ON NEWTON'S METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS

Ioannis K. Argyros*
Department of Mathematics
New Mexico State University
Las Cruces, U.S.A.

(الملامصـة :

Abstract

We provide sufficient conditions for the convergence of Newton's iteration to a solution of nonlinear operator equation in Banach space. We assume only that the Fréchet-derivative of the nonlinear operator is Hölder continuous. Some examples are provided where the usual hypotheses for the application of Newton's method are not satisfied but ours are.

[^0]
ON NEWTON'S METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS

INTRODUCTION

The Newton-Kantorovich method, namely

$$
\begin{equation*}
x_{n+1}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right) \tag{1}
\end{equation*}
$$

has been used extensively to solve the nonlinear operator equation

$$
\begin{equation*}
F(x)=0 \tag{2}
\end{equation*}
$$

in a Banach space X [4-6] (and the references there).
Using some ideas of Altman [3], we generalize his results, assuming only that the Frechet-derivative $F^{\prime}(x)$ is Hölder ($\left.c, p\right)$ continuous on X (to be made precise later).
If $p=1$ and the inverse of $F^{\prime}(x)$ exists on X then our results reduce to the ones obtained by Kantorovich and others [1], [3], [4].
Some examples are also provided.
Let X and Y be two Banach spaces and let L_{1} be a continuous linear operator mapping X onto Y. Denote by $e_{L_{1}}$ the set of all solutions of the equation $L_{1} x=0$. We divide the space X into classes, and we say that x_{1} and x_{2} belong to the same class \bar{X}, if $x_{1}-x_{2} \in e_{L_{1}}$. This quotient space $X / e_{L_{1}}$ is a Banach space with the norm $\|\bar{X}\|=\inf \|x\|, x \in \bar{X}$. The operator L_{1} gives rise to an operator $L: X / \bar{X} e_{L_{1}} \rightarrow Y$ which is bijective and $L \bar{X}=L_{1} x$ for $x \in \bar{X}$.

We now state the lemmas whose proof can be found in [3].

Lemma 1. Let L_{1} and L_{2} be two linear operators mapping X onto Y. If

$$
\begin{equation*}
\left\|L_{2}-L_{1}\right\|<\frac{1}{\left\|\bar{L}_{1}^{-1}\right\|}, \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\bar{L}_{2}^{-1}\right\| \leq \frac{\left\|\bar{L}_{1}^{-1}\right\|}{1-\left\|\bar{L}_{1}^{-1}\right\|\left\|L_{2}-L_{1}\right\|} \tag{4}
\end{equation*}
$$

where \bar{L}_{1} and \bar{L}_{2} denote the adjoints of L_{1} and L_{2} respectively.

Let

$$
\begin{equation*}
P=A \bar{X} \tag{5}
\end{equation*}
$$

be the linear transformation of $X / e_{L_{2}}$ onto Y, induced by the operator L_{2}. Then easily

$$
\begin{equation*}
\left\|A^{-1}\right\|=\left\|\bar{L}_{2}^{-1}\right\| \tag{6}
\end{equation*}
$$

Now, let $y=F(x)$ be a nonlinear continuous operator on Y. We suppose that $F(x)$ is Fréchetdifferentiable in a certain closed sphere $S\left(x_{0}, r\right)$ with center x_{0} and of radius $r>0$. We suppose also that the Frechet-derivative $F^{\prime}(x)$ is a linear operator onto Y for every $x \in S\left(x_{0}, r\right)$.

Denote by e_{x} the set of all solutions z of the equation $F^{\prime}(x) z=0$ and consider the quotient space X / e_{x}. Let us assume that the following is satisfied:

For every $x \in S\left(x_{0}, r\right)$ the norm of $l \in X / e_{x}$ is reached at a point $z \in l$, i.e., there exists an element $z \in l$ such that

$$
\begin{equation*}
\|z\|=\|l\|=\inf \left\|z^{\prime}\right\|, z^{\prime} \in l \tag{7}
\end{equation*}
$$

We can now define an iteration for solving (2). We denote by A_{n} the linear operator defined on $X / e_{x_{n}}$ and induced by the linear transformation $F^{\prime}\left(x_{n}\right)$ and put $e_{n}=e_{x_{n}}, n=0,1,2, \ldots$.

