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ABSTRACT 

The concept of equivalent viscous damping for an elasto-plastic system is inves­
tigated in this study. An exact closed form solution of the equivalent stiffness and 
damping is presented for sinusoidal excitation. The exact solution is compared to 
five commonly used equivalent linear models. It is argued that for harmonic exci­
tation, the geometric stiffness method is an appropriate representation of the equi­
valent stiffness. For large values of ductility the associated equivalent damping 
ratios have little effect on the response as a result of the dominancy of the low 
value of the associated equivalent stiffness. 
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RATIONAL EQUIVALENT LINEAR MODEL FOR SIMPLE YIELDING SYSTEMS 

1. INTRODUCTION 	 "linear" viscous damping can be written as: 

Linearization of non-linear dynamic systems is an mx + ex + P(x) Fosinwft, (1)
attempt to simplify the response calculations of cer­

tain classes of problems [1]. Linearization refers to 


in which m = the mass of the oscillator, e = the
the replacement of the non-linear system with an 

viscous damping coefficient; P(x) = the nonlinear re­
equivalent linear system having similar energy dis­

storing force in terms of the relation describing the 
sipating characteristics [2, 3]. 

hysteresis loop of steady state response of the yield­
Non-linearity of dynamic systems involves both ing oscillator; Fo = the amplitude of the excitation; 

damping and restoring forces. This paper deals with Wf = the frequency of the excitation; and x = the 
the latter type of non-linearity; and more specifically, relative displacement of mass. The dots denote der­
the linearization of an elasto-plastic system is investi­ ivatives of displacement with respect to time. See Fi­
gated in this paper. gure 1. 

Despite the fact that many "hysteretic" constitutive The "linear" natural frequency of the yielding sys­
models have been proposed [4-6] to simulate the tem is defined as: 

steady state response of a yielding system, the elasto­
plastic model is generally acceptable and provides re­
liable results for modeling steel structures behavior (2)
[7-9]. 

Several equivalency algorithms have been pro­
where ko is the initial stiffness of the system. A typi­

posed [1, 10, 11] for the elasto-plastic system. How­
cal hysteresis loop of such system is shown in Figure 

ever, almost all of these proposed methods do not 
2. The yielding displacement is denoted as Xy; F" is

predict exactly the steady state response of the yield­
the yielding force; and Xo is the maximum displace­

ing system. In the present study a closed form solu­ ment of the mass relative to the ground. 
tion of the equivalent viscous damping and the equi­

valent stiffness is established for the yielding system 
 2.2. Equivalent Viscous Damping 
subjected to a sinusoidal excitation. 

The principal advantages of the concept of equiva­
2. ELASTO-PLASTIC SYSTEM 	 lent viscous damping are that it allows approximate 

solutions to be found to problems of interest in design 
2.1. General and analysis, using mathematical techniques already 

The general equation of motion of a yielding developed and used for linear systems, and that it 
single-degree-of-freedom system (SDOF) with a describes certain features of a generally complex 

P(x) 

m f sin til t 
__..;;..0... f 

IPIxII2 

I 
x 

Figure 1. Single-degree-of-freedom Yielding Model. 
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RESTORING FORCE 

DISPLACEMENT 

Figure 2. Typical Hysteresis Loop for Elasto-Plastic Sys­
tem. 

dynamic problem in more familiar terms and 
methodologies [12]. Hower, it should be realized that 
the description of the yielding system response by an 
equivalent viscous damping linear system is only ap­
proximate. In addition, it should be realized that the 
utilization of such simplified approach does not pro­
vide permanent deformations and residual stresses. 

Three physical properties of the equivalent linear 
system are to be determined. Those properties are 

the mass, stiffness, and damping. The determination 
of these properties is based on two criteria; namely, 
energy dissipation and response amplitude. It is un­
derstood that the dissipated energy per cycle is the 
same for the yielding system and the equivalent linear 
system provided that both systems have identical 
steady state response [2]. 

Five commonly used equivalent models with har­
monic excitation are briefly discussed below. The 
linearization characteristcs for these models are given 
in Table 1. 

1. 	Dynamic Equivalence [10]: In this model the dif­
ference in response between the non-linear and 
linear systems is minimized. The equivalent mass 
of the linear model is assumed to be the same as 
the original mass of the yielding system. 

2. 	 Resonant Amplitude [2]: In this approach, the 
equivalent stiffness of the linear model is equal to 
the initial stiffness of the yielding system for small­
amplitude frequency. Both masses are the same. 

