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ABSTRACT 

The aim of this paper is to construct explicitly a representation of a monomial 
subgroup of the (sporadic) Rudvalis simple group in 28-space over F2, the field of 
two elements. We then show that an irreducible 8-dimensionaI representation of 
the unimodular group PSL (2, 7) over F2 is obtained as a composition factor of this 
28-dimensional representation of the monomial subgroup. 
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A 28·DIMENSIONAL REPRESENTATION 
IN Fl OF A SUBGROUP OF THE RUDV ALIS GROUP 

1. 	INTRODUCTION 

The (sporadic) Rudvalis simple group R of order 
214.33.53.7.13.29 is described as a rank 3 permutation 
group on 4060 points, which is a transitive extension 
of the Ree Group 2F4 (2). In this set of 4060 points, 
the Ree Group has orbits of lengths 1, 1755, and 
2304. The group R has a projective representation in 
complex 28-space which can be written in 0 [i1, the 
Gaussian extension of the rationals. The group was 
constructed in this projective form by Conway and 
Wales [1] using computer multiplication of matrices. 
After reduction of the matrices and the use of a 
complex quaternion arithmetic, Conway described a 
set of 4060 vectors and a set of 10 "quaternionic" 
generators. A brief interpretation of these vectors 
and generators is given in [2]. 

In the construction [1], R was shown to be the full 
automorphism group of a graph associated with the 
4060 Conway vectors, and a group 4R of order 
exactly 41 R 1 was obtained as the largest group of 
unitary automorphisms of this graph. The group 4R 
contains a subgroup in the split extension form 
K PSL (2, 7), where K is normal in the form and is 
of order 213 

• The subgroup K PSL (2, 7) is repre­
sented as a monomial group [3] in the Conway basis 
over l [i], the ring of Gaussian integers. We denote 
the projective image of this monomial group by M, 
and the set of 4060 projective points by L R• 

2. GENERA TORS OF M 

The simple group PSL (2, 7) of order 23.3.7 has 
the following presentation (given in [4]). 

PSL (2, 7) = (K, f,L: K7 = f,L2 = (K flY = (K\t)4 = 1). 

(1) 
Let 

a= [i i ~J ' [:. ~ -iJ ' · 1 ~ I .• 

· 	 . -1 . . 1 . , 

· 1 _' , , b = . -1 . . ,[1 'J [1. 'Ja= 	 c=ab· 	 . 1 . . . 1 . 
· ,-1 . . .-1 

(2) 


and set 

ho = [iI, a, b, a, c, 1, ~] ; 

a =[a, ... , a1, ~=[~, .. " ~1 
as 28-dimensional matrices with 7 blocks of 4 x 4 
matrices along the main diagonal. (No confusion will 
be caused by this double use of both of the symbols a 
and ~,) 

Then in complex 28-space, M is presented as 
follows: 

M = (ho, a, ~, K, f,L) 

where K and f,L are as given in Equation (3) and 
(K, f,L) == PSL (2, 7). If hr = K'hoK-', (r = 0, 1, ... , 6), 
then it can be established that 
h6= ho hI h2 h3 h4 h5' 

1 

I 

I 

I 

I 

I 

I 

K= 

El 

E2 

E3 

E4 

E5 

E6 

E7 

f,L= (3) 
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: i . ~]
E6=. 1.'[

1 . 

(4) 

After calculation of the action of K and JL on (l, (3 we 
find that the normal closure under K of the subgroup 
H = (ho, hI, ... , hs, (l, (3) is normalized by (K, JL). 
Thus the monomial group M is a split extension of 
the form 

M=H PSL (2, 7) . 

In fact H is a special 2-group of order 211 ([5], 
Lemma 7) with center Z =Z (H) = ( {h;} ) an elemen­
tary abelian group of order 23

; and quotient 
H =HIZ an elementary abelian group of order 28. 
The cosets of these elements with respect to Z make 
up the basis: 

{ho, hI' h2' h3' h4' hs, (l, (3} . 

