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ABSTRACT 

In the paper, a numerical method was used to study the effects of free stream 
pseudo-turbulence on the two-dimensional, viscous layer growing on a flat plate 
together with the resulting time variations of pressure, viscous shear and lift and 
drag forces. The approach was to use a relatively new computer simulation 
technique to generate pseudo-turbulence, which provided the outer boundary 
conditions to a finite element mesh set around the plate. The variational approach 
was used to solve the stream function and vorticity transport (Helmholtz) 
equations near the plate. The method of integration is based on using finite 
elements for space approximations and a modified Crank - Nicolson scheme for 
marching in time. The time variation of velocity components, vorticity, and lift and 
drag coefficients were plotted, and the results were discussed in detail. 
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UNSTEADY LIFT AND DRAG PREDICTIONS 
USING SIMULATED PSEUDO-TURBULENCE MODELS 

NOMENCLATURE 

C Length of the plate; 
CD, CL Drag and lift coefficients; 
D Drag force; 
I Number of nodal points in the finite ele­

ment mesh; 
II' 12 Variational functionals defined in Equations 

(12-13); 
J Number of nodes in each element; 

k Total Number of elements in the mesh; 

L Lift force; 

M Total number of vortices in the model; 

n Integer indicating the time level; 

N The element interpolation function; 

p Pressure; 
P Dimensionless pressure defined in Equation 

20; 
rc The vortex viscous core radius; 
t Time; 
ilt Time increment; 
u,v Velocity components in the x, y directions; 
Uc Convection velocity of the vortices (=uref); 

x,Y Cartesian coordinates. 

Greek symbols 

0. A factor denotes an intermediate time level; 

r Circulation constant; 

E A small number; 

~ The x coordinate of the position of the 


vortex centre; 
p Density; 
f.1 Dynamic viscosity; 

v Kinematic viscosity; 

TJ The y coordinate of the position of the 


vortex centre; 
tV The stream function; 
t The vorticity; 
n The flow domain. 

Subscripts 

I Lower surface; 
LE Leading edge; 
ref The reference velocity of the uniform flow 

with which vortices 'are convected; 
TE Trailing edge; 
u Upper surface. 

Superscripts 

(i) Denotes the element (e;) in the finite 
element mesh; 

j Iteration number; 
* Denotes known approximate value. 

l. INTRODUCTION 

In this study, the unsteady forces on a flat plate are 
predicted using a new method which involves 
simulation of the approaching stream using turbu­
lence models and the solution of the viscous flow 
problem in the vicinity of the plate using a variational 
finite element method. The turbulence model used is 
based on the simulation of turbulence by groups of 
vortices or a series of rotational functions randomly 
distributed and convected by the approaching 
stream. 

The practical applications of modelling are many, 
ranging from interaction of aircraft wings with 
atmospheric turbulence, the response of suspension 
bridges to unsteady flows and also in the detailed 
design and aeroelastic stability of jet engine blades. 

A comparatively new development in the study of 
fluid dynamics is the simulation of unsteady fluid 
flows, such as turbulence, using digital computers: 
the so called 'computer simulation experiments' or 
'synthetic turbulence'. The numerical simulation of 
two-dimensional turbulence by Lilly [1] and a similar 
procedure, although independent, by Ahmadi and 
Goldschmidt [2] have been .shown to be important 
contributions in numerical simulation of pseudo­
turbulence. In these two approaches, an incompress­
ible turbulent velocity field was idealized as a 
random vector field governed in time and two 
dimensional space by the Navier-Stokes equations. 
Chorin [3] studied a numerical method for solving 
the time dependent two-dimensional Navier-Stokes 
equations at high Reynolds number using a simula­
tion process of vorticity generation and dispersal 
utilizing computer generated pseudo-random num­
bers and illustrated the method by solving flow past a 
circular cylinder. Lesieur and Brissaud [4] also 
studied a Markovian random coupling model for 
turbulence. 

