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ABSTRACT 

In this paper we consider the generalized gamma distribution and derive the 
Bayes' estimators of its random scale parameter and reliability function with 
respect to uniform, exponential, and inverted gamma priors. 

The estimators are provided also in case of prior ignorance and quasi-densities. 
Results for special cases of the model which include some well-known distributions 
are summarized. 

The Arabian Journal for Science and Engineering, Volume 12, Number 2. 225 



M. S. Abu-Salih 

BAYESIAN ESTIMATION FOR A GENERALIZED GAMMA DISTRIBUTION 

1. 	INTRODUCTION 

Let X be a random variable (RV) having general
ized gamma distribution (GGD) (c.f. Lajk6 [1]): 

f(xI8, p) 

(1I8YIB'(x)1 [B(X)y-1 (-B(X)l f (d)
= f(P) exp -a-,' or xE c, 

0, otherwise, 	 (1.1) 

where B(x) is a continuously differentiable function 
from the interval (c,d) onto (0,00) such that B'(x) =t= 0 
for x E (c,d) and a, p > 0 are arbitrary constants. 

Stacy and Mirham's [2] generalized gamma and 
their Table 1 of special cases all belong to the family 
(1.1). The GGD and its special cases are of interest 
for applications in reliability and life testing (c.f. 
Englehardt and Bain [3], and Cross and Clark [4] for 
applications of gamma distribution). 

Our aim in this paper is to consider a Bayesian 
approach to reliability and life parameter estimation 
in the GGD which includes many well-known failure 
distributions such as the exponential, Weibull, gam
ma, Rayleigh, and inverse Rayleigh distributions. 
Our Bayesian analysis of the GGD model is carried 
out under the assumption that p is known while a is a 
realization of an RV e having any of the following 
prior densities: 

(a-1)(aJ3)a-1 1 fl 

gl (a) J3a-l- aa-t aa' 0 < a ::; a ::; t-' 

0, otherwise 	 (1) 

g (a) = -
1 

e -9/A 0 < a < 00 A > 0 (2)2 A' , 

e-vJ9 (fl./a)b+1 
g3(a) = fl.f(b) , 0 < 8 < 00, fl., b > 0 (3) 

These three priors were used by Bhattacharya [5] for 
a Bayesian analysis of the exponential distribution 
(lIa)e -xI9. 

Justification and support of Bayesian analysis have 
been advanced by many authors. (c.f. references 
[6, 7, and 8]). 

The choice of uniform prior is justified if prior 

information concerning the range of the parameter is 
provided. If no information about the parameter is 
available then quasi-density prior may be used. The 
inverted gamma density (3) is the natural conjugate 
family for (1.1). 

In seeking an estimate of 8 from a Bayesian point 
of view we consider a decision function w(x) where 
x (Xl"" ,xn) denotes a realization of a random 
sample XI, ... ,Xn , and assume a squared error loss 
function: 

L (a, w(x» = (8 W(X»2. (1.2) 

2. SCALE PARAMETER 	AS A SUBJECTIVE 
RANDOM VARIABLE 

Consider a random sample of n items whose life 
times are described by a GGD (1.1) where p is 
known and a is assumed to be a realization of a 
random variable e. 

We assume the general uniform density (1) as the 
prior density of a. Let (x t ,x2, ... ,xn) = x denote the 
observed life times of the test items. The likelihood 
of the sample is 

L (xla) 

a-lip n n 

= f" (P) DIB'(x,)1 [B(x,W' exp(- ,~B(X,)le), 
all 	Xi E (c,d). (2.1) 

n 

Letting SII i~ B(xj ) and using Bayes' theorem we 

obtain the posterior density of e as: 

hI (alx) 

= C (l/atp+aexp( -Sn/8); a ::; a ::; J3 (2.2) 

where, with 'Y(m, z) = ft m
-

l e-tdt, 

_1_ 'Y(np+a-l, :') - +P+a-l, ;) 
C - S IIp+a t 

II 

Writing 'Y*(m,z) 'Y(m,z/a) - 'Y(m, zlJ3) , and using 
the squared error loss function given in (1.2), we find 
the Bayes' estimator of 8 to be the posterior mean 

given by e* [eh,(e1x) dO, which reduces to: 

'Y*(np+a-2,SII)
8* = (+ 1 S) X SII' np+a > 2 (2.3)'Y* 	np a- , n 
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Also the variance of e* will be the posterior variance 
of e given by Equation (2.4). 

V(e*lx) = 

-y*(np+a-3,Sn) -y*(np+a-1,Sn) -{-y*(np+a-2,Sn)}2 
{-y*(np+a-1,Sn)}2 

x S; (2.4) 

provided np +a > 3. 

