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ABSTRACT 

We provide sufficient conditions for the convergence of Newton's iteration to a 
solution of nonlinear operator equation in Banach space. We assume only that the 
Frechet-derivative of the nonlinear operator is Holder continuous. Some examples 
are provided where the usual hypotheses for the-application of Newton's method 
are not satisfied but ours are. 
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ON NEWTON'S METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS 

INTRODUCTION 

The Newton - Kantorovich method, namely 

Xn+1 = Xn - F'(xnt lF(xn) (1) 

has been used extensively to solve the nonlinear 
operator equation 

F(x) = 0 (2) 

in a Banach space X [4-6] (and the references 
there). 

Using some ideas of Altman [3], we generalize his 
results, assuming only that the Frechet-derivative 
F'(x) is Holder (c, p) continuous on X (to be made 
precise later). 

If p = 1 and the inverse of F' (x) exists on X 
then our results reduce to the ones obtained by 
Kantorovich and others [1], [3], [4]. 

Some examples are also provided. 

Let X and Y be two Banach spaces and let Ll be a 
continuous linear operator mapping X onto Y. 
Denote by eLl the set of all solutions of the equation 
Llx = O. We divide the space X into classes, and we 
say that Xl and X2 belong to the same class X, if 
Xl-X2 E eLl' This quotient~pace X/eLl is a !lanach 
space with the norm IIXII = infllxll, X EX. The 
operator Ll gives rise to ~n operator L: Jf/eLI--+ Y 
which is bijective and LX = Llx for x E X. 

We now state the lemmas whose proof can be 
found in [3]. 

Lemma 1. Let Ll and L2 be two linear operators 
mapping X onto Y. If 

(3) 

then 

L-III < IIL1lli (4)Il 
2 - 1-IIL1

l IIIIL2 - Llil 

where Ll and L2 denote the adjoints of Ll and L2 
respectively.. 

Let 

P=AX (5) 

be the linear transformation of X/eL2 onto Y, 
induced by the operator L 2• Then easily 

IIA-III = IIL2II1 . (6) 

Now, let y = F(x) be a nonlinear continuous 
operator on Y. We suppose that F(x) is Frechet
differentiable in a certain closed sphere S(xo, r) with 
center Xo and of radius r > O. We suppose also that 
the Frechet-derivative F'(x) is a linear operator onto 
Y for every x E S(xo' r). 

Denote by ex the set of all solutions z of the 
equation F'(x)z = 0 and consider the quotient space 
X/ex. Let us assume that the following is satisfied: 

For every x E S(xo, r) the norm of I E X/ex is 
reached at a point z E I, i.e., there exists an element 
z E I such that 

Ilzll = IIIII = infllz'll, z' E I . (7) 

We can now define an iteration for solving (2). 
We denote by An the linear operator defined on 
X/ex" and induced by the linear transformation 
F'(xn) and put en = ex", n = 0, 1, 2, .... 

Set 

where Xo E Xo and XO , Xl E X/eo, and choose an 
element Xl in Xl such that 

If the approximate solutions Xl' ... , xn are already 
defined, then we put 

(8) 

where xn E X/en and Xn E xn. Further" we choose 
elements Xn+1 and Xn+1 E X/en such that 

(9) 

It is well known that at branch and limit points of 
nonlinear functional equations the first Frechet
derivative is singular and an interest in the computa
tion of such solution points (see, for example [7] and 
the references therein) has provided some of the 
motivation for the construction of operators An in 
this paper. 

Conditions for the convergence of iterations (8) 
and (9), which are also sufficient conditions for the 
existence of a solution of (2) will be given in the 
main theorem that follows. But first we need the 
following: 
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Definition 1. Assume that F is Frechet-differentiable 
and F'(x) is the first Frechet-derivative at a point x. 
We say that the Frechet-derivative is Holder contin
uous over a domain R if for some c> 0, P E [0, 1], 
and all x, y E R 

IIF'(x)-F'(y)ll:5 cllx-yllP . (10) 

In this case, we say that F'(x) E HR(c, pl. 
We will need the following lemma ([4], p. 142). 

