A 28-DIMENSIONAL REPRESENTATION IN F_2 OF A SUBGROUP OF THE RUDVALIS GROUP

Mohammad I. Khanfar*

Department of Mathematics, Yarmouk University, Irbid, Jordan

الخلاصية :

زمرة رودڤاليس هي احدى الزمر " البسيطة " المتفرقة ذوات الرتب العالية . ولهذه الزمرة تمثيل من الدرجة ٢٨ في فضاء مركب . والبحث يناقش هذا التمثيل المركب حيث يعطي وصفاً كاملاً لزمرة جزئية كزمرة مصفوفات أحادية (عنصر واحد غير صفري في كل صف وفي كل عمود) في حقل الاعداد المركبة . والهدف الأساسي لهذا البحث هو ايجاد التمثيل الصريح لهذه الزمرة الأحادية بمصفوفات من

الدرجة ٢٨ في حقل العنصرين ، للحصول على تمثيل أوّلي (ليس له مركمبات ذات بعد أدنى) من الدرجة ٨ للزمرة (PSL (2, 7 كأحد مركبات التمثيل للزمرة الأحادية في حقل العنصرين .

ABSTRACT

The aim of this paper is to construct explicitly a representation of a monomial subgroup of the (sporadic) Rudvalis simple group in 28-space over F_2 , the field of two elements. We then show that an irreducible 8-dimensional representation of the unimodular group *PSL* (2, 7) over F_2 is obtained as a composition factor of this 28-dimensional representation of the monomial subgroup.

*Address for correspondence : Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P. O. Box 9028, Jeddah 21413, Saudi Arabia.

A 28-DIMENSIONAL REPRESENTATION IN F_2 OF A SUBGROUP OF THE RUDVALIS GROUP

1. INTRODUCTION

The (sporadic) Rudvalis simple group R of order 2^{14} . 3^3 . 5^3 .7.13.29 is described as a rank 3 permutation group on 4060 points, which is a transitive extension of the Ree Group ${}^{2}F_{4}$ (2). In this set of 4060 points, the Ree Group has orbits of lengths 1, 1755, and 2304. The group R has a projective representation in complex 28-space which can be written in $\mathbb{Q}[i]$, the Gaussian extension of the rationals. The group was constructed in this projective form by Conway and Wales [1] using computer multiplication of matrices. After reduction of the matrices and the use of a complex quaternion arithmetic, Conway described a set of 4060 vectors and a set of 10 "quaternionic" generators. A brief interpretation of these vectors and generators is given in [2].

In the construction [1], R was shown to be the full automorphism group of a graph associated with the 4060 Conway vectors, and a group 4R of order exactly 4|R| was obtained as the largest group of unitary automorphisms of this graph. The group 4Rcontains a subgroup in the split extension form K PSL (2, 7), where K is normal in the form and is of order 2^{13} . The subgroup K PSL (2, 7) is represented as a monomial group [3] in the Conway basis over $\mathbb{Z}[i]$, the ring of Gaussian integers. We denote the projective image of this monomial group by M, and the set of 4060 projective points by L_{R} .

2. GENERATORS OF M

The simple group PSL(2, 7) of order $2^3.3.7$ has the following presentation (given in [4]).

$$PSL(2,7) = \langle \kappa, \mu : \kappa^{7} = \mu^{2} = (\kappa \mu)^{3} = (\kappa^{4} \mu)^{4} = 1 \rangle.$$
(1)

Let $\alpha = \begin{bmatrix} \cdot & i & \cdot & \cdot \\ i & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & -1 & \cdot \end{bmatrix}, \quad \beta = \begin{bmatrix} \cdot & \cdot & i & \cdot \\ \cdot & \cdot & -1 & \cdot \\ i & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \end{bmatrix}, \quad \gamma = \beta \alpha ;$ and set

$$h_0 = [iI, a, b, \alpha, c, \gamma, \beta];$$

$$\alpha = [\alpha, ..., \alpha], \quad \beta = [\beta, ..., \beta]$$

as 28-dimensional matrices with 7 blocks of 4×4 matrices along the main diagonal. (No confusion will be caused by this double use of both of the symbols α and β .)

