phenyl- or *p*-nitrophenylhydrazine, it yielded the hydrazones (9–12). Similarly, reaction of (6a) and (6c) with *o*-phenylenediamine, afforded compounds (13) and (14), respectively.

*To whom crrespondence should be addressed

Compound No.	R	R'	n.p.			Calculated (%)		Found (%)			
			(degrees)	Yield (%)	Molecular formula	С	Н	N	С	Н	N
4a	C ₆ H ₄ CL- <i>p</i>		224–226	(Lit. [11]	232-232)						
4b	$C_6H_4CH_3-p$		222-223	70	$C_{19}H_{20}N_4O_4$	61.95	5.47	15.20	61.76	5.21	15.63
4c	$C_6H_4NO_2-p$		199-201	66	$C_{18}H_{17}N_5O_6$	54.14	4.29	17.53	54.36	4.54	17.26
4d	$C_6H_3(NO_2)_2-o.p$		242-244	54	$C_{18}H_{16}N_6O_8$	48.66	3.63	18.90	48.42	3.46	18.70
4e	COC ₆ H ₅		216-218	(Lit. [9]	218)						
4f	COC_6H_4Cl-p		203-204	68	$C_{19}H_{17}ClN_4O_5$	54.75	4.11	13.44	54.53	4.00	13.36
4g	$COC_6H_4NO_2-p$		220-222	68	$C_{19}H_{17}N_5O_7$	53.40	4.00	16.38	53.26	4.32	16.14
4ĥ	COC ₆ H ₄ CH ₃ -p		206-208	58	$C_{20}H_{20}N_4O_5$	60.60	5.08	14.12	60.42		
4i	COC ₆ H ₄ CH ₃ -o		208-209	47	$C_{20}H_{20}N_4O_5$			14.122	60.51		
4j	COC ₆ H ₄ OCH ₃ -p		213–214	62	$C_{20}H_{20}N_4O_6$			13.58	58.04		
5a	C_6H_4Cl-p		146–147	88	$C_{24}H_{23}CIN_4O_7$			10.87	55.62		
5b	$C_6H_4CH_3-p$		144–145	86	$C_{25}H_{26}N_4O_7$			11.32	60.46		
5c	$C_6H_4NO_2-p$		135–137	76	$C_{24}H_{23}N_5O_9$			13.32	54.66		
5d	$C_6H_3(NO_2)_2-o,p$		169-171	82	$C_{24}H_{22}N_6O_{11}$			14.72	50.31		
5g	$COC_6H_4NO_2-p$		191–192	67	$C_{25}H_{23}N_5O_{10}$			12.64	54.02		
5h	$COC_6H_4CH_3-p$		127–128	64	$C_{26}H_{26}N_4O_8$			10.72	59.51		
5i	$COC_6H_4CH_3-o$		111-112	53	$C_{26}H_{26}N_4O_8$ $C_{26}H_{26}N_4O_8$			10.72	59.64		
5j	$COC_6H_4OCH_3-p$		138–139	64	$C_{26}H_{26}N_4O_9$			10.36	57.62		
5j 6a	C_6H_4Cl-p		160–162	86	$C_{16}H_{11}ClN_4O_2$			17.14	58.52		
6b	$C_6H_4CH_3-p$		161–163	83	$C_{16}H_{11}C_{11}C_{11}C_{12}C_{2}$ $C_{17}H_{14}N_{4}O_{2}$			18.28	66.32		
60 60	$C_6H_4OI_3-p$ $C_6H_4NO_2-p$		244-246	72	$C_{17}H_{14}H_{4}O_{2}$ $C_{16}H_{11}N_{5}O_{4}$			20.77	56.76		
6d			244–240 259–261	62				20.77	50.00		
	$C_6H_3(NO_2)_2-O,P$ COC_6H_5		239–201 199–201	43	$C_{16}H_{10}N_6O_6$			47.48	63.30		
6e 6f			199–201 195–197	43 48	$C_{17}H_{12}N_4O_3$			47.48	57.74		
	COC_6H_4Cl-P			48 65	$C_{17}H_{11}CIN_4O_3$	55.90			55.62		
6g (1	$COC_6H_4NO_2-P$		176-178		$C_{17}H_{11}N_5O_5$			19.16			
6h C	$COC_6H_4CH_3-P$		208-209	54	$C_{18}H_{14}N_4O_3$	64.66		16.75	64.85		
6i -	$COC_6H_4CH_3-O$		174–176	67 7 ($C_{18}H_{14}N_4O_3$	64.66		16.75	64.44		
7a	C_6H_4Cl-P		180-181	76	$C_{16}H_{13}CIN_4O_2$			17.03	58.32		
7b -	$C_6H_4CH_3-P$		169–170	64	$C_{17}H_{16}N_4O_2$			18.16	66.54		
7e 	COC ₆ H ₅		186-189	52	$C_{17}H_{14}N_4O_3$			17.37	63.22		
7i	COC ₆ H ₄ CH ₃ -O		135–137	64	$C_{18}H_{16}N_4O_3$			16.65	64.42		
8a	C ₆ H ₄ Cl-P		170-171	54	$C_{18}H_{15}CIN_4O_3$			15.10	58.12		
8b	$C_6H_4CH_3-P$		137–138	53	$C_{19}H_{18}N_4O_3$			15.98	65.48		
8e	COC ₆ H ₅		145-146	43	$C_{19}H_{16}N_4O_4$			15.37	65.42		
9	C ₆ H ₄ Cl-P	H	200-201		$C_{22}H_{17}CIN_6O$			20.15	63.13		
10	C ₆ H ₄ Cl-P	NO_2	268-270		$C_{22}H_{16}CIN_7O_3$			21.22	57.36		
11	$C_6H_4NO_2-P$	Н	253–255		$C_{22}H_{17}N_7O_3$			22.95	61.95		
12	$C_6H_4NO_2-P$	NO_2	> 270		$C_{22}H_{16}N_8O_5$			23.72	55.72		
13	C ₆ H ₄ Cl-P		236-237		C22H17CIN6O			20.15	63.64		
14	$C_6H_4NO_2-P$		> 280		$C_{22}H_{17}N_7O$	61.82	4.00	22.94	61.65	3.86	22.62