Lemma 2. Let F: X~Y and 15 k X. Assume 15 .is 
open and that F'(x) E Hfjo(c, p) for some convex 
150 k 15. Then for all x, y E 150 

c 
IIF(x)-F(y)-F'(x) (x-y)11 :5 p+11Ix-yIIP+1. (11) 

MAIN RESULTS 

Definition 2. Define the functions gl' g2' and g3 by, 

gl(d) = glz(d) = vzp+1+zp-v, 
where z = d l/(p+ 1), V = (p +1)P/(p+ 1), 

g2(d) = dP+vd-v , 

g,(p) = 1-J(P~1)J . 
Claim. There exists 	d, with 0 < d < 1 such that 

gl(d):5 0 (12) 

g2(d) :5 0 (13) 

and 

(14) 

Note: 

gl(O) = -v < 0, 
g~(z) = (p+ l)vzP+pzp

-l > 0, z E (0, +(0). 

Therefore, gl is increasing on (0, +(0). But, 

That is, there exists, 0 < d1 < 1 such that 

gl (d) :5 0 for all dE (0, d2) • 

Similarly there exists 0 < d2 < 1 such that 

g2(d) :5 0 for all dE (0, d1) • 

Set, 

v-I 
(15)

v 

Then 

gl(d) :5 0 , 

g2(d):5 0 , 

and 

By the choice of d above, it is possible to choose w, y 
such that 

(l_ld )V:5 w:5 min(l, (p+1)(1-d», (16) 

1 1 
(17)(p +1)( 1 - d) :5 Y < -; . 

Theorem. Let us assume the following conditions 
are satisfied: 

(a) 	 For the Frechet-derivative F'(xot1 there exists 
Bo > 0 such that 

(b) the first approximate solution Xl satisfies 

(c) 	 for R = S(xo, r) the Frechet-derivative 
F'(x) E HR(c, p) with X E R, for some 
pE[O,l]; 

(d) the constants Bo, ko, c satisfy the inequality 

(20) 

and 

(21)1-ywDP:5 r, 

where dE (0, d3) and d3, y, W, v, are as in 
definition 2 with D = d lIP. 

Then (2) has a solution x* E S(xo' r). The 
sequence {xn}, n = 0, 1, 2, ... defined by (8) and (9), 
remains in S(xo' r) and converges to x*, with 

* <: ko(ywt D(p+l)"
IIx -xnll- 1-ywDP ,n = 0, 1,2,.... (22) 

Moreover if 

(23) 
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then 

Ilx,,-x*11 

s(p+1)[1-CB:72:-+ IIx.  x. I Ilx.  x._.II,+1. 
1J = 1, 2, ... '. (24) 

Proof. We will follow the standard inductive 
Newton-Kantorovich proof used also in ([3], 
p. 792) and ([4], p. 143) with Some modifications. 
By (8), we have 

A,,(i"+l-z,,) = - F(x,.) , 1J = 0, 1, 2, ... . (25) 

Hence, applying the definition of the transformation 
A", we obtain 

F'(x,,)(x"+1-x,,) = -F(x,.) . (26) 

Using (11) and the approximation 

F(x,.) = F(xll )-F(x,,_I)-F'(x,._l)(XII -X,._l) (27) 

we derive 

IIF(x,,)11 s P:l IIX,,-X,,_lll,+1 . (28) 

By (8), (9), and (28), we obtain 

Ilx"-l-X,.1I s p:l"A;lll"lx,,--X,,_lll,+l . 

We shall now estimate the norm IIA;'II using 
lemma 1 (S) and (6) to obtain 

IIA	-111 < IIF'(x,,_l)-ll1 
" - 1-IIF'(x,,-1) IIIlIF'(x,,)-F'(X,.-l) II 

where 

IIA;~ll1 = IIF'(x,._l)-lll s B"-l , 

IIxll -xll - l ll S k"-l , 

and 

Using 

IIx"+1 - x,. II s k,. , 

B = B,,-l 
,. 1-h,.-1' 

and 

1 h"-l kk,. = +1 . 1-h . ,.-1,P ,,-1 

we obtain 

We now note the following: 

Clabn 1. For, ho s d < 1, assuming h,._l:S; d we can 
show 

To show, 

(P!S(1~h:J'+1 s d 

it suffices to show 

gl(d) = gl(Z) :s; 0, 

with z = d l1(P+1), V = (p+ 1),,(,+1) , 

,which is true for de (0, d3). 

