FIELD DEPENDENCE OF MOBILITY AND
TEMPERATURE FOR QUASI-HOT ELECTRONS IN
SEMICONDUCTING DEVICES

Vijay K. Arora and Muhammad A. Al-Mass’ari

Department of Physics, King Saud University,
P.O. Box 2455, Riyadh 11451, Saudi Arabia

Recent developments in VLSI and VHSIC
programs have indicated an ever-increasing
importance of high-field effects in limiting the mobility
in these devices. Considerable effort has been made to
increase the speed of the devices using the collision-
free ballistic transport phenomenon. These studies are
based on classical concepts which treat the electron as
a classical particle being accelerated by an electric
field. The mobility is then limited by collision
mechanisms dictated by one or more of several
scattering interactions. For isotropic scattering
interactions, e.g. acoustic-phonon scattering, the
collision broadening of this classical electron is Tt ™!,
where 7 is the relaxation time. In n-Germanium [1] for
example, at 77 K ht ~'=0.35meV for 1~1.9 x 10~ *2s,
and at 300K, ht "1 =2.69meV if 17! ~ T 32 is assumed
for acoustic-phonon scattering [2]. ht ! <k, T at
both these temperatures (k,T=6.7 meV at 77K and =
26meV at 300K). This means collisions do not
appreciably change the unperturbed distribution
function. This is the low-field (Ohmic limit) regime of
the scattering transport, where the energy gained
during the mean free path £=vt (v is the velocity of an
electron) is small compared to the thermal energy of
an electron.
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In the other extreme is the hot-electron regime,
when the electric field is very high in a semiconducting
device. In this regime, the wave character of an
electron cannot be ignored. Then, the position of an
electron is uncertain by an amount Ap=h/p, where
p=m*v is the momentum of an electron with effective
mass m* and velocity v. In an electric field ¢, this gives
an energy uncertainty AE=eeZ,. The corresponding
uncertainty in time is now 1z~ h/AE=h/ecZp. This
gives a field broadening hr '=eei, which may
suppress the collision broadening at sufficiently high
electric fields, and hence limit the mobility. For n-
Germanium at room temperature (with
p=/2m*kyT), 7Zp,~27A if an average mass
m*x0.2m, (where m, is the free electron mass) is
taken. Therefore fr ~'=hr ™" at a critical electric field
e¥~ 1200 V/cm, where the onset of nonlinearity takes
place[3] and field broadening becomes very
important. At sufficiently high electric fields, this field
broadening may suppress the collision broadening.

Taking these considerations into account, a radical
transformation in our thinking of high-field transport
is required [4]. By an extension of the formalism in [4]
and using the Chamber’s intuitive method [5] of
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obtaining the distribution function for acoustic-
phonon scattering, the mobility and the relative
change AT/T in electron temperature are obtained [6]
as follows:

1=, (3/0)40), (1)
AT/T =(28/3)40), ?)

with
d=¢/e*, e*=k;T/d,, 3)
1o =4el, /3 (2mm* ky T)172, )
HS)=coth(d) -5, (5)

where {, is the mean-free-path of an electron.

Equation (1) is obtained from[6] by writing
u=a/n.e and using t={,/v. Similarly, Equation (2) is
equivalent to Equation (11) of [6] where a factor T is
missing in the second term. Then « in [6] has the same
meaning as 0 used here. The mobility expression of
Equation (1) reduces to its Ohmic value y, in the limit
6—0 (or ¢—0); is a quadratic function of § in the
warm-electron regime (6 << 1); and is inversely propor-
tional to the electric field in the hot-electron regime
(6> 1). The transition between the low-field and the
high-field regime takes place at 6=1 (which is equival-
ent to tp=1 stated above). The hot-electron mobility
obtained from Equation (1) can then be written as

pu=e{TE)/m*, (6)

with
(tey =20/ /meeipr, (7)
Zor=0/(2m*ky T)V/2. (8)

It should be noted that Z,; is the value of
Zp=h/p=h/(2m*€)!/? evaluated at thermal energy
€=kyT. Thus, at high-fields, collision broadening is
washed away by the field broadening. In Figure 1, we
show the relative mobility p/u, as a function of é. It is
clear from the graph that the nonlinearity becomes
appreciable only at d-values greater than one, where
field broadening is appreciable. Since 6 ~ T ~2, the field
broadening becomes even more important at lower
temperatures. The relative mobility u/u,=0.94 when
0=1, and reduces to 0.5 at 6=4.78. Thus at low
temperatures and high electric fields, the field
broadening is very important.

In Figure 2, we show the relative change in the
quasi-hot-electron temperature (AT/T) as a function
of 6. Again, it is seen that AT/T =24/3 in the hot-
electron regime and hence is proportional to the
electric field.
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Figure 1. Relative Mobility vs Normalized Electric Field
d=¢/e*
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Figure 2. Relative Change in Temperature AT /T of Quasi-
Hot Electrons as a Function of Normalized Electric Field
d=gfe*.

The results obtained here are in direct contrast to
those obtained by earlier theories, most prominent of
which are expansion-method theories. A comprehen-
sive review of these theories is given by Nag[7] who
has compounded the experimental data on elemental
semiconductors. The major difference in the outcome
of these theories from that presented here is that
velocity saturation cannot be obtained by acoustic
phonon scattering. The critical field for the onset of
nonlinearity given by Shockley [3] is ef=1.51p/p,,
which differs from e*=20ms/3ﬁy0 obtained from
Equation (3), where v__=(2ky T/m*)!/? is the thermal
velocity corresponding to energy e=kgT. The
acoustic-phonon velocity in Shockley’s condition is
thus replaced by the random thermal velocity. The



importance of random thermal velocity in describing
high-field transport has been indicated most recently
in the semi-empirical formulation of Schwarz and
Russek [8]. In the high field limit, the drift velocity is
shown to be proportional to v,  multiplied by a
temperature- and field-dependent factor. Similarly, the
high-field limit of Equation (1) gives for the drift
velocity

0y = (20,/5/7)(1—87"). ©

Since in practice § is not very large (for example
d~ 5 near the saturation regime in n-Germanium) and
is proportional to T ~2, Equation (9) gives a slight
decrease in saturation drift velocity. The effect of other
scattering mechanisms, at least phenomenologically,
can be included by replacing £, in Equation (3) by an
effective mean-free-path which can be obtained from
empirical fits. As stated earlier, the electric field ¢, , at
which mobility falls to half of its Ohmic value is equal
to 4.78:*. In n-Germanium at T=300K,
€,,,=28kV/cm[7], gives ¢*=0.59kV/cm. With this
value of &*, the relative mobilities obtained from
Equation (1), u/u,=0.85 0.62, 047, 038, are in
excellent agreement with the median experimental
values of pu/p,=082, 0.62, 046, and 0.38 at
£¢=1,2,3,4kV/cm, respectively. Similar comparisons
can be made for other semiconducting devices and at
different  temperatures. The simplified model
considered here does not take into account the
anisotropic nature of the band structure, nor the inter-
valley transfer of electrons. Neither have we
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considered other complications of scattering
mechanisms. Nevertheless, we hope that the results
presented above will form a nucleus for more
advanced studies of high-field transport in newly
emerging VLSI and VHSIC devices, thereby
contributing effectively to the modeling of these
devices.
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