This field of study is receiving growing attention to 
the extent that several conferences and lecture series 
have been held with the main interest being 
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numerical simulation of turbulent flow, particularly 
large eddies simulations, to predict the time develop­
ment of flow fields for engineering applications. The 
references including the works of Schumann et al. 
[5], Taylc.c et al. [6] and Reynolds [7] represent only 
a few examples. 

In the pseudo-turbulence model developed by 
Base [8] and reported further by Base and Davies 
[9], real vortices, randomly distributed representing 
the turbulent eddy, were convected along in a 
uniform stream as in Taylor's 'frozen pattern' model 
of turbulence. This was similar to what has been 
observed in the turbulent flow far downstream of a 
grid of bars where the disturbance or eddy can be 
convected downstream unchanged for a considerable 
distance and decays very slowly. 

Applying the variational approach to solve fluid 
flow problems has the inherent difficulty of deter­
mining the correct functional for the non-linear set of 
equations. Vooren and Labrujere [10] solved the 
case of an incompressible, inviscid flow over an 
aerofoil in a non-uniform field. Bratanow et al. 
[11-13] appear to have developed a more general 
approach to the unsteady incompressible viscous 
flow by using the variational approach with applica­
tions to flows over oscillating aerofoils. In their 
solution, however, it was assumed that the velocity 
field is not sensitive to incremental changes in 
velocity. The velocity components 'u' and 'v' were 
approximated by using the Taylor series expansion of 
velocities in terms of vorticity. It is the opinion of the 
authors that these approximations and assumptions 
add some restrictions to the general use of this 
method. Earlier studies on the application of the 
finite element method to viscous flow problems 
include the works of Cheng [14] and Taylor and 
Hood [15] who studied the time dependent solution 
of the two-dimensional form of the Navier-Stokes 
equations. 

Numerous research papers have been published 
recently with emphasis on applications of different 
finite element methods for solving steady and 
transient viscous flow problems. A good account of 
this research can be found in references [16, 17]. 

2. GOVERNING EQUATIONS 

The governing equations of motion for the general 
transient two-dimensional flow of an incompressible 
viscous fluid can be written in the form of the 
Helmholtz vorticity transport equation and the 
stream function equation as, 

(1) 

(2) 

where \fJ is the stream function, , is the vorticity, 
t is the time, v is the kinematic viscosity and 

ii fi 
V2 

= ax2+ ay2 . The x and y velocity components 

are related to the stream function by, 

a\fJ 
u=- vay , 

and accordingly the continuity equation is implicitly 
satisfied. 

The relation between the pressure and velocity 
fields can be obtained from the Navier-Stokes 
equation and can be written in the form 

! V2 = 2( au av _ au av) (3)
p P ax ay ayax 

3. UNSTEADY BOUNDARY CONDITIONS 

In this section pseudo-turbulent flow models 
which provided the boundary conditions upstream of 
the plate and at the two adjacent sides of the finite 
element mesh are discussed. A new method to 
determine the transient boundary conditions at the 
downstream side of the flow field is also introduced. 

The approach used to simulate turbulent flow 
follows the model described in references [8] and [9]. 
In this model, real vortices representing turbulent 
eddies were convected along in a uniform stream, 
similarly as in Taylor's frozen pattern model of 
turbulence. This is similar to what has been observed 
in grid turbulence where a disturbance (or eddy) can 
be convected downstream without a significant 
change for a considerable distance since the disturb­
ance decay is very slow. Only the continuity equation 
is satisfied in this model in order to ensure that it is 
kinematically possible. This has been achieved by a 
suitable choice of the vortex function. The velocity 
components u and v and the vorticity , at a given 
point in space vary with time, however, the eddy 
pattern does not change as it is convected down­
stream. Figure 1 shows a typical pseudo-turbulent 
velocity and vorticity variations with time at a 
particular boundary point upstream of the plate. The 
method provided a continuous pseudo-turbulent 
velocity time history at each point on the upstream 
and side boundaries of the finite element mesh 
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Figure 1. Typical Pseudo· Turbulent Variations of Velocity 
and Vorticity with Time. 

shown in Figure 	2. 

