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ABSTRACT

We provide sufficient conditions for the convergence of Newton’s iteration to a
solution of nonlinear operator equation in Banach space. We assume only that the
Fréchet-derivative of the nonlinear operator is Holder continuous. Some examples
are provided where the usual hypotheses for the application of Newton’s method
are not satisfied but ours are.
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ON NEWTON’S METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS

INTRODUCTION
The Newton—Kantorovich method, namely
xn+l = xn_F,(xn)-lF(xn) (1)

has been used extensively to solve the nonlinear
operator equation

F(x)=0 2)

in a Banach space X [4—6] (and the references
there).

Using some ideas of Altman [3], we generalize his
results, assuming only that the Fréchet-derivative
F'(x) is Holder (c, p) continuous on X (to be made
precise later).

If p=1 and the inverse of F'(x) exists on X
then our results reduce to the ones obtained by
Kantorovich and others [1], [3], [4]

Some examples are also provided.

Let X and Y be two Banach spaces and let L, be a
continuous linear operator mapping X onto Y.
Denote by e, the set of all solutions of the equation
L,x = 0. We divide the space X into classes, and we
say that x;, and x, belong to the same class X, if
x,—x, E e;,. This quotient space X/e, is a Banach
space with the norm | X|=inf|x|, x €EX. The
operator L, gives rise to an operator L:X/e;, —>Y
which is bijective and LX = L,x for x € X.

We now state the lemmas whose proof can be
found in [3].

Lemma 1. Let L, and L, be two linear operators
mapping X onto Y. If

1
L,-L| <=5, 3
" 2 l|| "Lllll ()
then
_ 122
LY = — , 4
Il = Ty @)

where L, and L, denote the adjoints of L, and L,
respectively. -

Let
P=AX )

be the linear transformation of X/e,, onto Y,
induced by the operator L,. Then easily
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la=l = 1L;"] - (6)

Now, let y=F(x) be a nonlinear continuous
operator on Y. We suppose that F(x) is Fréchet-
differentiable in a certain closed sphere S(x,, r) with
center x, and of radius r > 0. We suppose also that
the Fréchet-derivative F’(x) is a linear operator onto
Y for every x € S(x,, r).

Denote by e, the set of all solutions z of the
equation F'(x)z = 0 and consider the quotient space
X/e,. Let us assume that the following is satisfied:

For every x € S(x,, r) the norm of /€ X/e, is
reached at a point z €/, i.e., there exists an element
z €1 such that

lel = Wl = inflz"], 2’ €1 o

We can now define an iteration for solving (2).
We denote by A, the linear operator defined on
X/e,, and induced by the linear transformation
F'(x,) and put e,=¢,, n=0,1, 2, ... .

Set
X, = fo—Ac:lF(xo) ’

where x,€X, and X,, X, € X/e,, and choose an
element x; in x; such that

s =x,] = %=X -

If the approximate solutions x,, ..., x, are already
defined, then we put

En+l = En_An_IF(xn) ’ (8)

where x, € X/e, and x, €x,. Further, we choose
elements x,,, and X,,,; € X/e, such that

||xn+1_xn|| = ||fn+l—in|| . (9)

It is well known that at branch and limit points of
nonlinear functional equations the first Fréchet-
derivative is singular and an interest in the computa-
tion of such solution points (see, for example [7] and
the references therein) has provided some of the
motivation for the construction of operators A, in
this paper.

Conditions for the convergence of iterations (8)
and (9), which are also sufficient conditions for the
existence of a solution of (2) will be given in the
main theorem that follows. But first we need the
following:
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Definition 1. Assume that F is Fréchet-differentiable
and F'(x) is the first Fréchet-derivative at a point x.
We say that the Fréchet-derivative is Hélder contin-
uous over a domain R if for some ¢ >0, p €0, 1],
and all x, yER

IF'(x)=F' )l = cllx=yll” . (10)
In this case, we say that F'(x) € Hg(c, p).
We will need the following lemma ([4], p. 142).

Lemma 2. Let F: X—Y and D C X. Assume D .is
open and that F'(x) € Hj (c, p) for some convex
D,c D. Then for all x,y €D,

1)~ FO) = F &) G-yl = 5 byl ()

MAIN RESULTS
Definition 2. Define the functions g,, g,, and g, by,

§(d) = giz(d) = vz""+ 2P v,
where z = dV?*D p = (p+1)PP*D,

g(d) =d’+vd-v,

8(p) = 1~\/((pi1)v) :

Claim. There exists d, with 0 <d <1 such that

g(d)=0 (12)
g(d)=0 (13)
and
d=gy(p) . (14)
Note:
&(0) = ~v <0,

g1(2) = (p+ vz’ +pzP" ' >0, z € (0, +=).
Therefore, g, is increasing on (0, +=). But,
g()=1>0.
That is, there exists, 0 <d, <1 such that
g(d)=0 for all d€(0,4d,) .
Similarly there exists 0 <d, <1 such that
g(d)=0 for all d€(0,d,) .
Set,

. v—1
d, = min(d,, d,, d,, g:(p)), d, = ot (15)
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Then
gl(d) = 0 ’
g’l(d) = O ’

and

d=g(p)<1 for all d€ (0,d,) .

