SYNTHESIS OF SOME 1-PHENYL-3-SUBSTITUTED-4,5-PYRAZOLE-DIONE-4-ARYL AND AROYL-HYDRAZONES

Mohamed Ali El-Sekily, Sohila Mancy, and Kamal Atta
Department of Chemistry, Faculty of Science, Alexandria University, Egypt

1. INTRODUCTION

It is known that some of the 4,5-pyrazolinediones and their derivatives showed various biological activities [1-5] as potential drugs for central nervous system, and also as antidiabetic, antiviral, and anticancer agents. This attracted our attention [6, 7] to the synthesis of some pyrazolinediones having varied substituents on the ring and a carbohydrate moiety on $\mathrm{C}-3[6-8]$. In this paper we describe the synthesis of some pyrazolinediones having different aryl- and aroyl-hydrazones on C-4 and a carbohydrate moiety on C-3.

2. SYNTHESIS OF THE COMPOUNDS

In previous publication [9] we dealt with the reduction of 3-hydroxypropyl-1-phenyl-4,5-pyrazolinedione 4-phenylhydrazone [10] with zinc and acetic acid, which afforded the substituted l-threo- and D-erythro rubazonic acid. Similarly, hydrogenation of the pyrazole (1) in presence of palladium on carbon, afforded the intermediate 4-amino-3-hy-droxyalkyl-1-phenylpyrazolin-5-one (2) that afforded [9] the dimeric reduction product (3) upon treatment with hydrochloric acid (yield $>90 \%$).

Treatment of compound (3) with the desired arylor aroyl-hydrazines afforded the corresponding
pyrazolinediones (4) (Table 1). Compounds (4) are characterized by their orange color and showed in the infrared region an amide band at $1660-1680 \mathrm{~cm}^{-1}$ in addition to the hydroxyl absorption at $3450-3500$ cm^{-1} (Table 2). Acetylation of the pyrazolinediones (4) with boiling acetic anhydride or with acetic anhydride and pyridine, afforded peracetylated pyrazolinediones (5) (Table 1), which now showed an ester band at $1740-1750 \mathrm{~cm}^{-1}$ and an amide band at $1660-1680 \mathrm{~cm}^{-1}$.

Periodate oxidation of one mole of the pyrazolinediones (4) resulted in the consumption of two moles of the oxidant and the formation of the corresponding 3 -formyl-1-phenyl-4,5-pyrazolinedione 4 -aryl and aroylhydrazones (6), the infrared spectra of which showed an aldehyde band at 1690-1700 cm^{-1} in addition to an amide band at $1660-1680$ cm^{-1}.

Reduction of compound (6) with sodium borohydride, afforded 3-hydroxymethyl-1-phenyl-4,5-pyrazolinedione 4 -aryl- and aroylhydrazones (7) characterized as its acetate (8). On condensation of (6a) and (6c) with phenyl- or p-nitrophenylhydrazine, it yielded the hydrazones (9-12). Similarly, reaction of ($\mathbf{6 a}$) and ($\mathbf{6 c}$) with o-phenylenediamine, afforded compounds (13) and (14), respectively.

[^0]
a $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$
f $\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$
b $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$
g $R=\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$
c $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$
h $\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$
d $R=\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-\mathrm{o}, p$
i $\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{O}$
e $\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{5}$
j $\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$

(9) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}, \quad \mathrm{R}^{\prime}=\mathrm{H}$
(13) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$
(10) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}, \quad \mathrm{R}^{\prime}=\mathrm{NO}_{2}$
(14) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{p}$
(11) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p, \quad \mathrm{R}^{\prime}=\mathrm{H}$
(12) $R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p, \quad \mathrm{R}^{\prime}=\mathrm{NO}_{2}$

Table 1. Microanalytical Data for the Compounds Prepared.

