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ABSTRACT 

Two recent methods applied to multielement analysis are critically compared 
regarding their accuracy and precision, The analysis is based on the theory of error 
propagation. Numerical examples for specific conditions in the "Thetis" reactor 
(Gent, Belgium) are given, 
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EVALUATION OF Ko AND Ke,o METHODS AS NEW STANDARDIZATION 
TECHNIQUES IN REACTOR NEUTRON ACTIVATION ANALYSIS 

1. INTRODUCTION 

Previously [1-8] various methods have been 
described for the simultaneous determination of a 
number of trace elements in low weight materials. 
The conclusion shows that the Ko and Ke,o methods 
while being experimentally simple, versatile, and 
suited for computerization, offer a potential accuracy 
which depends mainly on the Ko and Ke,o factors. 
These factors are a composite of nuclear constant 
containing atomic weights, isotopic abundances, 
thermal neutron cross-sections and gamma intensities 
which are often unreliable [9, 10]. Therefore accu­
rate experimental determination of Ko and Ke,o can 
be accomplished by using the following equations: 

(1) 

and 

(2) 

or 

(3) 

where the asterisk refers to the comparator (power 
monitor). 

In Equations (1- 3) it is assumed that: the 
Westcott g-factor is equal to 1, i.e. (1(v)~lIv, in the 
thermal neutron region (up to 1 eV) [11]; 
ECd 0.55 e V [12]; and Asp is the specific activity 
of the measured 'V-peak = Ap/SDCW (in case of 
complicated reaction/decay mechanisms, parent­
daughter etc., the term has to be replaced by 
adequate expressions) with Ap measured average 
activity of the full-energy peak = Np/tm 

with Np = measured number of net counts 
under the full energy. S = l-exp( - "'tirr) , 

tin = irradiation time and T In2/'" half 
life; D = exp( - "'td), td = decay time; 
C [1 - exp ( - "'tm)] / tm measuring time, W weight 
of the irradiated element; FCd cadmium transmission 
factor [5, 13, 14] mostly :51; Ep detection efficiency; 

Qo resonance integral to thermal cross-section ratio, 
where the conversion proceeds as [15]: 

QO(o) = (Qo - 0.429) Er-
u + Co 

with 

Co = 0.429/[(Ecd )U (20. +1)] ; (4) 

Er effective resonance energy [16], and 0. is a 
measure for the deviation of the epithermal flux 
spectrum (~I/El+O) from the I/E law. 

This paper presents the results of a comparative 
study of the accuracy and the precision which can be 
expected with Ko and Ke,o techniques. The mathema­
tical treatment is based on the theory of error 
propagation with an attempt to group the uncertain­
ties into systematic (accuracy) and random ones 
(precision). The final goal of this study is to help in a 
judicious choice of methods for analysis. 

THEORETICAL FOUNDATIONS 

In both methods, the factors Ko and Ke,o have to be 
calculated usually from an implicit function of the 
form: 

F(K, Xi) = 0, i = 1, 2, .... (5) 

where the x/s are either statistical variables or fixed 
parameters with an associated uncertainty (e.g. 
nuclear data). 

According to the classical theory of propagation of 
errors, the overall (total) relative uncertainty in K, as 
a function of the relative uncertainties in the x's, is 
given by: 

SK, T = {I [ZK(X) S(Xj)PP/2 (6) 
J 

where the error propagation factor ZK(Xj) is defined 
as the multiplier of the relative error on Xj to obtain 
the associated relative error on K. 

When writing the relative uncertainties in terms of 
differentials, one obtains according to the above 
definition: 

ZK(X) I d:/ d~j I (7) 

It should be kept in mind that ZK(X) denotes the 
"partial" error propagation factor for K, caused by 
the relative error in x j • 
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The partial derivation of the F-function (Equation 
5) can be written as: 

dF dF 
d K dK + dx. dx j = 0 . (8) 

J 

Utilizing this partial derivative of F into Equation 
(7) one gets: 

Xj dFjdF I
ZK(X) = K dX dK . (9)

I i 

From Equation (9) it is possible to calculate error 
propagation factors for the individual variables and 
parameters in Equation (5). To obtain the overall 
uncertainty in K, these ZK(x)-factors have to be 
introduced into Equation (6), together with the 
measured or estimated uncertainties in the xr 
parameters under consideration. 

It should be noted that the application of Equa­
tion (6), with the introduction of ZK(x;)-factors 
according to Equation (9), in principle will only be 
realistic for moderate S(x)-values, or, for K = F(x) 
relations which do not deviate dramatically from 
linearity. Nevertheless, in most practical cases the 
above expressions can be considered as an acceptable 
approximation; this has been checked numerically 
in the present work. 

PRECISION, FIXED ACCURACY, AND 
EXPERIMENTAL ACCURACY OF THE 
K-DETERMINATION 

The Xj and S(xj)-factors of Equation (6) can be 
classified into the following categories: 

1. 	 Xi parameters with a random error (index R), 
which can be described by the laws of probability 
[XR' S(XR)]' These parameters influence the 
precision of the K-determination. 

2. 	 Xi parameters with a systematic error (index S) 
[xs, S(xs)]. These parameters influence the fixed 
accuracy of the K-determination. 

3. 	 Xi parameters with a gross error (index G), which 
normally should be avoided or corrected for 
[xG' S(xG)]' These parameters influence the 
experimental accuracy of the K-determination. 

Equation (6) can then be rewritten as: 

(10) 

with 

(11) 

T. Elnimr 

(12) 

and 

(13) 

where I, I, and I denote a summation over all 
R 	 s G 

parameters which are causing random, systematic, 
or gross errors, respectively. 

The K-factor can then be computed from the 
specific count rates of the irradiated detectors, from 
the nuclear data involved, and, if occurring, from the 
appropriate full-energy peak detection efficiencies 
( cp). 

Thus Equation (5) can be written explicitly as: 

F[K, Asp,j (Nuclear Data):, CP,j] = O. (14) 

Where the index j refers to all isotopes used. 
Usually a small systematic error on T\l2' and the 
gross uncertainties on tim td , and tm , do not contrib­
ute significantly to the error in Asp [17]. The standard 
deviation in Asp is then basically determined by 
counting statistics, and thus is essentially random. 
However, other factors may add to the error in Asp, 

such as time variation in detection equipment stabi­
lity, or in the case of time fluctuations in the reactor 
neutron spectrum. Nevertheless, it can be assumed 
that under well controlled conditions, these contri­
butions as well as that of cp are likely to be negligible 
in the present calculations because they play the 
same role in Ko and Ke,o factors. 

The Ko and Ke,o values are based on irradiating 
and measuring a single element (comparator) 
instead of using standards for the elements to be 
determined. The Pi concentration for a given element 
can be calculated simply as: 

A p,; 

SDCW 
Pi(ppm) = 	 (15) 

where W represents the sample weight in grams. 

The Kanal factors in RNAA are defined by: 

(16) 

and in ENAA are defined by: 

Q~xQo(a) [Asp/Fed]
Kanal = Ke,o Q Q* x 	 (17)

oX o(a) [A;p/F:d ] 
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