Table 1. Microanalytical Data for the Compounds Prepared.

a 1			$v (cm^{-1})$			
Compound	λ (nm)	log ε	ONC CHO	OH OAc		
4b	max 208, 254, 426 min 224 304	4.27, 4.29, 4.29 3.87, 3.44	1660	3450		
4c	max 206, 248, 408, 456 min 220 298		1670	3450		
4d	max 206, 248, 408, 460 min 220 305		1670	3450		
4f	max 206, 244, 328 min 218 274	4.60, 4.49, 4.56 4.18, 4.21	1670 1700	3450		
4g	max 204, 262, 350, 384 min 220, 320	4.72, 4.63, 4.35 4.16 4.28, 4.12	1660 1690	3450		
4h	max 204, 244, 330 min 220, 274	4.68, 4.35, 4.46 4.03, 3.90		3430		
4i	max 206, 248, 366 min 222, 284	4.46, 4.23, 4.16 4.00, 3.68		3430		
4j	max 206, 246, 340 min 220, 276	4.42, 4.47, 4.34 3.78, 3.71	1670 1690			
5a	max 208, 254, 404 min 223, 306	4.46, 4.40, 4.43 4.11, 3.85	1655	1740		
5b	max 206, 254, 410 min 218, 310	4.80, 4.71, 4.74 4.17, 3.19	1660	1740		
5c 5d	max 208, 248, 406, 471 min 220, 294 max 206, 246, 412, 510	4.18, 3.74	1660 1670	1750 1750		
5g	min 220, 320 442 max 204, 256, 436	4.43, 3.73 4.12 4.62, 4.55, 4.50	1660 1700	1750		
5h	min 223, 318 max 204, 244, 336	4.19, 4.03 4.77, 4.69, 4.04	1655 1700	1750		
5i	min 218, 300 max 204, 244, 322	4.34, 3.85 4.58, 4.39, 4.34	1665 1690	1750		
5j	max 218, 280 max 206, 248, 338	4.10, 3.85 4.45, 4.44, 4.31	1660 1700	1740		
ба	min 220, 280 max 207, 252, 430	3.94, 3.73 4.27, 4.27, 4.32	1655	1700		
6b	min 222, 300 max 204, 265, 430	3.89, 3.52 4.33, 4.15, 4.11	1660	1700		
6с	min 226, 320 max 208, 250, 480	3.95, 3.69 4.61, 4.49, 4.61	1655	1705		
6d	min 224, 320 max 206, 246, 508 min 222, 320	4.32, 4.06 4.72, 4.63, 4.85	1680	1700		
6e	min 222, 320 max 204, 232, 320, 384 min 216, 284 356	4.47, 3.76 4.55, 4.42, 4.18, 4.13 4.35, 4.12, 4.08	1670	1700		
6 f	max 208, 244, 380 min 218, 308	4.32, 4.28, 4.27 4.08, 3.79,	1670	1700		
6g	max 206, 262, 352, 444 min 222, 320 386	4.46, 4.50, 4.24, 4.43 4.19, 4.03 4.11	1665	1695		

Table 2. UV- and IR Spectral Data for the Compounds Prepared.