3. Geometric Stiffness [2]: In this method, the stiff­
ness of the equivalent linear model is taken equal 
to the secant stiffness of the yielding system. 

4. 	 Dynamic Mass [2]: For this model, the small­
amplitude stiffness(initial) of the yielding system 
is taken to be the equivalent stiffness of the linear 
model and an effective dynamic mass is defined 

Table 1. Linearization of Elasto-plastic Hysteretic System. 

Method 	 Damping ratio Frequency shift Stiffness 

Wo = ll(s- SiD22S)r1. Dynamic equivalence 
We 

e 	 = COS._' (\ 2) 

= j~o2. Resonant amplitude Wo 	 ko 
mo 

WO ko 
3. 	 Geometric stiffness =W 	 ke 

We 	 !A 

Wo = [~(e - SiD22S)r4. Dynamic mass ko 

Wo 	 Wo 

We 

2S)r5. Constant critical damping - ke = ko 
We Wo

[~(S SiD2
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leading to the same frequency shift as that in 
Modell. 

5. Constant 	 Critical Damping [2]: This model is 
based on assuming the same critical damping for 
both linear and non linear models. 

2.3. Equivalency Algorithm 

Basically all five models are derived by making an 
assumption on one of the parameters of each model 
and then deducing the shift in frequency and equiva­
lent damping values. The latter is obtained by equat­
ing the energy dissipated per cycle in the non-linear 
system due to the inelastic action (yielding) to the 
energy dissipated by the equivalent viscous damping 
in the linear system, or: 

!J.E per cycle = Jtcewx~; Jt = 3.14 (3) 

where Ce is the equivalent viscous damping coeffi­
cient, w is the frequency of the steady state response, 
and Xo is the maximum attained displacement. The 
damping ratio can be defined as: 

(4) 

where ke is the equivalent stiffness of the linear sys­
tem. The variation of ~e' with the ductility ratio, is 
shown in Figure 3. As can be seen different defini­
tions of ~ are obtained due to the various definitions 
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Figure 3. Equivalent Viscous Damping for Elasto-Plastic 

System. 


of the equivalent stiffness of the linear system. How­
ever, since the basic concept for the linearization is 
identical for all models, the product ke~e is the same 
for all models [1]. 

The variation of the ratio between the equivalent 
stiffness for the linear system and the initial stiffness 
of the yielding system is shown in Figure 4. It is obvi­
ous that the stiffness due to yielding is reduced (stiff­
ness degradation). However this is not considered in 
the dynamic mass and resonant amplitude models [1]. 
The variation of the frequency ratio is shown in Fig­
ure 5. Despite the fact that dynamic mass method 
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Figure 4. Variation of the Ratio of Equivalent Stiffness to 
Initial Stiffness. 
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Figure 5. Variation of the Ratio of Equivalent Natural Fre­
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assumes a constant equivalent stiffness for the linear 
system, the natural frequency decreases as the ductil­
ity ratio ~ increases due to the frequency shift given 
in Table 1. 

3. THE PROPOSED METHOD 

As mentioned before, the equivalency concept is 
applied by considering two parameters of the re­
sponse; the dissipated energy per cycle and the steady 
state amplitude. The equivalent viscous damping 
coefficient, Ce , can be found by equating the energy 
dissipated by the linear and the yielding systems as 
follows [2]: 

(5) 
or 

Xo
and ~ = --

Xy 

where Wf is the frequency of the motion which is 
equal to the excitation frequency, ~ is the ductility 
ratio, and Xy is the yielding displacement. 

If viscous damping, Co, is available in the yielding 
system, then the total equivalent viscous damping of 
the linear system is given by: 

(6) 

The second constraint involves the steady state re­
sponse, xo ' of the two systems, which should be iden­
tical. 

F2 1 
x~ = 0 ________ (7) 

2 [ 2 2]
m (W~ - W7? + Cm~f 

where We is the "equivalent" natural frequency for 
the linear system and it is defined as: 

We = (9) 

S. A. Ashour 

Equation (8) can be written in the form: 

solving for ke: 

then Equation (11) can be written as: 

(13) 

or 

k, = ko [ (::)' ± J(:':)' -{4(~:2 1) + ~:'l'] 
(14) 

as can be seen from Equation (14), two solutions are 
obtained for the equivalent stiffness. It might be pos­
sible to obtain two values of ke less than ko for the 
frequency ratio below resonance. Both solutions are 
right. Accordingly, the equivalent damping ratio is 
given as: 