Set

$$
\bar{x}_{1}=\bar{x}_{0}-A_{o}^{-1} F\left(x_{o}\right),
$$

where $x_{0} \in \bar{x}_{\mathrm{o}}$ and $\bar{x}_{\mathrm{o}}, \bar{x}_{1} \in X / e_{0}$, and choose an element x_{1} in \bar{x}_{1} such that

$$
\left\|x_{1}-x_{\mathrm{o}}\right\|=\left\|\bar{x}_{1}-\bar{x}_{\mathrm{o}}\right\| .
$$

If the approximate solutions x_{1}, \ldots, x_{n} are already defined, then we put

$$
\begin{equation*}
\bar{x}_{n+1}=\bar{x}_{n}-A_{n}^{-1} F\left(x_{n}\right), \tag{8}
\end{equation*}
$$

where $\bar{x}_{n} \in X / e_{n}$ and $x_{n} \in \bar{x}_{n}$. Further, we choose elements x_{n+1} and $\bar{x}_{n+1} \in X / e_{n}$ such that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\|=\left\|\bar{x}_{n+1}-\bar{x}_{n}\right\| . \tag{9}
\end{equation*}
$$

It is well known that at branch and limit points of nonlinear functional equations the first Fréchetderivative is singular and an interest in the computation of such solution points (see, for example [7] and the references therein) has provided some of the motivation for the construction of operators A_{n} in this paper.

Conditions for the convergence of iterations (8) and (9), which are also sufficient conditions for the existence of a solution of (2) will be given in the main theorem that follows. But first we need the following:

Definition 1. Assume that F is Fréchet-differentiable and $F^{\prime}(x)$ is the first Fréchet-derivative at a point x. We say that the Frechet-derivative is Hölder continuous over a domain R if for some $c>0, p \in[0,1]$, and all $x, y \in R$

$$
\begin{equation*}
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq c\|x-y\|^{p} . \tag{10}
\end{equation*}
$$

In this case, we say that $F^{\prime}(x) \in H_{R}(c, p)$.
We will need the following lemma ([4], p. 142).
Lemma 2. Let $F: X \rightarrow Y$ and $\widetilde{D} \subseteq X$. Assume \widetilde{D}.is open and that $F^{\prime}(x) \in H_{\bar{D}_{0}}(c, p)$ for some convex $\widetilde{D}_{0} \subseteq \widetilde{D}$. Then for all $x, y \in \widetilde{D}_{0}$

$$
\begin{equation*}
\left\|F(x)-F(y)-F^{\prime}(x)(x-y)\right\| \leq \frac{\mathrm{c}}{\mathrm{p}+1}\|x-y\|^{p+1} \tag{11}
\end{equation*}
$$

MAIN RESULTS

Definition 2. Define the functions g_{1}, g_{2}, and g_{3} by,

$$
\begin{aligned}
& g_{1}(d)=g_{1} z(d)=v z^{p+1}+z^{p}-v \\
& \text { where } z=d^{1 /(p+1)}, v=(p+1)^{p(p+1)} \\
& g_{2}(d)=d^{p}+v d-v \\
& \left.g_{3}(p)=1-\sqrt{\left(\frac{1}{(p+1) v}\right.}\right)
\end{aligned}
$$

Claim. There exists d, with $0<d<1$ such that

$$
\begin{align*}
& g_{1}(d) \leq 0 \tag{12}\\
& g_{2}(d) \leq 0 \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
d \leq g_{3}(p) \tag{14}
\end{equation*}
$$

Note:

$$
\begin{aligned}
& g_{1}(0)=-v<0, \\
& g_{1}^{\prime}(z)=(p+1) v z^{p}+p z^{p-1}>0, z \in(0,+\infty) .
\end{aligned}
$$

Therefore, g_{1} is increasing on $(0,+\infty)$. But,

$$
g_{1}(1)=1>0 .
$$

That is, there exists, $0<d_{1}<1$ such that

$$
g_{1}(d) \leq 0 \text { for all } d \in\left(0, d_{2}\right)
$$

Similarly there exists $0<d_{2}<1$ such that

$$
g_{2}(d) \leq 0 \text { for all } d \in\left(0, d_{1}\right)
$$

Set,

$$
\begin{equation*}
d_{3}=\min \left(d_{\mathrm{o}}, d_{1}, d_{2}, g_{3}(p)\right), d_{\mathrm{o}}=\frac{v-1}{v} . \tag{15}
\end{equation*}
$$