Compound	R	R^{\prime}		Yield(\%)	Molecular formula	Calculated (\%)			Found (\%)		
No.						C	H	N	C	H	N
4 a	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CL}-p$		224-226	(Lit. [11]	232-232)						
4b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$		222-223	70	$\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$	61.95	5.47	15.20	61.76	5.21	15.63
4 c	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$		199-201	66	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{6}$	54.14	4.29	17.53	54.36	4.54	17.26
4 d	$\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-o, p$		242-244	54	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{8}$	48.66	3.63	18.90	48.42	3.46	18.70
4 e	$\mathrm{COC}_{6} \mathrm{H}_{5}$		216-218	(Lit. [9]	218)						
4 f	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$		203-204	68	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{5}$	54.75	4.11	13.44	54.53	4.00	13.36
4g	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$-p		220-222	68	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{7}$	53.40	4.00	16.38	53.26	4.32	16.14
4h	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$-p		206-208	58	$\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}$	60.60	5.08	14.12	60.42	5.24	14.33
4 i	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}{ }^{-} \mathrm{O}$		208-209	47	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$	60.60	5.08	14.122	60.51	5.32	14.36
${ }^{4}$	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$-p		213-214	62	$\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	58.25	4.88	13.58	58.04	4.62	13.21
5 a	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$		146-147	88	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{7}$	55.98	4.50	10.87	55.62	4.41	10.60
5 b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$		144-145	86	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}$	60.72	5.30	11:32	60.46	5.03	11.12
5 c	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$		135-137	76	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{9}$	54.86	4.41	13.32	54.66	4.12	13.10
5d	$\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-$ o,p		169-171	82	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{11}$	50.53	3.88	14.72	50.31	3.53	14.34
5 g	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$-p		191-192	67	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{10}$	54.25	4.19	12.64	54.02	4.37	12.48
5 h	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$-p		127-128	64	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8}$	59.80	5.01	10.72	59.51	5.36	10.72
5 i	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$-o		111-112	53	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8}$	59.80	5.01	10.72	59.64	5.36	10.42
5 j	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$		138-139	64	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{9}$	57.99	4.86	10.36	57.62	4.70	10.12
6	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$		160-162	86	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}$	58.82	3.40	17.14	58.52	3.23	17.42
6 b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$		161-163	83	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	66.65	4.62	18.28	66.32	4.28	18.61
6	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$		244-246	72	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4}$	65.98	3.28	20.77	56.76	3.04	20.41
$6{ }^{6}$	$\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-\mathrm{O}, \mathrm{P}$		259-261	62	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{6}$	50.22	2.63	21.97	50.00	2.41	21.63
6	$\mathrm{COC}_{6} \mathrm{H}_{5}$		199-201	43	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$	63.75	3.77	47.48	63.30	3.34	17.80
6 f	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{Cl}-P$		195-197	48	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{3}$	57.56	3.15	15.78	57.74	3.50	15.36
6g	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{P}$		176-178	65	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5}$	55.90	3.03	19.16	55.62	3.36	19.48
6 h	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-\mathrm{P}$		208-209	54	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$	64.66	4.22	16.75	64.85	4.00	16.30
6 i	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-\mathrm{O}$		174-176	67	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$	64.66	4.22	16.75	64.44	4.20	16.54
7a	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{P}$		180-181	76	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$	58.46	3.98	17.03	58.32	3.67	16.83
7 b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-\mathrm{P}$		169-170	64	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$	66.22	5.23	18.16	66.54	5.62	18.00
7e	$\mathrm{COC}_{6} \mathrm{H}_{5}$		186-189	52	$\mathrm{C}_{17} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{3}$	63.35	4.38	17.37	63.22	4.16	17.14
7 i	$\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \mathrm{O} \mathrm{O}$		135-137	64	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$	64.28	4.79	16.65	64.42	4.59	16.26
8 a	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{P}$		170-171	54	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{3}$	58.31	4.07	15.10	58.12	4.21	15.32
8 b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-\mathrm{P}$		137-138	53	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$	65.13	5.18	15.98	65.48	5.32	15.71
8	$\mathrm{COC}_{6} \mathrm{H}_{5}$		145-146	43	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$	62.63	4.43	15.37	65.42	4.17	15.21
9	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{P}$	H	200-201		$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{6} \mathrm{O}$	63.39	4.11	20.15	63.13	4.00	20.46
10	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{P}$	NO_{2}	268-270		$\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{ClN}_{7} \mathrm{O}_{3}$	57.21	3.49	21.22	57.36	3.64	21.02
11	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{P}$	H	253-255		$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{3}$	61.82	4.00	22.95	61.95	4.35	22.74
12	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{P}$	NO_{2}	> 270		$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{5}$	55.93	3.41	23.72	55.72	3.22	23.41
13	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{P}$		236-237		$\mathrm{C}_{22} \mathrm{H}_{77} \mathrm{ClN}_{6} \mathrm{O}$	63.39	4.11	20.15	63.64	4.43	20.35
14	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{P}$		> 280		$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}$	61.82	4.00	22.94	61.65	3.86	22.62

Table 2. UV- and IR Spectral Data for the Compounds Prepared.