By the choice of d above, it is possible to choose w, y
such that

=y = ¥ =min(L, (p+D(1-d),  (16)

1 1
—_(p+1)(1—d) Sy(}—v. (17)

Theorem. Let us assume the following conditions
are satisfied:

(a) For the Fréchet-derivative F’'(x,)”" there exists
B, >0 such that

IF (o)l = B, ; (18)
(b) the first approximate solution x, satisfies
xy=xoll = &, 5 (19)

(¢) for R=S8(x,,r) the
F'(x) € Hg(c, p) with
pEo,1];

Fréchet-derivative
xE€R, for some

(d) the constants B, k,, c satisfy the inequality

v—1
—_—

h,=cBk<d<d, =
v

1, (20)

and

m—; =r, (21
where d€ (0,d;) and d;, y, w, v, are as in
definition 2 with D = d'’.

Then (2) has a solution x*€ S(x,,r). The
sequence {x,}, n =0, 1, 2, ... defined by (8) and (9),
remains in S(x,, r) and converges to x*, with

k,(yw)"D®*V"
*_ K\YWy =~ -
[l —x, || = T=ywpr =0 L2 (22)
Moreover if
¢B,(3r)P <1 (23)
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then
.
¢B, .
< x,—x _ p+l’
G+ DI=cB,@r+lx,—x]y] %l
n=12,.... (24)

Proof. We will follow the standard inductive
Newton—Kantorovich proof used also in ([3],

p- 792) and ([4], p. 143) with some modifications.

By (8), we have
AR—%) = -F(x,), n=0,1,2,... (25

Hence, applying the definition of the transformation
A,, we obtain

F'(xn)(xn+lfxn) = -F(x,) . (26)
Using (11) and the approximation
F(xn) = F(x,,)-F(x —l)_F,(xn—l)(xn_x -l) (27)
we derive

c
IFG)I = P+ [l = 2o P** - (28)

By (8), (9), and (28), we obtain

C u,-
"xn-l—xu" = m |[A,,‘|]°||x,,*-x,,_,||"” .
We shall now estimate the norm [|A,'| using
lemma 1 (5) and (6) to obtain

- F, )"
142 = e i )P
< B
=1-B, ,cki_,
where
147210 = IF' @p-r) '] = B,y ,
lxy—x,_sll = kn-y
and
h,_,= B, _\ckt_,.
Using |
Itwei=xall S ko
B= o
and
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— 1 hn—l
b= oH 1 1ok, e
we obtain
1 '] h a p+l
= P = . LJ
m= sk = () (2555

n=0,1,2,....
We now note the following:

Claim 1. For, h,=<d <1, assuming h,_, =< d we can
show

h,=d.

1 P hn-l p+l
<
Grr) (135 =

it suffices to show

&(d) = 8(2) =0,
with z = dV¢*Y, v = (p+1)Pe*Y |

To show,

‘which is true for d € (0, d,).

Claim 2. For w, given by (16),

+1
h, < whil .

1\ hn—- p+l R
(p+1) (1-/.,) = whill,

assuming

hy1=4d,
it suffices to show
1
w= (l——d)v ,
which is true by the choice of w.
For consistency, ,
h, < whi*l<=wdrt'<d,
or
1
ws 5.
That is, we must have
S S |
(1-d)v dr’
which is true by the choice of w and the fact that
8:(d) =0 for d€(0,d;) .
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Claim 3. For y, given by (17)

k = 1 hn—lkn-l

n p+1 l-h"_l = yh -1k,|..1. (29)

To show (29) it is enough to choose
1-d)(p+)y=1,
which is true by the choice of y.
Now,
h, < whitl < whetyPt < ... < w(h,)?*Y'
and
ky < yh, 1k, 1 < y'hy_1h, 1k,

= yY'hyshyoy ... hok,
< (yw)ndl(pﬂ)'-ll/p k, .

Now, using a standard argument as in ([4], p.143),
we can show by induction that the approximate
solution x, and the corresponding numbers B,, k,,
and A, can be defined for every n, and, moreover
conditions (a)—(d) are satisfied.

Moreover,

"x!l*'q_xn" = kn+q—1 + kn+q..2 +..+ k"
= (ywyre-tdio e
+ (ywre2gle s g
+ o+ (ywyr gl - e
< DV (ywy [(yw) ' DO
+ (WD 4 4]
= D“’”)'ko(yw)"[(yw)““‘D""'"
+ (yw)?2DPe D+ +1]

(since for D<1, p€|0,1], D@V < pra-n)

< D(P+l)~k°(yw)n[1_;-%%)_:‘,] . (30)

The right hand side of (30) and the choice of y, w,
d show that the sequence {x,}, n=0,1,2,... is a
Cauchy sequence and as such it converges to some
x* € X. Letting g—>= in (30), we obtain (22).