(15) 

or 

2 (~-1) (Wo)/~total = ~o + - 2 -
Jt ~ Wf 

and when ~o = 0, and so Co = 0, then 
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= 2 (~-1) (W(»)j
~total 

j[ Wf 

(17) 

For resonance case, Wf = 000 , then 

(18) 

or 

(19) 

then 

or 

(21) 

so that: 

For boundary condition of ~ 1 or Xo = Xy and 
Fy = kaXy or Fy kaXo then Equation (14) can be 
written as 

or 

(24) 

For a SDOF undamped system, the maximum steady 
state response is given by: 

Fo 1 
Xo ±- (25) 

ko 1 (:J 
or 

Fo ±koXo(1 (26)(::n 
substitute in Equation (24) the following equation is 
obtained 

(27)k, =ko [ (::r ± { + ( 1 - (:J)}] 
which reduced to 

ke = ko· (28) 

4. DISCUSSION OF RESULTS 

4.1. Numerical Veritication 

A step-by-step numerical integration is used to cal­
culate the yield response of a SDOF elasto-plastic 
system subjected to a sinusoidal excitation. Fourth 
Order Rung-Kutta [12] method is employed. 

In order to eliminate the phenomena of response 
drift and to obtain a steady state response (the same 
maximum positive and maximum negative) the exci­
tation is applied in such a way to attain the maximum 
amplitude over 20 cycles [13]. 

The equivalent viscous damping for the linearized 
system is shown in Figure 6 together with the equiva­
lent linear stiffness for several frequency ratios (001 
(00 ), It can be noticed that damping is a function of 
the frequency ratio, and it decreases as this ratio in­
creases for the same ductility ratio. The variations of 
the ratio of equivalent stiffness to the initial stiffness 
are also shown in the same figure. The (+) and (-) 
signs in the figure are consistent with the application 
of the plus and minus signs in Equation (14) and (17). 

To examine the reliability of the five mentioned 
methods of equivalency, the maximum steady state 
response of the yielding system is compared with the 
response of the equivalent linear system. This is 
shown in Figure 7 for three different frequency 
ratios. Figure 7 shows that the best representation is 
obtained by using the geometric stiffness method. 
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Comparison of Steady State Response for the 

The ratio of the equivalent stiffness of the linear 
system to the initial stiffness of the yielding system is 
shown in Figure 8 for the resonance condition. As 
can be seen, the geometric stiffness and the dynamic 
equivalence methods provide the best representation 
of the equivalent stiffness to the proposed method. 

Considering the equivalent damping ratio obtained 
by Equation (2), it can be seen that this ratio is iden­
tical to the damping ratio given by the constant crit­
ical damping method. This is shown in Figure 9 for 
the resonance condition. However, the equivalent 
stiffness obtained by this method is not well com­
pared with the equivalent stiffness obtained by the 
proposed method (Figure 8). As a result, the re­
sponse shown in Figure 7b, which was obtained using 
this method, does not compare well with the actual 
response. 

It is interesting to notice that even though the equi­
valent damping obtained by the geometric stiffness 
method does not compare well to the exact values, 
the yielding response is well represented. This is due 
to the fact that response is controlled more by stiff­
ness than damping for high frequency ratio. This may 
be explained by considering the steady state response 
of the linearized system 

\ 
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Yielding and Equivalent Linear System. (a) wrlwo 0.5; (b) Figure 8. Variation of the Ratio of the Equivalent Stiffness 
wr1wo 1.0; (c) wflwo 1.5. to the Initial Stiffness (wr/wo = 1.0). 
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(29)xo = 

and by considering the extreme reduction in the stiff­
ness (as ~ increase in Figure 8); the first term under 
the root dominates. So the response is not very much 
affected by damping in that region. 

4.2. Errors in the Equivalency Algorithm 

The concept of equivalency is based on steady state 
response, or in other words, the non-linear system is 
assumed to yield symmetrically in the positive and 
negative senses. This situation is no longer available 
when excitation is applied to its full magnitude 
(amplitude) from the initial time. As a result, drift in 
the response will develop. Such drift, D, can be ex­
pressed as 

D =X__m_ax_+_X_m_in (30)
2 

where X max , X min are the extreme displacements in 
the positive and negative direction respectively. Tak­
ing into consideration the algebraic sign of the ex­
treme response. The average response can be given 
as 

S. A. Ashour 

(31)
2 

It was found that the average response of a yielding 
system subjected to a sinusoidal excitation applied to 
its full amplitude is exactly the same as the response 
of the same yielding system subjected to the same 
excitation applied gradually to attain its full 
amplitude over some cycles (no drift). 