Claim 2. For w, given by (16), 

hIt :s; wh:~f. 

assuming 

it suffices to show 

1 
w;;:: (l-d)v ' 

which is true by the choice of w. 

For consistency, 

hll :s; wh:~l :s; wd,+1 :s; d , 

or 

1 
w :s; d' . 

That is, we must have 

1 1 
~~-<w<-
(l-d)v - - d" 

which is true by the choice of w and the fact that 

g2(d) s 0 for de (0, d3) • 
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Claim 3. For y, given by (17) 

k 1 hll_Ikll _1 h k (29)II = --=+=1 1-h :s Y II-I II-I'P II-I 

To show (29) it is enough to choose 

(1-d)(p+ 1)y ~ 1 , 

which is true by the choice of y. 

Now, 

h < whP+1< w(hP+I)P+I < :s w(h )(P+l)"II - II-I - 11-2 - ••• 0 

and 

kll :s yhll_Ikll _1	:s fhll-Ihll-2kll-2 

:s y"hl - Ihl - 2 ... hoko 

:s (yw)"d[(P+I)"-11/p ko . 

Now, using a standard argument as in ([4], p.143), 
we can show by induction that the approximate 
solution XII and the corresponding numbers BII, k ll , 
and hll can be defined for every n, and, moreover 
conditions (a)-(d) are satisfied. 

Moreover; 

IlxlI+q - xliii :s kll+q_1+ kll+q-2+ ... + kll 

:s (yw)"+q-ld[(p+lrf-1-11/Pko 

+ (YW)"+q-2d(P+I)"+f-2
- 11/p ko 

+ ... + (yw)"d[(P+f1)"-11/Pk ' o 

:s D(p+l)"-I kO(YW)"[(YW)q-l D(p+l),-J 

+ (YW)q-2 D(P+l),,-2 + ... + 1] 

:s D(p+l)"kO(YW)"[(YW)q-l Dp(q-l) 

+ (YW)q-2 DP(q-2) + ... + 1] 

(since for D < 1, p E [0, 1], D(p+l),-l S Dp(q-l» 

s D(p+lrk.(YW)r;~:~r]. (30) 

The right hand side of (30) and the choice of y, w, 
d show that the sequence {XII}' n = 0, 1,2, ... is a 
Cauchy sequence and as such it converges to some 
x· EX. Letting q-+aJ in (30), we obtain (22). 

By (30), setting n = 0 and q = n, we can easily 
obtain that 

IIxlI-xolI:s r, 

that is XII E S(xo, r), n = 0, 1,2, ... if (21) holds. 

By the continuity of F(x) and since the norms of 
the operators F'(xlI ) are bounded, it follows that x* 
is a solution of (2). 

Moreover, x* E S(xo' r) since S(xo' r) is closed 
and (22) holds. 

Let us now observe that 

F(xlI ) =F(xlI ) =F(x*) =QII(XII-X*) , (31) 

where 

Q. = [ F'(x'+/(X.-x'»d/, n = 0, 1,2, .... 

We want to prove that the linear operator QII is 
invertible for all n. 

To this effect we note that according to (10) and 
(23) we have: 

IIF'(x.rt([ [F'(x' +I(X. - x '» -F'(x.)Id/) II 

S cB.[llx'+ I(X. - x') - x.I'dl 

:s cBo(21IxlI-x*11 +IlxlI- xolI)P 

s cBo(3r)P < 1 . 

By virtue of Banach's lemma, BII is invertible and 
the following norm estimation holds: 

B 
IIQ;lll s 1-cBo(2r+ilx

ll
-x 

o 
IlY . (32) 

Finally from (31), (28), and (32) we deduce (24), 
since 

That completes the proof of the theorem. 

A theorem similar to the above can easily be 
stated here for the modified Newton's iteration 

XII+l =XII - F'(xo)-I F(xll ), n =0, 1,2, .... 

However, we leave that to the motivated reader. 
We now provide some examples. 

APPLICATIONS 

Example 1. 