Then

$$
\begin{aligned}
& g_{1}(d) \leq 0, \\
& g_{2}(d) \leq 0,
\end{aligned}
$$

and

$$
d \leq g_{3}(p)<1 \text { for all } d \in\left(0, d_{3}\right) .
$$

By the choice of d above, it is possible to choose w, y such that

$$
\begin{gather*}
\frac{1}{(1-d) v} \leq w \leq \min (1,(p+1)(1-d)) \tag{16}\\
\frac{1}{(p+1)(1-d)} \leq y<\frac{1}{w} \tag{17}
\end{gather*}
$$

Theorem. Let us assume the following conditions are satisfied:
(a) For the Fréchet-derivative $F^{\prime}\left(x_{\mathrm{o}}\right)^{-1}$ there exists $B_{\mathrm{o}}>0$ such that

$$
\begin{equation*}
\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\| \leq B_{0} \tag{18}
\end{equation*}
$$

(b) the first approximate solution x_{1} satisfies

$$
\begin{equation*}
\left\|x_{1}-x_{0}\right\| \leq k_{\mathrm{o}} \tag{19}
\end{equation*}
$$

(c) for $R=S\left(x_{0}, r\right)$ the Fréchet-derivative $F^{\prime}(x) \in H_{R}(c, p) \quad$ with $\quad x \in R, \quad$ for \quad some $p \in[0,1] ;$
(d) the constants $B_{\mathrm{o}}, k_{\mathrm{o}}, c$ satisfy the inequality

$$
\begin{equation*}
h_{\mathrm{o}}=c B_{\mathrm{o}} k_{\mathrm{o}}^{p} \leq d \leq d_{\mathrm{o}}=\frac{v-1}{v}<1 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{k_{\mathrm{o}}}{1-y w D^{p}} \leq r, \tag{21}
\end{equation*}
$$

where $d \in\left(0, d_{3}\right)$ and d_{3}, y, w, v, are as in definition 2 with $D=d^{1 / p}$.

Then (2) has a solution $x^{*} \in S\left(x_{0}, r\right)$. The sequence $\left\{x_{n}\right\}, n=0,1,2, \ldots$ defined by (8) and (9), remains in $S\left(x_{0}, r\right)$ and converges to x^{*}, with

$$
\begin{equation*}
\left\|x^{*}-x_{n}\right\| \leq \frac{k_{\mathrm{o}}(y w)^{n} D^{(p+1)^{n}}}{1-y w D^{p}}, n=0,1,2, \ldots . \tag{22}
\end{equation*}
$$

Moreover if

$$
\begin{equation*}
c B_{0}(3 r)^{p}<1 \tag{23}
\end{equation*}
$$

then

$$
\begin{align*}
& \left\|x_{n}-x^{*}\right\| \\
& \leq \frac{c B_{0}}{(p+1)\left[1-c B_{0}\left(2 r+\left\|x_{n}-x_{0}\right\|\right)^{p}\right]}\left\|x_{n}-x_{n-1}\right\|^{p+1}, \\
& \quad n=1,2, \ldots . \tag{24}
\end{align*}
$$

Proof. We will follow the standard inductive Newton-Kantorovich proof used also in ([3], p. 792) and ([4], p. 143) with some modifications. By (8), we have

$$
\begin{equation*}
A_{n}\left(\bar{x}_{n+1}-\bar{x}_{n}\right)=-F\left(x_{n}\right), n=0,1,2, \ldots \tag{25}
\end{equation*}
$$

Hence, applying the definition of the transformation A_{n}, we obtain

$$
\begin{equation*}
F^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)=-F\left(x_{n}\right) . \tag{26}
\end{equation*}
$$

Using (11) and the approximation

$$
\begin{equation*}
F\left(x_{n}\right)=F\left(x_{n}\right)-F\left(x_{n-1}\right)-F^{\prime}\left(x_{n-1}\right)\left(x_{n}-x_{n-1}\right) \tag{27}
\end{equation*}
$$

we derive

$$
\begin{equation*}
\left\|F\left(x_{n}\right)\right\| \leq \frac{c}{p+1}\left\|x_{n}-x_{n-1}\right\|^{p+1} . \tag{28}
\end{equation*}
$$

By (8), (9), and (28), we obtain

$$
\left\|x_{n-1}-x_{n}\right\| \leq \frac{c}{p+1}\left\|A_{n}^{-1}\right\| \cdot\left\|x_{n}-x_{n-1}\right\|^{p+1}
$$