Table 2:	(Cont'	' d) .
----------	--------	---------------

^ ,			$v (cm^{-1})$			
Compound	λ (nm)	log ε	ONC CHO	OH OA		
6h	max 206, 244, 310, 380	4.60, 4.44, 4.11, 4.17	1670	1690		
	min 218, 278 340	4.17, 3.94, 4.02				
6i	max 208, 240, 324, 378	4.22, 4.05, 3.93 4.01	1670	1690		
	min 222, 276 346	3.99, 3.76, 3.91				
7a	max 206, 252, 410	4.48, 4.46, 4.48	1660 3430			
	min 220, 300	4.11, 3.64				
7b	max 204, 254, 426	4.61, 4.47, 4.49	1660 3450			
	min 224, 300	4.02, 3.59				
7e	max 207, 244, 380	4.31, 4.36, 4.03	1660 3440			
	min 217, 300	4.14, 3.68				
7i	max 204, 246, 370	4.68, 4.48, 4.17	1660 3480			
	min 220, 284	4.22, 3.74				
8a	max 204, 254, 402	4.44, 4.29, 4.32	1660	1735		
	min 224, 306	4.00, 3.73				
8b	max 202, 254, 404	4.60, 4.53, 4.52	1660	1740		
	min 222, 314	4.12, 3.67				
8e	max 206, 246, 394	4.09, 4.13, 3.69	1660	1745		
	min 216, 310	3.90, 3.41				
9	max 206, 258, 334, 420	4.44, 4.36, 4.41, 4.38	1670			
	min 228, 290 366	4.13 4.14, 4.15				
10	max 204, 254, 296, 436	4.08, 3.84, 3.83, 4.15	1660			
	min 230, 274, 330	3.80, 3.78, 3.68				
11	max 206, 258, 300, 438	4.57, 4.29, 4.40, 4.36	1675			
	min 234, 273, 334	4.14, 4.18, 3.73				
12	max 204, 254, 336, 440	4.82, 4.57, 4.67, 4.63	1670			
	min 230, 288, 380	4.44, 4.38, 4.33				
13	max 206, 248, 288, 450	3.95, 3.78, 3.75, 4.03	1660			
	min 230, 270, 332	3.76, 3.74, 3.66				
14	max 208, 262, 308, 484	4.70, 4.42, 4.51, 4.54	1675			
	min 236, 274, 350	4.37, 4.32, 3.85				

Table 3. ¹H-NMR for the Compounds Prepared.

Compound	H-3	H-2	H- 1	Aryl	Others		
5a	4.30m	5.80q	6.21d	7.50-8.21m	2.06, 2.08, 2.16	$(3s, 3 \times 3H, 30Ac)$	
5b	4.41m	5.86q	6.32d	7.12-8.00m	2.02, 2.08, 2.10	$(3s, 3 \times 3H, 30Ac); 2.42(Me)$	
5c	4.38m	5.88q	6.30d	7.24-7.76m	2.06, 2.08, 2.10	$(3s, 3 \times 3H, 30Ac)$	
5d	4.40m	5.92q	6.30d	7.10–7.70m	2.08, 2.10, 2.18	$(3s, 3 \times 3H, 30Ac)$	
5h	4.40m	5.76q	6.24d	7.20-8.00m	2.04, 2.06, 2.20	$(3s, 3 \times 3H, 30Ac); 2.52(Me)$	
5i	4.32	5.64q	6.16d	7.16–7.96m	2.00, 2.06, 2.12	$(3s, 3 \times 3H, 30Ac); 2.52(Me)$	
8a		-	5.18s	7.42-8.16m	2.16 (s, 3H, OAc)		
8b			5.26s	7.15-8.00m	2.16 (s, 3H, OAc)	2.40 (s, 3H, CH ₃)	
8e			5.28s		2.18 (s, 3H, OAc)		

EXPERIMENTAL

Melting points were determined on a Kofler-block apparatus and are uncorrected. IR spectra were recorded with a Unicam Sp-1025 spectrophotometer for potassium bromide pellets, UV absorption spectra with a Unicam Sp-1750 spectrophotometer for ethanolic solutions. Microanalyses were performed in the Chemistry department, Faculty of Science, Cairo University, Cairo, Egypt. NMR spectres were recorded with a Varian EM-390 spectrometer with Me₄Si as internal standard.