Consider the function G defined on [0, b] by 

%1312+1-3G(/) = 

for some b > O. 
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Let 1111 denote the max norm on IR, then 

II O"(t) II = max Ilhr l/2 
1 = 00 , 

tElO,b] 

which implies that the basic hypothesis in [3] and [4] 
for the application of Newton's method is not 
satisfied for finding a solution of the equation 

O(t) = 0,. (33) 

However, it can easily be seen that O'(t) is Holder 
continuous on [0, b] with 

c = 1 and p = lh . 

Therefore, under the assumptions of the theorem, 
iteration (1) will converge to a solution t* of (33). 

A more interesting nontrivial application is given 
by the following example. 

Example 2. 

Consider the differential equation 

x"+x1+p = 0, P E [0, 1] (34) 

x(O) = x(l) = 0 . 

We divide the interval [0,1] into n subintervals 
and we set h = lin. Let {vk} be the points of subdivi
sion with 

o= Vo < VI < ... < Vn = 1 . 

A standa'ra approximation for the second deriva
tive is given by 

"- Xi-I-2xj+XHl - ( ) . - 1 2 -1Xi - h2 , Xi - X Vi ,I - , , ... , n . 

Take Xo = Xn = 0 and define the operator 
F: IRn-l-+ Rn-l by 

F(x) = H(x)+h2q,(X) (35) 

2 -1 
-1 2 o 

H= . -1 

o 
-1 2 

...1..( ) _ [1+p 1+p 1+P],r'+' X - Xl ,X2 , ... , Xn-l , 

and 

Then 

xf o 

F'(x) = H+h2(p+l) 

o X~-l 

Newton's method cannot be applied to the equation 

F(x) = 0 . (36) 

We may not be able to evaluate the second 
Frechet-derivative since it would involve, the evalua
tion of quantities of the form x;P and they may not 
exist. 

Let X ERn-I, HE Rn-l x Rn-l and define the 
norms of X and H by 

Ilxll = max Ixjl
l:sj:sn-l 

n-l 
IIHII = max L Ihjkl·

l:sjsn-1 k .. l 

For all x, Z E Rn-l for which IXil > 0, IZil > 0, 
i = 1,2, ... , n-l we obtain, for p = Ih say, 

IIF'(x) - F'(z) II = Ildiag{(l + Ih)h2(xJ'2- ZJ'2)}II 

= 3hh2 max IxJ'2- zJ12 
1 

l:Sjsn-l 

S 3hh2[max lxj -zj l]1I2 

= 3hh2l1x- zlpl2 . 

Given Zo E IRn- 1 Newton's method consists of solving 


F'(zn) (zn - Zn+l) = F(zn), n =0, 1,2, ... 


as a system of linear equations. 

We choose n 10 which gives 9 equations. Since 
a solution would vanish at the end points and be 
positive in the interior a reasonable choice of initial 
approximation seems to be 130 x sin1TX. This gives 
us the following vector: 

4.01524 E + 01 
7.63785 E + 01 
1.05135 E + 01 
1.23611 E + 02 

Zo = 1.29999 E + 02 
1.23675 E + 02 
1.05257 E + 02 
7.65462 E + 01 
4.03495 E + 01 
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After four iterations we get a vector 

3.35740 E + 01 
6.52027 E + 01 
9.15664 E + 01 
1.09168 E + 02 

Z4 = 1.15363 E + 02 
1.09168 E + 02 
9.15664 E + 01 
6.52027 E + 01 
3.35740 E + 01 

We choose Z4 as our Xo for the theorem. We get the 
following results: 

Bo = IIF'(xot111 = 2.55882 E + 01 , 


Ko = Ilx1-xoll = 9.15311 E - 05 , 

c = 3h h2 = 0.0015 , 


p = lh, 

v = 1.44714243 , 


do = 0.126419535. 

Choose d = 4E-03 to get from (20), thus 


ho = 3.672107076 E-03 < 4E-03 do < 1. 

Finally choose y = 1 and w = 0.9 to obtain from 


(21) 

r:2=: 9.18618024 E-05 = ro . 

With the above values it can easily be seen that 
all the hypotheses of the theorem are satisfied. 
Therefore the sequence of iterates remains in 
S(xo' ro) and converges to a nontrivial solution x· of 
Equation (36). 
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