The reliability function under (1.1) is given by: 

B(d)) (B(t))
-y(P'-e- --y P'-e

R(t) = P(X > t) = (2.5)
f(P) 

Using the convergent expansion: 

00 (_l)mxa+m 
-y(a, x) =2: (2.6)

m=O m!(a+m) 

(Erdelyi et al. [3] p. 135) we get 

R(t) = _1_ t (-l)m(lIey+m [BP+m(d) - BP+m(t)] 
f(P) m=O m! (p+m) 

(2.7) 

The RHS of (2.7) is convergent by (2.6) and hence, 
using (2.2), term by term integration gives the Bayes' 
estimator of R(t) under a squared error loss as: 

1 
R*(t) = 

f(P) 

t (-1)m-y*(p(n+1)+m+a-1,Sn)[BP~m-BPt)] 
m=O m!(p+m)-y*(np+a-1,Sn)S~+m 

(2.8) 

0, otherwise 

e-npexp(-erA - s/e) 

1 
OO 


= e-npexp( -erA-s/e)
i
0, otherwise 

In case p is a positive integer, R(t) reduces to 

R(t) =:t. ~! [{exp( _ B~t))}( B~)m) 

- {exp(_B~d))}(B~d)l (2.9) 

The corresponding Bayes' estimator under squared 
error loss (1.2) is 

R**(t) E[R(t)lx] =rR(t) h,(Olx) dO. Noting that 

r(exp( - B(t)/O)}(B(t)/Oth,(Olx) dO 


snp+a-l 

n 

Bm(t)-y*(np+a+m-1,Sn+ B(t)) 
x {Sn +B(t)}np+a+m-l 

we easily get 

p'-l 1 snp+a-l 
_ X __.:.;,..n__--,-=2:m-O m! -y*(np+a-1,Sn) 

Bm(t)-y*(np+a+m-1,Sn+B(t)) 
x [ {Sn +B(t)}np+a+m-l 

- B
m
(d)-y*(np+a+m-1,Sn +B(d))] (2 10) 

{Sn +B(d)}np+a+m-l .. 

Next we consider the problem under the exponential 
prior (2). In this case, the posterior density is given 
by Equation (2.11): 

,o.<e<oo 

,o<e<oo 

(2.11) 
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To evaluate the denominator of (2.11), we use the 
relation: 

a,z > 0; v ~ 0 	 (2.12) 

Kv(az) is called the Modified Bessel function of the 
third kind of order v. (Erdelyi et al. [8]). 

2 
a z 1 z 	 S b' . .

Let Sn =2' i" = 2 and v = np-1. u stltutmg m 

the denominator of (2.11) and using (2.12) we get: 

'"9-npexp(-9rA- Si9) d9 = 2Knp_1{2j(SiA)}
10	 O(Asn)}np 

i 

Hence (2.11) reduces to: 

h2(9Ix) C(1I9tPexp(-9/A -Si9) (2.13) 

where 

r InC- 1 = 2(AS (np -l) Knp- {2j(SiA)}.n	 1

Under squared error loss function (1.2) the Bayes' 
estimator of 9 is 

il = Oh2(Oix)dOr 
= ):'" C(1I9tP -

1exp( -9/A - Si9) d9 (2.14) 

Using (2.12) we easily get: 

(2.15) 

and its variance is 

v(alx) = XS,. 

K,.,,_3{2j(S,/A)}K,.,,_1{2j(S,/A)}K;'_2-{2j(S,/A)} 
x K~_1{2J(S,/A)} , 

np 2= 3 (2.16) 

Using (2.12) and (2.13), term-by-term integration 
of (2.7) gives the estimator of the reliability function 
by: 

1 
R(t) = r(p) 

f (-l)m[BP~)- BPtr1 Kp(n+l)+m-l{2j(SiA)} 
x m=O m!(p+m) (Asnti;2(j)+m)Knp_1 {2J(SiA)} 

(2.17) 

Using (2.12) 	and (2.13) we get: 

r. e-B(t)ffl(B~T· hz(Oix)dO = 

Ir(t) 	K,.,,+m-l 2j{Sn +B(t)}/A 
np+m-1

{A(Sn +B(t»} 2 
np-l

(ASn) -2

x Knp-1 {2J(S,/A)} 

similarly, we evaluatere-B(d)I' {B(d)} ; h2(Olx)dO 

and hence, the estimator of the reliability function in 
(2.9) is given by: 

A R-l 1 
A(t) = L -,

m-O m. 

{ J( Sn +B(t»)}Bm(t) x Knp+m-l 2. A 
x 

np+m-1
{A(Sn+B(t»} 2 

lJ'"(d) X Knp+m-I {2J( S.+:(d) )} 

p{A(Sn+B(d»} n +;-l 

np-1
(ASn)-2

(2.18)x Knp-1 (2JSiA) 

The third prior we consider is the inverted gamma 
(3). As before, the posterior density of 9 is easily 
found to be: 

0<9<00 	 (2.19) 

Under squared error loss function given in (1.2), 
the Bayes' estimator of 9 is: 

6' E[8Ix] 

= I.'" 9 h3(9Ix) d9 

Carrying out the integration, we easily get: 

~ Sn + jJ. 