The tacit assumption is that the velocity at any 
field point (x) is given by the sum of the contri­
butions from the real vortex expressions. The 
velocity Ui therefore at a boundary point Xi is given by 

Ui = L
M 

(ui)m 	 (4) 
m=l 

where (ui)m is the contribution to the velocity at 
point x; due to the mth vortex and M is the total 
number of vortices representing the model. It can 
also be shown from Equation (4) that the spacial 
derivative at any point is also equal to the sum of the 

derivative contributions from the complete array of 
vortices so that, 

M 

au/axi = L (au/ax;)m (5) 
m=l 

where au/ax; is the spacial derivative at any point Xi' 

Now, since the condition set for the vortex gener­
ating function is mainly to satisfy the continuity 
equation, so that, 

(6) 

then by substituting Equation (6) into Equation (5), 
one obtains 

(7) 

The continuity equation is therefore satisfied 
implicitly throughout the whole vortex model. The 
velocity field for an individual two-dimensional 
vortex is obtained by using a stream function 
expression with the following form, 

(Sa) 

where (x, y) is a field point, (E, 1)) is the initial 
random position of the vortex in space, fl is the 
circulation constant, rc is the vortex core radius, and 

is the convection velocity. The corresponding Uc 
vorticity field for the same vortex is easily obtained 
by using Equation (2) and can be expressed as 

fl 2r~ 
(8b)t = - -:; [r;+ (x-E-U!?+(Y_1))2]2 

In the numerical solution, the upstream boundary 
and side boundaries of the flow field are assumed to 
be completely specified and independent of the 
conditions inside the flow field. The downstream 
conditions are obtained by using a new technique 
which is based on relating the velocities at the 
downstream side with the velocities at an adjacent 
section ax apart at a time delay 41, where b.x is a 
small distance and provided that u > O. The rela­
tionship between the velocity components at the two 
adjacent sections can be written as 

u(x+b.x,y,t) = u(x,y,t-b.xlup) (9) 

where up is the average local convection velocity at 
the two mesh points (x, y) and (x+ax, y). The 
boundary conditions at the upper and lower surfaces 
of the flat plate are the no-slip and impermeability 
conditions. 

172 The Arabian Journal for Science and Engineering, Volume 12, Number 2. 



T. E. Base and H. M. Badr 

B 
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Figure 2. The Finite Element Mesh. 

4. THE NUMERICAL SOLUTION 

The governing equations (1, 2) subjected to the 
boundary conditions introduced in Section 3 are 
integrated using finite elements for space approxi­
mations and a modified Crank - Nicolson scheme for 
marching in time. The method of integration is, in 
principle, similar to that used by Badr and Base [18]. 
In this method, the variational functionals of Equa­
tions (1, 2) are considered to be exactly the same as 
that of Poisson's equation with the convective terms 
in Equation (1) approximated and then corrected 
using an iterative type solution procedure. In order 
to give a brief description of the numerical tech­
nique, let us assume tIIn and tn to represent the 
known stream function and vorticity fields at time 
tn = n4t where 4t is the time increment. The 
problem would be to solve the governing equations 
(1, 2) to advance the solution of the stream function 
and vorticity fields to the next time level 
tn+l = (n+ 1)4t in order to obtain tIIn+l and tn+l' To 
approximate the nonlinear terms in the vorticity 
Equation (1) the following linear interpolation 
formulae are used between the two consecutive time 
levels tn and tn +l' 

(al/l at)· = {a(al/l) +(l-a)( al/l) }{a(at )
ayax ay n+l ay n ax n+l 

+ (l-a)( :~)J (lOa) 

(al/l at)· ={(-atll ) - ­-- a +(l-a)(atll)J {a(at)
ax ay ax n+l ax ay n+l 

(lOb)+ (l-a)( !;)J 
where a is a constant ranging between 0 and 1 and 
the superscript * denotes known approximate 
values. Applying Equation (1) at an intermediate 
time level tn+a = (n +a)4t and using Equation (10), 
one obtains 

(at) + [atll at I·_[al/l atl· vv2 (11)at a ay ax ax ay ta 

where the subscript a represents the time tn +a • Now, 
considering the term (at/at)a in Equation (11) as an 
invariant, the variational functional can be written as 