Bis-L-threo-1,2,3-trihydroxypropyl derivatives (3) [9]

A solution of 3-(L-threo-glycerol-1-yl)-1-phenyl-4,5-pyrazolinedione (1) [10] (3.54 g, 0.01 mole) in absolute ethanol (300 ml) was hydrogenated in the presence of palladium on carbon 10% (1 g) until no more hydrogen was absorbed. The suspension was filtered off, and evaporated under reduced pressure. Water was added (50ml) and the solution was extracted with ether (4 \times 30), and then treated with hydrochloric acid and FeCl₃, filtered and dried (yield 2.5 g). Compound (3) was recrystallized from ethanol in red needles, m.p. 218–220° C. (Lit. [9] m.p. 219° C).

3-(L-*threo*-glycerol-1-yl)-1-phenyl-4,5pyrazolinedione 4-hydrazones (4)

Bis-L-threo-1,2,3-trihydroxypropyl derivative (3) (1 g) in ethanol (30 ml) was treated with the desired aryl- or aroyl-hydrazine (1 g) and acetic acid (16 ml), and the solution was heated under reflux for 6 h, concentrated to a small volume and left to cool at room temperature. The product was filtered off, washed with ethanol and dried. Each product was recrystallized from ethanol in orange needles (except for compound (4c) which was red).

1-Phenyl-3-(1,2,3-tri-*O*-acetyl-L-*threo*-glycerol-1-yl)-4,5-pyrazolinedione 4-hydrazones (5)

A suspension of pyrazole (4) (0.1 g) in dry pyridine (10 ml) was treated with acetic anhydride (10 ml) and kept overnight at room temperature. The mixture was poured into crushed ice, and the product was filtered off, successively washed with water, ethanol, and ether and dried. Each product was recrystallized from ethanol in orange needles.

3-Formyl-1-phenyl-4,5-pyrazolinedione 4-hydrazone (6)

A suspension of the pyrazoles 4 (0.1 g) in water (20 ml) was treated with a solution of sodium metaperiodate (0.3 g) in water (10 ml) and kept 24 h at room temperature with shaking. The solid was filtered off, washed with water, and dried.

3-Hydroxymethyl-1-phenyl-4,5-pyrazolinedione 4-hydrazone (7)

A solution of compound (6) (0.1 g) in methanol (10 ml) was treated with a solution of sodium borohydride (0.1 g) in water (10 ml) in portionwise and with shaking and the solution was kept overnight at room temperature. The solution was acidified with acetic acid, and the solid that separated was filtered off, washed with water and dried. The products were recrystallized from ethanol in orange needles.

3-Acetoxymethyl-1-phenyl-4,5-pyrazolinedione 4-hydrazones (8)

A solution of (7) (0.1 g) in dry pyridine (10 ml) was treated with acetic anhydride (5 ml) and left overnight at room temperature. The mixture was poured onto crushed ice and the solid was filtered off, washed with water and dried.

Condensation products of 3-formyl-1-phenyl-4,5pyrazolinedione 4-hydrazones (9–14)

A solution of compound (6) (0.1 g) in methanol (20 ml) was treated under reflux with phenyl-, *p*-nitrophenylhydrazine or with *o*-phenylenediamine (one molar proportion) and a few drops of acetic acid. Each product was recrystallized from ethanol in red needles.

REFERENCES

- [1] H.G. Garg, J. Med. Chem., 14 (1971), p. 266.
- [2] H. G. Garg, J. Med. Chem., 15 (1972), p. 446.
- [3] H. G. Garg and P. P. Singh, J. Pharm. Sci., 59 (1970), p. 876.
- [4] R. M. Shafik and F. S. G. Soliman, *Pharmazie*, 29 (1974), p. 290.
- [5] F. S. G. Soliman and R. M. Shafik, *Pharmazie*, **30** (1975), p. 436.
- [6] M. A. El Sekily, Pharmazie, 34 (1979), p. 531.

- [7] K.F. Atta, H. Wilde, and S. Hauptman, *Pharmazie*, 43 (1988), p. 77.
- [8] M. A. El Sekily, S. Mancy, I. El Kholy, E. S. H. El Ashry, H. S. El Khadem, and D. L. Swartz, *Carbohydr. Res.*, **59** (1977), p. 141.
- [9] H. S. El Khadem, Z. M. El Shafei, and M. A. El Sekily, J. Org. Chem., 37 (1972), p. 3523.
- [10] H.S. El Khadem and E.S.H. El Ashry, J. Chem. Soc., (C) 1968, p. 2248.
- [11] E.S.H. El Ashry, I. El Kholy, and Y. El Kilany, Carbohydr. Res., 59 (1977), p. 417.

Paper Received 19 February 1990; Revised 1 December 1990.