=1}/p ko

By (30), setting n =0 and g =n, we can easily
obtain that

"xn"'xolls”:
that is x, € S(x,, r), n=0,1,2, ... if (21) holds.
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By the continuity of F(x) and since the norms of
the operators F'(x,) are bounded, it follows that x*
is a solution of (2).

Moreover, x* € S(x,, r) since S(x,,r) is closed
and (22) holds.

Let us now observe that .
F(x,) = F(x,) = F(x*) = Q,(x,—x") , (31)

where
1
Q.= j F'(x*+t(x,—x*))dt, n=0,1,2, ... .
We want to prove that the linear operator Q, is

invertible for all n.

To this effect we note that according to (10) and
(23) we have:

176 ([ e+ sy -Fear)

n
= cBOI flx*+t(x,—x*)—x,|Pd¢

= CBO(Z “xn—x‘u + "xu_xo")p
=cB,(3r)’<1.

By virtue of Banach’s lemma, B, is invertible and
the following norm estimation holds:

B
-1 2
le.'l = 1-cB,2r+[x,—x ¥

Finally from (31), (28), and (32) we deduce (24),
since

(32)

lea=x* < @2 IFGI -
That completes the proof of the theorem.

A theorem similar to the above can easily be
stated here for the modified Newton’s iteration

Xpi1 =X, —F'(x,)'F(x,), n=0,1,2, ... .

However, we leave that to the motivated reader.
We now provide some examples.

APPLICATIONS
Example 1.
Consider the function G defined on [0, b] by

G(t) = 4t +1-3

for some b>0.
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Let ||| denote the max norm on R, then
IG"(0)]| = max |Yat™?| = =,
. t€[0,5]
which implies that the basic hypothesis in [3] and [4]

for the application of Newton’s method is not
satisfied for finding a solution of the equation

G(1) = 0.. (33)

However, it can easily be seen that G'(¢) is Holder
continuous on [0, b] with

c=land p=1%.

Therefore, under the assumptions of the theorem,
iteration (1) will converge to a solution ¢* of (33).

A more interesting nontrivial application is given
by the following example.

Example 2.
Consider the differential equation
x"+x'*? =0, pe[0,1] (34)
x(0)=x(1)=0.

We divide the interval [0, 1] into n subintervals
and we set h = 1/n. Let {v,} be the points of subdivi-
sion with

0=y, <y, <..<vp,=1.

A standard approximation for the second deriva-
tive is given by

X1~ 2%+ X504

x] === xi=x(),i=12,...,n-1.
Take x,=x,=0 and define the operator
F:R*"!'>R"! by
F(x) = H(x)+1 ¢ (x) (35)
2 -1
-1 2, 0
H= . -1 ’
0 :
-1 2

o(x) = [x1*?, X3, ..., i),
and

x =[x, x5 .., ,4]" .
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Then

F'(x) = H+h(p+1)

(U x5

Newton’s method cannot be applied to the equation
F(x)=0. (36)

We may not be able to evaluate the second
Fréchet-derivative since it would involve the evalua-
tion of quantities of the form x;? and they may not
exist.

Let x€eR"!, HER"!x R"! and define the
norms of x and H by
x| = max [x|
: ,-'—lsjs."—l

. n-1
IHl = max 2 |hy .
1sj=n-1 k=1
For all x, z€R"! for which |x;|>0, |z,]|>0,
i=1,2,.., n—1 we obtain, for p =1 say,

|F'(x) = F'(2)|| = | diag{(1 +¥2) h*(x}" = 2/ )}|

= %k max |x}2-z}?|
1sjsn~1

= %h? [max|x;—z,|]"*
= % h}|x—z||"*.
Given z, € R""! Newton’s method consists of solving
F'(2,)(2,=2441) = F(z,), n=0,1,2, ...
as a system of linear equations.

We choose n = 10 which gives 9 equations. Since
a solution would vanish at the end points and be
positive in the interior a reasonable choice of initial
approximation seems to be 130 xsinmwx. This gives
us the following vector:

4.01524 E + 01
7.63785 E + 01
1.05135 E + 01
1.23611 E + 02
z, =] 129999 E + 02
1.23675 E + 02
1.05257 E + 02
7.65462 E + 01
4.03495 E + 01
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After four iterations we get a vector

3.35740 E + 01
6.52027 E + 01
9.15664 E + 01
1.09168 E + 02
2z, =|1.15363 E + 02
1.09168 E + 02
9.15664 E + 01
6.52027 E + 01
3.35740 E + 01

We choose z, as our x, for the theorem. We get the
following results:

B, =|F(x)"| = 2.55882E + 01,

K, = |x,—x,| = 9.15311 E - 05,

c=3%Hh =0.0015,

p="%,

v = 1.44714243 ,

d, = 0.126419535.

Choose d = 4E-03 to get from (20), thus

h, = 3.672107076 E-03 < 4dE-03 d, < 1.

Finally choose y = 1 and w = 0.9 to obtain from
@n

r = 9.18618024 E-05 = r, .

With the above values it can easily be seen that
all the hypotheses of the theorem are satisfied.
Therefore the sequence of iterates remains in

S(x,, r,) and converges to a nontrivial solution x* of
Equation (36).

1. K. Argyros
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