Compound	$\lambda(\mathrm{nm})$	$\log \varepsilon$	$v\left(\mathrm{~cm}^{-1}\right)$			
			ONC	CHO	OH	OAc
4b	max 208, 254, 426	4.27, 4.29, 4.29	1660		3450	
	min 224304	3.87, 3.44				
4c	$\max 206,248,408,456$	4.45, 4.28, 4.43, 4.21	1670		3450	
	min 220298	4.03, 3.47				
4d	max 206, 248, 408, 460	4.63, 4.56, 4.61, 4.21	1670		3450	
	min 220305	4.33, 3.70				
4 f	max 206, 244, 328	4.60, 4.49, 4.56	1670	1700	3450	
	min 218274	4.18, 4.21				
4g	max 204, 262, 350, 384	4.72, 4.63, 4.35 4.16	1660	1690	3450	
	min 220,320	4.28, 4.12				
4h	max 204, 244, 330	4.68, 4.35, 4.46	1660	1690	3430	
	$\min 220,274$	4.03, 3.90				
4i	max 206, 248, 366	4.46, 4.23, 4.16	1660	1960	3430	
	$\min 222,284$	4.00, 3.68				
4j	max 206, 246, 340	4.42, 4.47, 4.34	1670	1690	3430	
	$\min 220,276$	3.78, 3.71				
5a	max 208, 254, 404	4.46, 4.40, 4.43	1655			1740
	$\min 223,306$	4.11, 3.85				
5b	max 206, 254, 410	4.80, 4.71, 4.74	1660			1740
	$\min 218,310$	4.17, 3.19				
5c	max $208,248,406,471$	4.62, 4.41, 4.54, 4.14	1660			1750
	min 220,294	4.18, 3.74				
5d	max 206, 246, 412, 510	4.62, 4.66, 4.53, 4.51	1670			1750
	$\min 220,320442$	4.43, 3.734 .12				
5g	max 204, 256, 436	4.62, 4.55, 4.50	1660	1700		1750
	$\min 223,318$	4.19, 4.03				
5h	max 204, 244, 336	4.77, 4.69, 4.04	1655	1700		1740
	$\min 218,300$	4.34, 3.85				
5i	max 204, 244, 322	4.58, 4.39, 4.34	1665	1690		1750
	max 218, 280	4.10, 3.85				
5 j	max 206, 248, 338	4.45, 4.44, 4.31	1660	1700		1740
	$\min 220,280$	3.94, 3.73				
$6 \mathbf{}$	max 207, 252, 430	4.27, 4.27, 4.32	1655		1700	
	$\min 222,300$	3.89, 3.52				
6b	$\max 204,265,430$	4.33, 4.15, 4.11	1660		1700	
	$\min 226,320$	3.95, 3.69				
6c	max 208, 250, 480	4.61, 4.49, 4.61	1655		1705	
	min 224, 320	4.32, 4.06				
6 d	max 206, 246, 508	4.72, 4.63, 4.85	1680		1700	
	$\min 222,320$	4.47, 3.76				
6 6	max 204, 232, 320, 384	4.55, 4.42, 4.18, 4.13	1670		1700	
	min 216, 284356	4.35, 4.12, 4.08				
6	max 208, 244, 380	4.32, 4.28, 4.27	1670		1700	
	$\min 218,308$	4.08, 3.79,				
6g	max 206, 262, 352, 444	4.46, 4.50, 4.24, 4.43	1665		1695	
	min 222, 320386	4.19, 4.034 .11				

Table 2: (Cont'd).