Then in complex 28-space, M is presented as follows:

$$M = \langle h_0, \alpha, \beta, \kappa, \mu \rangle$$

where κ and μ are as given in Equation (3) and $\langle \kappa, \mu \rangle \cong PSL (2, 7).$ If $h_r = \kappa' h_0 \kappa^{-r}, (r = 0, 1, ..., 6),$ then it can be established that $h_6 = h_0 h_1 h_2 h_3 h_4 h_5.$

$$E_{5} = \begin{bmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \end{bmatrix}, \qquad E_{6} = \begin{bmatrix} \cdot & \cdot & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \end{bmatrix},$$
$$E_{7} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & 1 \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \end{bmatrix} \qquad (4)$$

After calculation of the action of κ and μ on α , β we find that the normal closure under κ of the subgroup $H = \langle h_0, h_1, ..., h_5, \alpha, \beta \rangle$ is normalized by $\langle \kappa, \mu \rangle$. Thus the monomial group M is a split extension of the form

$$M = H PSL (2, 7)$$

In fact *H* is a special 2-group of order 2^{11} ([5], Lemma 7) with center $Z = Z(H) = \langle \{h_r^2\} \rangle$ an elementary abelian group of order 2^3 ; and quotient $\overline{H} = H/Z$ an elementary abelian group of order 2^8 . The cosets of these elements with respect to *Z* make up the basis:

 $\{h_0, h_1, h_2, h_3, h_4, h_5, \alpha, \beta\}$.

3. A REPRESENTATION OF M

We now describe how M can be represented in 28-space over F_2 . The vectors representing L_R generate, as a \mathbb{Z} [*i*]-module, the integral lattice

$$L = \mathbb{Z} [i] L_R$$

which contains the module $4 \mathbb{Z}[i]$. The module L can therefore be specified by describing $L/4 \mathbb{Z}[i]$ as a module over the ring $\mathbb{Z}[i]/(4)$. Let $\eta = 1 - i$. Then η divides 2 and (η) is a prime ideal in $\mathbb{Z}[i]/(4)$. Reducing modulo (η) ; that is, passing from the complex module L to the module (elementary abelian group) $\overline{L} = L/\eta L$, the simple group R is represented in the special linear group SL (28, 2).

In this representation of R over F_2 , we let \overline{M} denote the image of M; and keep the same notation for the generators h_r , α , β , κ , μ in \overline{M} .

Then \overline{M} is of the form

$$\overline{M} = A \ B \ PSL \ (3, 2), \text{ where } |A| = 2^3, \ |B| = 2^8$$

and B PSL(3, 2) is a split extension. We note here that it is a well-known fact in group theory that the two unimodular groups PSL(2, 7) and PSL(3, 2) are isomorphic.

For an analysis of the invariant submodules of \overline{M} in \overline{L} , see reference [2], chapter 7. Using a basis partially adapted to a composition series for \overline{L} , the matrix forms (5–10) for the generators have been obtained with the aid of machine computation.

4. A REPRESENTATION OF PSL (2, 7) in F_2

The group PSL (2, 7) has an irreducible representation of degree 8. This representation was constructed by Khanfar [6] as an 8-dimensional monomial representation over the complex field. In what follows the question as to whether this representation can be written in F_2 is answered.

The 8-dimensional factor appearing in the 28-dimensional matrices affords the representation (11)

of PSL (3, 2). The author has verified that the generator relations given in section 2 are satisfied.

Now, this representation has 6 non-trivial orbits in 8-space over F_2 . In terms of the natural basis of this space, Table 1 gives a representative and length of each orbit.

Table 1.	
Representative	Length
$e_1 + e_2$	21
$e_1 + e_4 + e_6$	24
$e_1 + e_8$	28
$e_1 + e_3 + e_4$	42
$e_1 + e_3 + e_7$	56
$e_1 + e_3$	84

No union of orbits in the 8-space over F_2 forms a proper invariant subspace under the representation. Hence the above 8-dimensional representation of *PSL* (3, 2) over F_2 is irreducible.

ACKNOWLEDGEMENT

The author is indebted to the referees for their helpful comments and suggestions.

REFERENCES

- J. H. Conway and D. B. Wales, "Construction of the Rudvalis Group", *Journal of Algebra*, 27 (1973), p. 538.
- [2] K. H. Dar, "On Some Symmetries of 28-Space Associated with the Rudvalis Group", Ph.D. Thesis, University of Birmingham, England, (1974).
- [3] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras. New York: Wiley-Interscience, (1962), p. 357.
- [4] H. Coxeter and W. Moser, Generators and Relations for Discrete Groups. New York: Springer-Verlag, (1972), p. 94.
- [5] D. Parrott, "A Characterization of the Rudvalis Simple Group", Proceedings of London Mathematical Society, 32 (1976), p. 25.
- [6] M. I. Khanfar, "Complex Representation of PSL (2, 7)", Bulletin of Natural Sciences and Engineering of Hacettepe University, Turkey, 13 (1984), p. 69.

Paper Received 4 July 1985; Revised 12 February 1986.