1,(,.) = ~{[( ~~) + (:~ :~ r-( :~ !;)'],­
+~[(~~)'+(~~)']}dxdY (12) 

The variational functional of Equation (2) at tn+l 
takes the form, 

12( ~.+I) = ~H(O~~+I )'+(~~+ ,n-~'+1 ,-+,}dx dy 

(13) 

where n is the solution domain. 
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The variations of the stream function \jI and vor­
ticity t within each element (e;) are approximated 
using linear interpolation functions and can be 
expressed as, 

J 
\jI(I) = 	 L Nix,y)\jIj= [N](i){\jI}(i) (140)

j=1 
J 

t(i) = 	 L Nix,y)tj= [N](i){t}(i) (14b)
j=1 

where J is the number of nodes in each element, 
Nix,y) are the element shape functions, [] denotes a 
row matrix and {} denotes a column matrix. Using 
Equation (14) in Equations (12) and (13) and writing 

(:~l.=('.+d.)/~t , 

:y [N](i) as [Ny] (i) , 

one can write the functionals II and 12 in terms of the 
element shape functions as, 

+ [Ny] (i){\jI :}(i)[Nx](i){t:}(i) 

[N,](O{,I!:}(0) ,[N,]('1{,:}('lj[N]('l{U('l 

+ i[([N,](i){uti)r+ ( [Ny J<.l{U(i»),]) dx dY 

(15) 
and 

1,(II!.+,) =i~ lj{'h [ ( [ N,](i){II!.+,}(i)r+([Ny ]<'){II!.+,}(i)n 
- [N]('l{II!. + ,}('l, [N](o){,.+1}('l} dx dy (16) 

where k is the number of elements in the finite 
element mesh. 

The extremization of the functionals II and 12 with 
respect to each of the nodal values of ta and \jIn+1 is 
necessary to satisfy the governing equations and by 
approximating ~ using the following linear inter­
polation formula, 

ta = a tn+l + (I-a) tn , 

the resulting set of linear algebraic equations can be 

written in the form of a simple matrix problem for 
each of {tn+l} and {\jIn+l}' 

The solution started at (= 0 with the stream 
function and vorticity fields assumed to be exactly 
the same as the steady conditions that would prevail 
when no disturbances are present in the approaching 
stream. The solution of this problem is exactly the 
same as given in reference [18]. The sequence of the 
solution to advance the \jI and t fields through one 
time step 6,( is to assume, as a first approximation, 
that \jIn+l and tn+l to be the same as \jIn and tn respec­
tively (n = 0 at the start of the solution). Equation 
(10) is then used to approximate the nonlinear terms 
in Equation (15) and the matrix problem resulting 
from the extremization process is then solved to 
obtain a better approximation for tn+l' The new 
values of \jIn+l are then obtained by solving the set of 
algebraic equations resulting from the extremization 
of 12 , The new values of \jIn+l and tn+l are then used 
in Equation (10) to obtain a better approximation 
for the non-linear terms. This iterative process 
continues until the following convergence criteria are 
satisfied 

t I ( {jn++\;:Fn+l ) I< e and t I(\jI~+}1 ~~~+1) I< e 
;=1 tn+l; ;=1 \jI n+l ; 

(17) 

where i is the nodal point number, I is the total 
number of nodal points in the finite element mesh, 
e is small number (::::::: 10-4

), and the superscript 
j denotes the iteration number. After convergence is 
achieved the solution continues to the following time 
level. 

The pressure gradient on each side of the flat plate 
positioned at y = 0 can be obtained from the velocity 
field by applying the x-component of the 
Navier-Stokes equations at the plate and using the 
no-slip and impermeability conditions which results 
in, 

(oP) _J..t (02U) _J..t (ot) (18)
oX y=O - oy2 y=O - oy y=O 

Now, define the dimensionless pressure P such that, 

P _ PLE-P 
- 2 	 (19) 

Ij2 PUref 

where PLE is the pressure at the leading edge, P is the 
local pressure at any section x on the plate 
(measured from the leading edge downstream), and 
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Uref is the reference velocity with which vortices are 
convected. Using Equations (18) and (19), one can 
easily deduce, 

P(x) -2v IX (0') dx (20) 
U;ef 0 oy y=O 

A simple integration scheme was used to obtain the 
pressure distribution on the upper and lower surfaces 
of the plate from the known vorticity field. Further 
details of the numerical method can be seen in 
reference [18]. 