Compound	$\lambda(\mathrm{nm})$	$\log \varepsilon$	$v\left(\mathrm{~cm}^{-1}\right)$		
			ONC	CHO	OH OAc
6h	max 206, 244, 310, 380	4.60, 4.44, 4.11, 4.17	1670		1690
	$\min 218,278340$	4.17, 3.94, 4.02			
$6 i$	max 208, 240, 324, 378	4.22, 4.05, 3.934 .01	1670		1690
	$\min 222,276346$	$3.99,3.76,3.91$			
7a	max 206, 252, 410	4.48, 4.46, 4.48	1660	3430	
	$\min 220,300$	4.11, 3.64			
7b	max 204, 254, 426	4.61, 4.47, 4.49	1660	3450	
	min 224, 300	$4.02,3.59$			
7 e	max 207, 244, 380	4.31, 4.36, 4.03	1660	3440	
	$\min 217,300$	4.14, 3.68			
$7 \mathbf{i}$	max 204, 246, 370	4.68, 4.48, 4.17	1660	3480	
	min 220, 284	4.22, 3.74			
8 a	max 204, 254, 402	4.44, 4.29, 4.32	1660		1735
	min 224, 306	4.00, 3.73			
8b	max 202, 254, 404	4.60, 4.53, 4.52	1660		1740
	min 222, 314	4.12, 3.67			
8 e	max $206,246,394$	4.09, 4.13, 3.69	1660		1745
	min 216,310	3.90, 3.41			
9	max 206, 258, 334, 420	4.44, 4.36, 4.41, 4.38	1670		
	$\min 228,290366$	4.13 4.14, 4.15			
10	max 204, 254, 296, 436	$4.08,3.84,3.83,4.15$	1660		
	$\min 230,274,330$	$3.80,3.78,3.68$			
11	max 206, 258, 300, 438	4.57, 4.29, 4.40, 4.36	1675		
	$\min 234,273,334$	$4.14,4.18,3.73$			
12	max 204, 254, 336, 440	4.82, 4.57, 4.67, 4.63	1670		
	$\min 230,288,380$	$4.44,4.38,4.33$			
13	max 206, 248, 288, 450	$3.95,3.78,3.75,4.03$	1660		
	$\min 230,270,332$	$3.76,3.74,3.66$			
14	max 208, 262, 308, 484	$4.70,4.42,4.51,4.54$	1675		
	min $236,274,350$	4.37, 4.32, 3.85			

Table 3. ${ }^{1} \mathrm{H}$-NMR for the Compounds Prepared.

Compound	H-3	H-2	H-1	Aryl	Others	
$\mathbf{5 a}$	4.30 m	5.80 q	6.21 d	$7.50-8.21 \mathrm{~m}$	$2.06,2.08,2.16$	$(3 \mathrm{~s}, 3 \times 3 \mathrm{H}, 30 \mathrm{Ac})$
$\mathbf{5 b}$	4.41 m	5.86 q	6.32 d	$7.12-8.00 \mathrm{~m}$	$2.02,2.08,2.10$	$(3 \mathrm{~s}, 3 \times 3 \mathrm{H}, 30 \mathrm{Ac}) ; 2.42(\mathrm{Me})$
$\mathbf{5 c}$	4.38 m	5.88 q	6.30 d	$7.24-7.76 \mathrm{~m}$	$2.06,2.08,2.10$	$(3 \mathrm{~s}, 3 \times 3 \mathrm{H}, 30 \mathrm{Ac})$
$\mathbf{5 d}$	4.40 m	5.92 q	6.30 d	$7.10-7.70 \mathrm{~m}$	$2.08,2.10,2.18$	$(3 \mathrm{~s}, 3 \times 3 \mathrm{H}, 30 \mathrm{Ac})$
$\mathbf{5 h}$	4.40 m	5.76 q	6.24 d	$7.20-8.00 \mathrm{~m}$	$2.04,2.06,2.20$	$(3 \mathrm{~s}, 3 \times 3 \mathrm{H}, 30 \mathrm{Ac}) ; 2.52(\mathrm{Me})$
$\mathbf{5 i}$	4.32	5.64 q	6.16 d	$7.16-7.96 \mathrm{~m}$	$2.00,2.06,2.12$	$(3 \mathrm{~s}, 3 \times 3 \mathrm{H}, 30 \mathrm{Ac}) ; 2.52(\mathrm{Me})$
$\mathbf{8 a}$			5.18 s	$7.42-8.16 \mathrm{~m}$	$2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$	
$\mathbf{8 b}$			5.26 s	$7.15-8.00 \mathrm{~m}$	$2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$	$2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$
$\mathbf{8 e}$			5.28 s	$7.00-7.92 \mathrm{~m}$	$2.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$	

EXPERIMENTAL

Melting points were determined on a Kofler-block apparatus and are uncorrected. IR spectra were recorded with a Unicam $\mathrm{Sp}-1025$ spectrophotometer for potassium bromide pellets, UV absorption spectra with a Unicam Sp-1750 spectrophotometer for ethanolic solutions. Microanalyses were performed in the Chemistry department, Faculty of Science, Cairo University, Cairo, Egypt. NMR spectres were recorded with a Varian EM-390 spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard.

Bis-L-threo-1,2,3-trihydroxypropyl derivatives (3) [9]

A solution of 3-(L-threo-glycerol-1-yl)-1-phenyl4,5 -pyrazolinedione (1) [10] ($3.54 \mathrm{~g}, 0.01 \mathrm{~mole}$) in absolute ethanol (300 ml) was hydrogenated in the presence of palladium on carbon $10 \%(1 \mathrm{~g})$ until no more hydrogen was absorbed. The suspension was filtered off, and evaporated under reduced pressure. Water was added (50 ml) and the solution was extracted with ether (4×30), and then treated with hydrochloric acid and FeCl_{3}, filtered and dried (yield 2.5 g). Compound (3) was recrystallized from ethanol in red needles, m.p. $218-220^{\circ} \mathrm{C}$. (Lit. [9] m.p. $219^{\circ} \mathrm{C}$).