9 = np+b-1 ' np+b> 1 (2.20) 
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The variance of e is the posterior variance of a 
given by 

Using (2.19) we get: 

- (Sn+~f
V(alx) = (np+b-1)2(np+b-2) ,np+b > 2 (2.21) 

Again, using (2.19), term by term integration of 
(2.7) and (2.9) gives the Bayes' estimators of the 
reliability functions of (2.7) and (2.9), respectively, 
by: 

R(t) = _1_ f (-l)m[BP~m- BPtr] 
f(P) m;O m! (p+m) 

f(p(n+ l)+b+m)
x ~~~-,------,;-	 (2.22)

f(np+b)(Sn+ ~y+m 

::::;: p--l (Sn + ~)"p+b 


R(t) = m~o m! f(np+b) f(np+b+m) 


Bm(t) W(d)] 
x [ (Sn+B(d)+~)np+b+m -(Sn+B(d)+~)np+b+m 

(2.23) 

3. PRIOR IGNORANCE AND QUASI·DENSITIES 

The case of lack of knowledge on the prior density 
of a is treated by letting a=O and (0.,~)~(0,00) in 
(1), or more generally, by using the quasi-density 

1 
g(a) = aa ,0 < a< 00 (3.1) 

(Justification and detailed discussion can be found in 
[6], [7], and [9].) 

Under (3.1), (2.2) reduces to 

(lIayp+a S:p+a-lexp( -Sn/a) 
h(alx) = f(np+a-1) , 

o < a < 00, np+a > 1. (3.2) 

It is evident that the results in this case are obtained 
by letting 0.~0 and ~~OO and the estimators (2.3), 
(2.4), (2.8), and (2.10), respectively reduce to: 

Sn 	 )a~= + 2 ;np+a>2 (3.3np a-

S~
v(a~lx) (np+a-2)2(np+a-3) ,np+a > 3 (3.4) 

M. S. 	 Abu-Salih 

R*(t)= f(p(n+ 1)+a-1) 
1 f(p+1) f(np+a-1) 

[(B~:r 2Ft~(n+l)+a-l,p;p+l; _ B~:) 

-(BiJ 2Ft(p(n+l)+a-l,p;p+l; - ~~~] 
(3.5) 

where 2F1 (a,b;c;z) is the hypergeometric function 
(Erdelyi et al. [8]). 

R;*(t) 	 = Pf ~ snp+a-1 f(np+a+m-1) 
. m=O m! n f(np+a-1) 

x [(S.+B(t;)"I'+.+m-t  (S. +B(~)"I'+.+m-tl 
(3.6) 

If a ~~, then by applying L'Hopital's rule to the 
RHS of (2.3), (2.4), (2.8), and (2.10) they, respec
tively, reduce to: 

a; = ~ ; V(a*lx) =0 

R*(t), = 'Y(P,B(d)/~) - 'Y(P,B(t)/~) d 
2 f(P) ,U 

p--1 1 [(B(t))mR;*(t) 	 = L - -- exp(-B(t)/~) 
m""O m! ~ 

- (B~IT exp( - B(d)/Jl) 

These results come out as expected of the case of de

. d . f I () {1, a= ~ generate pnor enslty 0 aname y, g a = 0, a#: ~ 

In many instances, Bayes confidence intervals for a 
are of interest. 

It is seen from (2.3) that !n is distributed as Gamma 

(np+a-1,1) and hence 100(1-0.)% Bayes' confi
dence intervals for a can easily be constructed. If 

2S 
2(np+a-1) is a positive integer, tthas a X2 distri

bution with 2(np + a-1) degrees of freedom, and 
100(1-0.)% Bayes' confidence interval for ais given 

2Sn 2Sn) 2 00 f 2 d' .0/ •by -2-' -2- where Xa = 1 a /0 pomt 0 X Istn~1-a12 Xa12 

bution with 2(np+a-1) dJ. In case of lack of 
knowledge about the prior of a we use a = 0, but if 
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the experimenter's knowledge about 6 is only vague, 
he can use a = 1 which corresponds to Jeffery's 
invariant prior. 

4. SPECIAL CASES 

In this section we summarize the previous results 
for two special forms of B(x) which contain many 
members. 

(a) Let p = 1 and B(x) be monotone increasing such 
that B(x) ~ 00 as x ~ d, d being finite or infinite. 

The special cases of such B(x) include: the 

exponential, Rayleigh, and Weibull with known 
shape parameter. The reliability function is 

R(t) = e-B(t)/8 , t ;=:: c 

(b) Let p = 1 and B(x) be monotone decreasing such 
that B(x) ~ 0 as x ~ d. Such family has inverse 
Rayleigh and inverse Weibull distributions [10] as 
special cases. The reliability function is 

R(t) = 1 - e-B(t)/8 , t ;=:: c 

The Bayes estimators of R(t) for cases (a) and (b) 
under the different prior densities of 6 are listed in 
Table 1. 

Table 1. 

Bayes' estimator of R(t) 
Prior of 8 

Case (a) 	 Case (b) 

S 	 )n+a-t 'Y*(n +a-1,Sn+ B(t»Uniform 
1-R~

(1) R~= (Sn + ~(t) X 'Y*(n +a-1,Sn) 

Exponential 
(2) 

Inverted 
Gamma (3) 

Quasi-Prior S )n+a-t 
1 1-R~R~= ( Sn + ~(t)- 0<8<008a , 
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