The accuracy of the numerical method was veri­
fied by considering two problems. The first one was 
that of the viscous decay of a single concentrated 
vortex for which an exact analytical solution is 
known. The second problem was the steady two­
dimensional viscous developing flow in the entrance 
region of a straight channel with flat parallel walls. 
An analytical solution for this problem based on 
series expansion method was obtained by Schlichting 
[19]. The comparison between the time variation of 
the vorticity distribution in the first problem and the 
velocity profiles in the second one resulted in very 
good agreements with the analytical solutions. More 
details can be seen in reference [18]. 

s. 	THE RESPONSE OF A FINITE THIN 
FLAT PLATE TO AN APPROACHING 
PSEUDO..TURBULENT FLOW 

The problem considered was that of a thin flat 
plate set at zero incidence to an initially uniform flow 
with velocity Uref' A finite element mesh was set 
around the plate as shown in Figure 2. Upstream and 
away from the influence of the plate, finite groups of 
randomly positioned vortices representing the 
oncoming eddy structure were set up and allowed to 
move with the free stream towards the plate. To 
illustrate the flow domain and the method of analy­

sis, the diagram shown in Figure 3 has five boxes 
with the center box subdivided into additional three 
boxes. The flat plate PQ is positioned midway 
between the two sides AB and CD of the box ABCD 
as shown. 

With the increase of time, the vortices assembled 
randomly in box number 1 are convected toward the 
plate and replaced with another set until the first 
four boxes are filled with vortices. With further 
increase in time and with no further increase in the 
number of vortices being added to the model, the 
program is so scaled that within a given time period 
the vortices move approximately one box length 
downstream. Approximately one quarter of the total 
number of vortices furthest downstream, that have 
little influence at the outer boundary points of the 
finite element mesh stencil (ABCD) , were now 
removed and replaced by the same number of similar 
vortices with new random positions and new signs 
upstream of the plate where again the vortices have 
little influence on the conditions at the mesh 
boundaries. 

The vortex model then continued and the process 
repeated again so that a continuous pseudo-turbu­
lent flow field is simulated. By this means, therefore, 
the vortex model provided the unsteady velocity field 
at the outer grid points along the boundaries AB, 
BC, and CD of the finite element mesh. Accord­
ingly, the effect of the pseudo-turbulence entered the 
flow domain in the form of time-dependent 
boundary conditions. The unsteady flow was con­
vected and diffused within the stencil and finally 
modified the flow over the plate. 

The shear stresses on the upper and lower surfaces 
of the flat plate were integrated to determine the 
time variation of the skin friction drag. The integra­
tion of pressure obtained from Equation (19) and 
(20) on the upper and lower sides of the plate 

0 8 
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., 
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Figure 3. Schematic Diagram of the Flow Field Divided into Five Boxes with the Flat Plate PO Placed Midway Between the 
two Sides AB and CD of the Solution Domain ABCD. 
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provided the time variation of the overall lift. The lift 
and drag coefficients are defined as, 

(21) 

where L is the lift force, D is the drag force and A is 
the area of the plate. The relationship between the 
drag coefficient and the vorticity field can be written 
as, 

(22) 

where c is the length of the plate and the subscripts 1 
and u denote the lower and upper surfaces of the 
plate respectively. The corresponding relation for 
the lift coefficient is 

where 

The difficulty in achieving a solution with finite 
velocity at the neighborhood of the trailing edge of 
the plate has been partially solved by first placing 
both the leading and trailing edges within a finite 
element and not at a nodal point. The pressure at the 
trailing edge was then considered to be the average 
value of that on the rearmost nodal points on the 
lower and upper surfaces near the trailing edge. The 
pressure distribution on the upper and lower surfaces 
of the plate was then recalculated by solving the 
equation: 

3 
iip I au I-2 =v~ ax y=o axay y=o 

with the boundary conditions 

at x = 0 (leading edge), P Pl 

at x c (trailing edge), P =P2 = V2(pu +PlhE 

The values of Pu and PI were obtained using Equa­
tions (19) and (20). The trailing edge problem was 
further discussed by Plotkin and Flugge-Lotz [20], 
Stewartson [21], and Chang [22]. 