3-(L-threo-glycerol-1-yl)-1-phenyl-4,5pyrazolinedione 4-hydrazones (4)

Bis-L-threo-1,2,3-trihydroxypropyl derivative (3) $(1 \mathrm{~g})$ in ethanol (30 ml) was treated with the desired aryl- or aroyl-hydrazine (1 g) and acetic acid (16 ml), and the solution was heated under reflux for 6 h , concentrated to a small volume and left to cool at room temperature. The product was filtered off, washed with ethanol and dried. Each product was recrystallized from ethanol in orange needles (except for compound (4e) which was red).

1-Phenyl-3-(1,2,3-tri-O-acetyl-L-threo-glycerol-1-yl)-4,5-pyrazolinedione 4-hydrazones (5)

A suspension of pyrazole (4) (0.1 g) in dry pyridine $(10 \mathrm{ml})$ was treated with acetic anhydride $(10 \mathrm{ml})$ and kept overnight at room temperature. The mixture was poured into crushed ice, and the product was filtered off, successively washed with water, ethanol, and ether and dried. Each product was recrystallized from ethanol in orange needles.

3-Formyl-1-phenyl-4,5-pyrazolinedione 4-hydrazone

 (6)A suspension of the pyrazoles $4(0.1 \mathrm{~g})$ in water $(20 \mathrm{ml})$ was treated with a solution of sodium metaperiodate (0.3 g) in water (10 ml) and kept 24 h at room temperature with shaking. The solid was filtered off, washed with water, and dried.

3-Hydroxymethyl-1-phenyl-4,5-pyrazolinedione 4-hydrazone (7)

A solution of compound (6) (0.1 g) in methanol $(10 \mathrm{ml})$ was treated with a solution of sodium borohydride (0.1 g) in water (10 ml) in portionwise and with shaking and the solution was kept overnight at room temperature. The solution was acidified with acetic acid, and the solid that separated was filtered off, washed with water and dried. The products were recrystallized from ethanol in orange needles.

3-A cetoxymethyl-1-phenyl-4,5-pyrazolinedione 4-hydrazones (8)

A solution of (7) (0.1 g) in dry pyridine (10 ml) was treated with acetic anhydride (5 ml) and left overnight at room temperature. The mixture was poured onto crushed ice and the solid was filtered off, washed with water and dried.

Condensation products of 3-formyl-1-phenyl-4,5pyrazolinedione 4-hydrazones (9-14)

A solution of compound (6) (0.1 g) in methanol $(20 \mathrm{ml})$ was treated under reflux with phenyl-, p-nitrophenylhydrazine or with o-phenylenediamine (one molar proportion) and a few drops of acetic acid. Each product was recrystallized from ethanol in red needles.

REFERENCES

[1] H. G. Garg, J. Med. Chem., 14 (1971), p. 266.
[2] H. G. Garg, J. Med. Chem., 15 (1972), p. 446.
[3] H. G. Garg and P. P. Singh, J. Pharm. Sci., 59 (1970), p. 876 .
[4] R. M. Shafik and F.S. G. Soliman, Pharmazie, 29 (1974), p. 290.
[5] F.S. G. Soliman and R. M. Shafik, Pharmazie, 30 (1975), p. 436.
[6] M. A. El Sekily, Pharmazie, 34 (1979), p. 531.
[7] K. F. Atta, H. Wilde, and S. Hauptman, Pharmazie, 43 (1988), p. 77.
[8] M. A. El Sekily, S. Mancy, I. El Kholy, E.S. H. El Ashry, H.S. El Khadem, and D. L. Swartz, Carbohydr. Res., 59 (1977), p. 141.
[9] H. S. El Khadem, Z. M. El Shafei, and M. A. El Sekily, J. Org. Chem., 37 (1972), p. 3523.
[10] H.S. El Khadem and E.S. H. El Ashry, J. Chem. Soc., (C) 1968, p. 2248.
[11] E.S.H. El Ashry, I. El Kholy, and Y. El Kilany, Carbohydr. Res., 59 (1977), p. 417.

Paper Received 19 February 1990; Revised 1 December 1990.

[^0]: *To whom crrespondence should be addressed