We shall now estimate the norm $\left\|A_{n}^{-1}\right\|$ using lemma 1 (5) and (6) to obtain

$$
\begin{aligned}
\left\|A_{n}^{-1}\right\| & \leq \frac{\left\|\bar{F}^{\prime}\left(x_{n-1}\right)^{-1}\right\|}{1-\left\|F^{\prime}\left(x_{n-1}\right)^{-1}\right\|\left\|F^{\prime}\left(x_{n}\right)-F^{\prime}\left(x_{n-1}\right)\right\|} \\
& \leq \frac{B_{n-1}}{1-B_{n-1} c k_{n-1}^{p}}
\end{aligned}
$$

where

$$
\begin{gathered}
\left\|A_{n-1}^{-1}\right\|=\left\|\bar{F}^{\prime}\left(x_{n-1}\right)^{-1}\right\| \leq B_{n-1}, \\
\left\|x_{n}-x_{n-1}\right\| \leq k_{n-1},
\end{gathered}
$$

and

$$
h_{n-1}=B_{n-1} c k_{n-1}^{p} .
$$

Using

$$
\begin{gathered}
\left\|x_{n+1}-x_{n}\right\| \leq \dot{k}_{n}, \\
B_{n}=\frac{B_{n-1}}{1-h_{n-1}},
\end{gathered}
$$

and

$$
k_{n}=\frac{1}{p+1} \cdot \frac{h_{n-1}}{1-h_{n-1}} \cdot k_{n-1},
$$

we obtain

$$
\begin{aligned}
& h_{n}=B_{n} c k_{n}^{p}=\left(\frac{1}{p+1}\right)^{p} \cdot\left(\frac{h_{n-1}}{1-h_{n-1}}\right)^{p+1}, \\
& n=0,1,2, \ldots
\end{aligned}
$$

We now note the following:
Claim 1. For, $h_{0} \leq d<1$, assuming $h_{n-1} \leq d$ we can show

$$
h_{n} \leq d
$$

To show,

$$
\left(\frac{1}{p+1}\right)^{p}\left(\frac{h_{n-1}}{1-h_{n-1}}\right)^{p+1} \leq d
$$

it suffices to show

$$
g_{1}(d)=g_{1}(z) \leq 0,
$$

$$
\text { with } z=d^{y(p+1)}, v=(p+1)^{p(p+1)}
$$

which is true for $d \in\left(0, d_{3}\right)$.
Claim 2. For w, given by (16),

$$
\begin{gathered}
h_{n} \leq w h_{n-1}^{p+1} \\
\left(\frac{1}{p+1}\right)^{p}\left(\frac{h_{n-1}}{1-h_{n-1}}\right)^{p+1} \leq w h_{n-1}^{p+1}
\end{gathered}
$$

assuming

$$
h_{n-1} \leq d
$$

it suffices to show

$$
w \geq \frac{1}{(1-d) v},
$$

which is true by the choice of \boldsymbol{w}.
For consistency,

$$
h_{n} \leq w h_{n-1}^{p+1} \leq w d^{p+1} \leq d
$$

or

$$
w \leq \frac{1}{d^{p}} .
$$

That is, we must have

$$
\frac{1}{(1-d) v} \leq w \leq \frac{1}{d^{p}}
$$

which is true by the choice of \boldsymbol{w} and the fact that

$$
g_{2}(d) \leq 0 \text { for } d \in\left(0, d_{3}\right) .
$$

Claim 3. For y, given by (17)

$$
\begin{equation*}
k_{n}=\frac{1}{p+1} \frac{h_{n-1} k_{n-1}}{1-h_{n-1}} \leq y h_{n-1} k_{n-1} \tag{29}
\end{equation*}
$$

To show (29) it is enough to choose

$$
(1-d)(p+1) y \geq 1,
$$

which is true by the choice of y.
Now,

$$
h_{n} \leq w h_{n-1}^{p+1} \leq w\left(h_{n-2}^{p+1}\right)^{p+1} \leq \ldots \leq w\left(h_{0}\right)^{(p+1)^{n}}
$$

and

$$
\begin{aligned}
k_{n} \leq y h_{n-1} k_{n-1} & \leq y^{2} h_{n-1} h_{n-2} k_{n-2} \\
& \leq y^{n} h_{n-1} h_{n-2} \ldots h_{0} k_{0} \\
& \leq(y w)^{n} d^{\left[(p+1)^{n}-1\right] / p} k_{0} .
\end{aligned}
$$

Now, using a standard argument as in ([4], p.143), we can show by induction that the approximate solution x_{n} and the corresponding numbers B_{n}, k_{n}, and h_{n} can be defined for every n, and, moreover conditions (a)-(d) are satisfied.