6. RESULTS AND DISCUSSION 

In this work, a vortex model with the data given 
in Table 1 is used to simulate the free stream 

Table 1. Details of Vortex Model Parameters 

Flow Statistics 

Mean Flow Velocity, uref = 4 cm S-I 

<U'2>I12 
Turbulence Intensity, -u- = 0.357 

ref 

Length Scale, Ln (Xl) = 9.85 mm 

Flatness Factor of UI 

Velocity Component =3 (Gaussian distributed) 

Vortex Model 

Mean Convection Velocity (uc) =4 cm S-I 

Model Width (b) 25 mm 
Model Stage Length (s) = 20 mm 
Number of Vortices per Box 4 
Vortex Core Radius (rJ = 2.8 mm 
Mean Distance Between Vortices (A) 11.2 mm 
Vortex Circulation Constant (fI) = 40 mm2S-I 

turbulence as outlined in Section 3. The variation of 
the velocity components u', v and the vorticity t with 
time at some of the boundary points are shown in 
Figures 4, 5, and 6 where u' is the fluctuating 
component of velocity in the x direction defined as 
u' = (u - urea. On the same figures the variations of 
the variables (u', v, and t), which are obtained from 
the finite element solution, at a point downstream of 
the plate are also plotted. The variation of the 
vorticity t at this point (see Figure 6) was consider~ 
ably higher than that at any other boundary point 
and this is to be expected in the wake region of the 
plate. The variation of u' at the same point (see 
Figure 4) shows that it has a negative value over most 
of the sample time and this is expected because of the 
momentum deficit that occurred due to the drag 
force on the plate. 

Figure 7 shows the variation of the drag coefficient 
of the upper and lower sides of the plate with time. 
Although the variation of drag coefficient on each 
individual side of the plate is considerable, the total 
drag coefficient is found to have small variation with 
time. A comparison between the total drag coeffi­
cient obtained from the present solution and the one 
obtained from Blasius solution, based on steady 
laminar flow with u = ' showed that the twouref 
coefficients are very close over most of the sample 
time as can be seen in Figure 7. This should not be 
considered as a general conclusion for the case of a 
turbulent flow approaching a flat plate because flows 
with other statistical descriptions and higher 
Reynolds numbers were not studied in this work. 
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The variation of lift coefficient CL with time is shown plate can be achieved. It may be noted that this 
in Figure 8 and illustrates how with this method of increment in instantaneous lift force is due primarily 
solution an actual time variation of the forces on the to the imposed pressure field of the approaching 
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Figure 7. Variation of Plate Drag Coefficients with Time. 
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rotational flow. However, for a long time span, the 
average lift coefficient for this flow regime would be 
zero. 

7. CONCLUSIONS 

The equations governing the unsteady, incom­
pressible viscous flow over a thin flat plate were 
solved numerically using the variational approach. 
Equally important is the fact that the outer condi­
tions of the finite element mesh set around the plate 
are unsteady, continuous, and stochastic. The finite 
element approach presented is found to be extremely 
stable and the effect of sudden change of the flow 
direction at a fixed point on the method of solution is 
simply an increase in the number of iterations to 
achieve convergence. The method predicted the 
response of the velocity and pressure fields in the 
vicinity of the plate to the disturbances in the free 
stream. The method also predicted the time variation 
of the lift and drag forces acting on the plate. 

Other methods to predict the loads on flat surfaces 
and aero foils due to free stream turbulence are based 
on the spectral approach. It is the opinion of the 
authors that a spectral analysis of turbulence when 
considering the loads on a flat plate or an aerofoil in 
a turbulent stream could be insufficient or perhaps 
even misleading. 
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