Assuming the drift, D, is known, the geometric 
stiffness can be expressed as: 

(32) 

~m 

where ~m (xmlxy), and Xm is maximum displacement 
(equal to xave). 

The corresponding damping coefficient is given by: 

C(l- D 
x -m 

(33) 

where c = the damping coefficient obtained using 
Equation (5) with Xm as xo ' i.e. no drift is occurring. 

Apparently, the geometric stiffness obtained by 
using Equation (32), considering drift to be zero, is 
higher than the stiffness calculated for a certain 
amount of drift. 

An elasto-plastic system subjected to a harmonic 
excitation applied to its full amplitude from the initial 
condition is used to obtain the response. The 
maximum response is calculated numerically and it is 
shown in Figure 10 labeled "numerical inelastic" as a 
function of the ratio of the driving force amplitude 
to the yielding force. The driving frequency is not to 
be equal to the initial natural frequency. The drift is 
computed by using Equation (30). Using the geomet­
ric stiffness equivalency the equivalent stiffness and 
the equivalent damping were found using Equations 
(32) and (33). The linearized response is calculated 
and added to the drift. This is shown in Figure (9) 
and labeled "Geometric stiffness + drift". An excel­
lent agreement between the two solutions is clear in 
Figure 10. The drift is a difficult quantity to find, 
since there is no relationship between the drift and 
any other parameter of the yielding system or driving 
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force. If the equivalent stiffness and equivalent 
damping coefficient are obtained from Equations 
(32) and (33) respectively, by setting D equal to zero, 
then the response would be as shown in Figure 10 
which is labeled "geometric stiffness". It can be seen 
that high discrepancy in the response approximation 
exists in this case. 

4.3. Earthquake Response 

The application of the concept of equivalent visc­
ous damping to earthquake response calculation of 
yielding systems is expected to involve more difficul­
ties than the case of sinusoidal excitation. The appli­
cation of the proposed method of equivalent viscous 
damping would require that some response represen­
tative amplitudes be determined. In addition some 
force amplitude representative is needed in Equation 
(14). Furthermore, the drift in the response intro­
duces additional errors in the equivalency concept, 
and such equivalency can not be modeled effecively 
by any usual definition of equivalent damping. 

However, since it was found that the best represen­
tation of equivalent viscous damping for elastoplastic 
system is by using the geometric stiffness method, the 
maximum and minimum response were used in Equa­
tion (30) to obtain the drift and Equation (32) to 
obtain the equivalent stiffness for a yielding system 
subjected to EI-Centro, 1940, NS excitation. Using 

5 


this equivalent stiffness the corresponding damping 
was obtained using Equation (33). 

The yielding response and the equivalent 
linearized response are shown as a function of the 
initial natural frequency of the yielding system in 
Figure 11. Even though, the problem of drift has 
been eliminated, the two responses differ noticeably. 
The reason is due to the exact definition of the steady 
state response. The maxima of the yielding response 
may be reached only once and therefore, the equiva­
lent damping obtained was over-estimated for the 
linearized system. Also, the resonant amplitude 
method was used to obtain an equivalent linearized 
response since it is well known that this method is the 
easiest and the most usable method. However, as can 
be seen from Figure 11, the response was not well 
represented by this method and less reliable for this 
excitation. 

5. CONCLUSIONS 

The application of the equivalent viscous damping 
concept to the steady-state response of yielding struc­
tures subjected to sinusoidal excitation has been dis­
cussed in this paper. The elasto-plastic oscillator was 
used as an example to illustrate as to how the equiv­
alent viscous damping factor is dependent on the 
choice of equivalent stiffness. 
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A proposed closed form solution based on the 
energy equivalency was introduced. The proposed 
solution has been applied for sinusoidal excitation 
condition. It has also been compard with the five 
well-known methods of equivalency in term of equi­
valent stiffness and equivalent viscous damping. It 
has been shown that the geometric stiffness is the best 
method to represent the equivalent stiffness of the 
linear system. For earthquake excitation, the prob­
lems of response drift and the steady state response 
makes it difficult to attain an equivalent linear sys­
tem. It is concluded that even though the amplitude 
method is simple, clear, and conservative, the 
geometric stiffness method provides more reliable re­
sults for response approximation. 
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