Moreover,

$$
\begin{aligned}
\left\|x_{n+q}-x_{n}\right\| & \leq k_{n+q-1}+k_{n+q-2}+\ldots+k_{n} \\
& \leq(y w)^{n+q-1} d^{\left.(p+1)^{+q-q-1}-1\right] / p} k_{0} \\
& +(y w)^{n+q-2} d^{\left.(p+1)^{n+q-2}-1\right] / p} k_{0} \\
& +\ldots+(y w)^{n} d^{\left.(p+1)^{n}-1\right] / p} k_{0} \\
& \leq D^{(p+1)^{n-1}} k_{0}(y w)^{n}\left[(y w)^{q-1} D^{(p+1)^{q-1}}\right. \\
& \left.+(y w)^{q-2} D^{(p+1)^{q-2}}+\ldots+1\right] \\
& \leq D^{(p+1)^{n}} k_{0}(y w)^{n}\left[(y w)^{q-1} D^{p(q-1)}\right. \\
& \left.+(y w)^{q-2} D^{p(q-2)}+\ldots+1\right]
\end{aligned}
$$

(since for $D<1, p \in[0,1], D^{(p+1)^{q-1}} \leq D^{p(q-1)}$)

$$
\begin{equation*}
\leq D^{(p+1)^{n}} k_{0}(y w)^{n}\left[\frac{1-\left(y w D^{p}\right)^{n}}{1-y w D^{p}}\right] . \tag{30}
\end{equation*}
$$

The right hand side of (30) and the choice of y, w, d show that the sequence $\left\{x_{n}\right\}, n=0,1,2, \ldots$ is a Cauchy sequence and as such it converges to some $x^{*} \in X$. Letting $q \rightarrow \infty$ in (30), we obtain (22).

By (30), setting $n=0$ and $q=n$, we can easily obtain that

$$
\left\|x_{n}-x_{0}\right\| \leq r
$$

that is $x_{n} \in S\left(x_{0}, r\right), n=0,1,2, \ldots$ if (21) holds.

By the continuity of $F(x)$ and since the norms of the operators $F^{\prime}\left(x_{n}\right)$ are bounded, it follows that x^{*} is a solution of (2).

Moreover, $x^{*} \in S\left(x_{0}, r\right)$ since $S\left(x_{0}, r\right)$ is closed and (22) holds.

Let us now observe that

$$
\begin{equation*}
F\left(x_{n}\right)=F\left(x_{n}\right)=F\left(x^{*}\right)=Q_{n}\left(x_{n}-x^{*}\right), \tag{31}
\end{equation*}
$$

where

$$
Q_{n}=\int_{0}^{1} F^{\prime}\left(x^{*}+t\left(x_{n}-x^{*}\right)\right) \mathrm{d} t, n=0,1,2, \ldots
$$

We want to prove that the linear operator Q_{n} is invertible for all n.

To this effect we note that according to (10) and (23) we have:

$$
\begin{aligned}
\| F^{\prime}\left(x_{0}\right)^{-1}\left(\int _ { 0 } ^ { 1 } \left[F ^ { \prime } \left(x^{*}\right.\right.\right. & \left.\left.\left.+t\left(x_{n}-x^{*}\right)\right)-F^{\prime}\left(x_{0}\right)\right] \mathrm{d} t\right) \| \\
& \leq c B_{0} \int_{0}^{1}\left\|x^{*}+t\left(x_{n}-x^{*}\right)-x_{0}\right\|^{p} \mathrm{~d} t \\
& \leq c B_{0}\left(2\left\|x_{n}-x^{*}\right\|+\left\|x_{n}-x_{0}\right\|^{p}\right. \\
& \leq c B_{0}(3 r)^{p}<1
\end{aligned}
$$

By virtue of Banach's lemma, B_{n} is invertible and the following norm estimation holds:

$$
\begin{equation*}
\left\|Q_{n}^{-1}\right\| \leq \frac{B_{0}}{1-c B_{0}\left(2 r+\left\|x_{n}-x_{0}\right\|\right)^{p}} \tag{32}
\end{equation*}
$$

Finally from (31), (28), and (32) we deduce (24), since

$$
\left\|x_{n}-x^{*}\right\| \leq\left\|Q_{n}^{-1}\right\| \cdot\left\|F\left(x_{n}\right)\right\| .
$$

That completes the proof of the theorem.
A theorem similar to the above can easily be stated here for the modified Newton's iteration

$$
x_{n+1}=x_{n}-F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{n}\right), n=0,1,2, \ldots
$$

However, we leave that to the motivated reader. We now provide some examples.