3. A REPRESENTATION OF M 

We now describe how M can be represented in 
28-space over F2• The vectors representing LR 
generate, as a 7L [i]-module, the integral lattice 

L = 7L [i] LR 

which contains the module 4 7L [i]. The module L can 
therefore be specified by describing L147L [i] as a 
module over the ring 7L [i]/(4). Let 1') = I-i. Then 1') 

divides 2 and (1') is a prime ideal in 7L [i]/(4). 
Reducing modulo (1'); that is, passing from the 
complex module L to the module (elementary 
abelian group) L = LI1')L, the simple group R is 
represented in the special linear group SL (28, 2). 

In this representation of Rover F2 , we let M 
denote the image of M; and keep the same notation 
for the generators hp (l, (3, K, JL in M . 

Then M is of the form 

28M =A B PSL (3, 2), where IA 1= 23, IBI 

and B PSL (3, 2) is a split extension. We note here 
that it is a well-known fact in group theory that the 
two unimodular groups PSL (2, 7) and PSL (3, 2) 
are isomorphic. 

For an analysis of the invariant submodules of M 
in L, see reference [2], chapter 7. Using a basis 
partially adapted to a composition series for L , the 
matrix forms (5-10) for the generators have been 
obtained with the aid of machine computation. 

K= 

JL= 

0011111010000000000000000000 
111I 110110000000000000000000 
0101111010000000000000000000 
1000000000000000000000000000 
0001000000000000000000000000 
0110100000000000000000000000 
1010010000000000000000000000 
0000010000000000000000000000 

JLOO 000 I 000000000000000000000 
0001101101000000000000000000 
0010100101110111000000000000 
11000 II 0 I 0 II 00 II 000000000000 
1100010010110100010000000000 
0111110101111111110000000000 
1011001000000000100000000000 
0011011001000100010000000000 
1000110100011101010000000000 
00 I 001 I 1 I 1.1 101 10 I 000 0 00 00000 
0000001010001111101000000000 
0111000101101101000000000011 
1001111010101000011110010110 
1110110000010111000010010101 
0011110000111011110011000011 
1000010001111100111110000101 
111110101000010110 II 10100 110 
0110000111110101101000011011 
0011011001010010100010000111 
II 0 0 0 I 0 0 0 0 0 I I 0 I 0 1 0 0 0 I 0 0 0 0 0 0 0 

1000000000000000000000000000 
0100000000000000000000000000 
1110000000000000000000000000 
0110100000000000000000000000 
1011000000000000000000000000 
0011111010000000000000000000 
1100001000000000000000000000 
1100000100000000000000000000 
1100000010000000000000000000 
1010000101000000000000000000 
1011011110001000000000000000 
1010011001001100110000000000 
1111010100100000000000000000 
1111110110110011000000000000 
1101101 100000000010000000000 
0000110111000000100000000000 
0010111001000001000000000000 
0001101100000010000000000000 
100111001011011100)000000000 
1 I 1100010001001 101001 1000000 
0001000100011000010100011101 
1111001110010110010000011101 
1011001100110011101000000011 
0000001111001000011111010000 
1100010000111011010111001000 
0101101110000000000000000100 
1111001011111100100001111100 
1000110000001110101001011100 

(5) 

(6) 
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1000000(10000000000000(>000000 

0100000000000000000000000000 

0010000000000000000000000000 

0001000000000000000000000000 

0000100000000000000000000000 

1010010000000000000000000000 

0000001000000000000000000000 

0000000100000000000000000000 

1 1 0 0 00(1 0 110 0 0 000 0 0 0 000 000 0 0 0 0 

000 0 0 0 1 t 0 I 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 0 1 1 01 0 1 0 0 1 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 