APPLICATIONS

Example 1.

Consider the function G defined on $[0, b]$ by

$$
G(t)=2 / 3 t^{3 / 2}+t-3
$$

for some $\boldsymbol{b}>\mathbf{0}$.

Let ||| denote the max norm on \mathbb{R}, then

$$
\left\|G^{\prime \prime}(t)\right\|=\max _{t \in[0, b]}\left|1 / 2 t^{-1 / 2}\right|=\infty,
$$

which implies that the basic hypothesis in [3] and [4] for the application of Newton's method is not satisfied for finding a solution of the equation

$$
\begin{equation*}
G(t)=0 . \tag{33}
\end{equation*}
$$

However, it can easily be seen that $G^{\prime}(t)$ is Hölder continuous on $[0, b]$ with

$$
c=1 \text { and } p=1 / 2 \text {. }
$$

Therefore, under the assumptions of the theorem, iteration (1) will converge to a solution t^{*} of (33).

A more interesting nontrivial application is given by the following example.

Example 2.

Consider the differential equation

$$
\begin{gather*}
x^{\prime \prime}+x^{1+p}=0, p \in[0,1] \tag{34}\\
x(0)=x(1)=0 .
\end{gather*}
$$

We divide the interval $[0,1]$ into n subintervals and we set $h=1 / n$. Let $\left\{v_{k}\right\}$ be the points of subdivision with

$$
0=v_{0}<v_{1}<\ldots<v_{n}=1 .
$$

A standard approximation for the second derivative is given by
$x_{i}^{\prime \prime}=\frac{x_{i-1}-2 x_{i}+x_{i+1}}{h^{2}}, x_{i}=x\left(v_{i}\right), i=1,2, \ldots, n-1$.
Take $x_{0}=x_{n}=0$ and define the operator $F: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ by

$$
\begin{aligned}
& F(x)=H(x)+h^{2} \phi(x) \\
& H=\left[\begin{array}{rrrrr}
2 & -1 & \ddots & & \\
-1 & \ddots & \ddots & & 0 \\
0 & \ddots & \ddots & -1 & \\
& & \ddots & \ddots & \\
& & & &
\end{array}\right] \text {, } \\
& \phi(x)=\left[x_{1}^{1+p}, x_{2}^{1+p}, \ldots, x_{n-1}^{1+p}\right]^{\prime \prime},
\end{aligned}
$$

and

$$
x=\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]^{r}
$$

Then

$$
F^{\prime}(x)=H+h^{2}(p+1)\left[\begin{array}{llllll}
x_{1}^{p} & & & & & 0 \\
& x_{2}^{p} & & & & \\
& & \cdot & & & \\
& & & \cdot & & \\
& & & & \cdot & \\
0 & & & & & x_{n-1}^{p}
\end{array}\right]
$$

Newton's method cannot be applied to the equation

$$
\begin{equation*}
F(x)=0 . \tag{36}
\end{equation*}
$$

We may not be able to evaluate the second Frechet-derivative since it would involve the evaluation of quantities of the form x_{i}^{-p} and they may not exist.

Let $x \in \mathbb{R}^{n-1}, H \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$ and define the norms of x and H by

$$
\begin{gathered}
\|x\|=\max _{1 \leq j \leq n-1}\left|x_{j}\right| \\
\|H\|=\max _{1 \leq j \leq n-1} \sum_{k=1}^{n-1}\left|h_{j k}\right|
\end{gathered}
$$

For all $x, z \in \mathbb{R}^{n-1}$ for which $\left|x_{i}\right|>0,\left|z_{i}\right|>0$, $i=1,2, \ldots, n-1$ we obtain, for $p=1 / 2$ say,

$$
\begin{aligned}
\left\|F^{\prime}(x)-F^{\prime}(z)\right\| & =\left\|\operatorname{diag}\left\{(1+1 / 2) h^{2}\left(x_{j}^{1 / 2}-z_{j}^{1 / 2}\right)\right\}\right\| \\
& =3 / 2 h^{2} \max _{1 \leq j \leq n-1}\left|x_{j}^{1 / 2}-z_{j}^{1 / 2}\right| \\
& \leq 3 / 2 h^{2}\left[\max \left|x_{j}-z_{j}\right|\right]^{1 / 2} \\
& =3 / 2 h^{2}\|x-z\|^{1 / 2} .
\end{aligned}
$$

Given $z_{\mathrm{o}} \in \mathbb{R}^{n-1}$ Newton's method consists of solving

$$
F^{\prime}\left(z_{n}\right)\left(z_{n}-z_{n+1}\right)=F\left(z_{n}\right), n=0,1,2, \ldots
$$

as a system of linear equations.
We choose $n=10$ which gives 9 equations. Since a solution would vanish at the end points and be positive in the interior a reasonable choice of initial approximation seems to be $130 \times \sin \pi x$. This gives us the following vector:

$$
z_{\mathrm{o}}=\left[\begin{array}{l}
4.01524 \mathrm{E}+01 \\
7.63785 \mathrm{E}+01 \\
1.05135 \mathrm{E}+01 \\
1.23611 \mathrm{E}+02 \\
1.29999 \mathrm{E}+02 \\
1.23675 \mathrm{E}+02 \\
1.05257 \mathrm{E}+02 \\
7.65462 \mathrm{E}+01 \\
4.03495 \mathrm{E}+01
\end{array}\right]
$$

After four iterations we get a vector

$$
z_{4}=\left[\begin{array}{l}
3.35740 \mathrm{E}+01 \\
6.52027 \mathrm{E}+01 \\
9.15664 \mathrm{E}+01 \\
1.09168 \mathrm{E}+02 \\
1.15363 \mathrm{E}+02 \\
1.09168 \mathrm{E}+02 \\
9.15664 \mathrm{E}+01 \\
6.52027 \mathrm{E}+01 \\
3.35740 \mathrm{E}+01
\end{array}\right] .
$$

We choose z_{4} as our x_{0} for the theorem. We get the following results:

$$
\begin{aligned}
& B_{\mathrm{o}}=\left\|F^{\prime}\left(x_{\mathrm{o}}\right)^{-1}\right\|=2.55882 \mathrm{E}+01, \\
& K_{\mathrm{o}}=\left\|x_{1}-x_{\mathrm{o}}\right\|=9.15311 \mathrm{E}-05, \\
& c=3 / 2 h^{2}=0.0015, \\
& p=1 / 2, \\
& v=1.44714243, \\
& d_{\mathrm{o}}=0.126419535 .
\end{aligned}
$$

Choose $d=4 \mathrm{E}-03$ to get from (20), thus
$h_{\mathrm{o}}=3.672107076 \mathrm{E}-03<4 \mathrm{E}-03 d_{\mathrm{o}}<1$.
Finally choose $y=1$ and $w=0.9$ to obtain from (21)

$$
r \geq 9.18618024 \mathrm{E}-05=r_{0} .
$$

With the above values it can easily be seen that all the hypotheses of the theorem are satisfied. Therefore the sequence of iterates remains in $S\left(x_{0}, r_{0}\right)$ and converges to a nontrivial solution x^{*} of Equation (36).

REFERENCES

[1] M. Altman, "A Generalization of Newton's Method", Academie Polonaise des Sciences Bulletin, CI III, 2 (1955), p. 189.
[2] M. Altman, "On the Approximate Solution of Nonlinear Functional Equations", Academie Polonaise des Sciences Bulletin, CI III, 5 (1957), p. 457.
[3] M. Altman, "On the Generalization of Newton's Method", Academie Polonaise des Sciences Bulletin, CI III, 5(8) (1957), p. 789.
[4] M. A. Krasnoleskii, G. M. Vainikko et al., Approximate Solution of Operator Equations. Groningen: Wolters-Noordhoff Publishing, 1972.
[5] W. C. Rheinboldt and J. M. Ortega, Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press, 1970.
[6] W. C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations. New York: Wiley, 1986.
[7] R. Seydel, "Numerical Computation of Branch Points in Ordinary Differential Equations", Numerische Mathematik, 32 (1979), p. 439.

[^0]: *Address for correspondence:
 Department of Mathematical Sciences
 College of Arts and Science
 New Mexico State University
 Box 30001, Dept. 3 MB
 Las Cruces, New Mexico 88003-0001
 U.S.A.