0100010000010000000000000000 

0111011110001000000000000000
ho= 
1011000000000100000000000000 

0011101101000010000000000000 

0010001001000001000000000000 

1110001101000000100000000000 

1001100101000000010000000000 

0110100100110110101000000000 

0101000111100111010100000000 

0000110100001 10010 (\ 0 I 0000 111 

0011100010110101010001000111 

0001101111000100110000100000 

1110101.01100011000000110011 

1111101100111000100000101011 

0000001111000010010000000100 

1010000111101000001000100110 

0100000010101110101000100101 


0010000000000000000000000000 

1110000000000000000000000000 

1000000000000000000000000000 

0001000000000000000000000000 

0000100000000000000000000000 

0000010000000000000000000000 

000000010000000000000000000Q 

0000001000000000000000000000 

0000000010000000000000000000 

0110001101000000000000000000 

0110110000100000000000000000 

1010010000010000000000000000 

0111000001001000000000000000 

1001011100000100000000000000 

0001110001000010000000000000 

0111101111000001000000000000 

1000001010000000100000000000 

o 0 0 0 I 1 0 0 1 01 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 

o I 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 Ii 110 0 0 0 0 0 0 0 0 

1110110010001001010100000000 

0111110101111000111010000000 

0001011111010100001001000000 

0000111010000110000000100000 

0000110101011000001000001000 

0000100010010010011000010000 

0111100001110001110000000100 

1011000001110001000000000001 

0111011110110010000000000010 

(7) a= 

(8) 

0100000000000000000000000000 

1000000000000000000000000000 

1110000000000000000000000000 

1011001100000000000000000000 

0110100000000000000000000000 

1010010000000000000000000000 

0000000100000000000000000000 

0000001000000000000000000000 

o I 1 0'0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

011000000 I 000000000000000000 

0000000111100000000000000000 

10111111100 I 0000000000000000 

0101100100001000000000000000 
 (9) 

0010010001000100000000000000 

1011111110000010000000000000 

1111101111000001000000000000 

1001101000000000100000000000 

0011000010000000010000000000 

0101011011011010101000000000 

1101001010101110000100000000 

0100110011001110011001000111 

1100001110011011011010000111 

0010101110001000100000100000 

0000 III 0 11 0011110 II 0 111 0 1011 

1011010110110100011011110011 

1010100000110011100000000100 

1001011001110110111100100001 

0001011010001010111100100010 


001000000000000~000000000000 
1110000000000000000000000000 

1000000000000000000000000000 

0001001100000000000000000000 

0110101100000000000000000000 

1100011100000000000000000000 

1100001000000000000000000000 

1100000100000000000000000000 

1010001110000000000000000000 

o I I 000 1 1 0 1 000 0 0 0 0 0'0 0 0 0 000 0 0 0 

1111101000100000000000000000 

1001100011010000000000000000 

1101110010001000000000000000 

1101111001000100000000000000 
 (10)
1001100011000010000000000000 

1110110111000001000000000000 

0111010011000000100000000000 

11100101100-00000010000000000 

1100000011100111111000000000 

0000010010111100000100000000 

1110010011100110011001111011 

1101110100010011101010 III 0 11 

0011101101010100010000100000 

0000001011001100101100110011 

1011001110000101011100101011 

1100111110011101100000000100 

1010001101101000000000111110 

0010101001100111100000111101 


4. A REPRESENTATION OF PSL (2, 7) in Fl 

The group PSL (2, 7) has an irreducible represen­
tation of degree 8. This representation was con­
structed by Khanfar [6] as an 8-dimensional mono­
mial representation over the complex field. In what 

follows the question as to whether this representa­
tion can be written in F2 is answered. 

The 8-dimensional factor appearing in the 
28-dimensional matrices affords the representation 
(11) 
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1 1 111 
1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 1 1 

K= 1 
1 1 

11111 
1 1 111 

1 
1 1 1 1 

1 
1 1 1 1 

(11)J.L= 1 
1 

1 
1 

of PSL (3, 2). The author has verified that the 
generator relations given in section 2 are satisfied. 

Now, this representation has 6 non-trivial orbits in 
8-space over F2• In terms of the natural basis of this 
space, Table 1 gives a representative and length of 
each orbit. 

Table 1. 

Representative Length 

el+e2 21 
el+e4 +e6 24 
el+eS 28 
el+e3 +e4 42 
el+e3+e, 56 
el+e3 84 

Mohammad 1. Khan/ar 

No union of orbits in the 8-space over F2 forms a 
proper invariant subspace under the representation. 
Hence the above 8-dimensional representation of 
PSL (3, 2) over F2 is irreducible. 
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